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Abstract: The accurate detection and alleviation of driving fatigue are of great significance to traffic
safety. In this study, we tried to apply the modified multi-scale entropy (MMSE) approach, based
on variational mode decomposition (VMD), to driving fatigue detection. Firstly, the VMD was
used to decompose EEG into multiple intrinsic mode functions (IMFs), then the best IMFs and scale
factors were selected using the least square method (LSM). Finally, the MMSE features were extracted.
Compared with the traditional sample entropy (SampEn), the VMD-MMSE method can identify
the characteristics of driving fatigue more effectively. The VMD-MMSE characteristics combined
with a subjective questionnaire (SQ) were used to analyze the change trends of driving fatigue under
two driving modes: normal driving mode and interesting auditory stimulation mode. The results
show that the interesting auditory stimulation method adopted in this paper can effectively relieve
driving fatigue. In addition, the interesting auditory stimulation method, which simply involves
playing interesting auditory information on the vehicle-mounted player, can effectively relieve
driving fatigue. Compared with traditional driving fatigue-relieving methods, such as sleeping and
drinking coffee, this interesting auditory stimulation method can relieve fatigue in real-time when
the driver is driving normally.

Keywords: driving fatigue alleviation; MMSE; VMD; LSM; SQ; interesting auditory stimulation

1. Introduction

Driving fatigue is a physiological phenomenon in which the driver’s attention and
alertness decrease after a long driving task. When humans are in a state of driving fatigue,
the speed of the brain’s processing of information, especially its ability to deal with emer-
gencies, decreases obviously. Studies have shown that driving fatigue is one of the main
causes of traffic accidents [1–3]. A study by Byeon showed that driving fatigue causes at
least 10%–15% of traffic accidents [4]. Therefore, it is of great significance for traffic safety
to accurately detect drivers’ fatigue states and to take certain measures to relieve fatigue
when necessary.

Driving fatigue detection can be divided into subjective methods and objective meth-
ods [5,6]. The subjective method is generally conducted in the form of questionnaires,
which are often used as an auxiliary method in the detection of driving fatigue [7]. Objec-
tive detection methods mainly detect the driver’s mental state by detecting the driver’s
physiological signals [8], facial expressions [9], vehicle tracks [10] and so on. Considering
the accuracy and reliability of the objective detection method of driving fatigue, more and
more researchers have applied this method to their own research [11,12]. In recent years,
there have been more and more studies on fatigued driving using drivers’ physiological sig-
nals, such as EEG [13,14], EOG [15] EMG [16] and ECG methods [17,18]. Fatigue detection
method based on EEG characteristics is recognized as the gold standard by researchers [19].
Li et al. used EEG data on human mental fatigue to construct a brain function network, and
proposed a modified greedy coloring algorithm to calculate the fractal dimension of binary
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and weighted brain function networks. The results showed that the fractal dimension
increased with the increase of mental fatigue [20]. Mental fatigue characteristics in some
brain leads are not obvious, and the noise interference of redundant channels increases the
computational complexity. Li et al. identified the best indicator of driving fatigue through
gray relational analysis, and reduced the dimensions of effective electrodes through kernel
principal component analysis, and finally obtained two important leads (FP1 and O1) [21].
Jap et al. calculated the coherence between the inter-hemispheres of θ, δ, α and β sub-bands
of five homologous EEG electrode pairs (FP1–FP2, C3–C4, T7–T8, P7–P8 and O1–O2). The
results showed that the inter-hemispheric coherence values of the frontal and occipital
areas were higher than that of the central, parietal and temporal areas in the four frequency
bands [22]. Wang et al. collected EEG signals from the central, parietal and occipital
regions of the subjects, and used the G-P algorithm to evaluate the correlation dimension
to quantify EEG signals. The results showed that the correlation dimension of each channel
decreased significantly with an increase in the subjects’ driving fatigue [23]. In this paper,
we use O1 and O2 electrodes in the occipital region to study driving fatigue.

In recent years, non-stationary signal analysis has received more and more attention
from researchers, in which amplitude-modulated-frequency-modulated (AM-FM) signal
analysis is of great significance in non-stationary signal analysis [24,25]. The frequency and
amplitude information provided by non-stationary signals can be obtained via demodulate
FM-AM signals. Qin achieved FM-AM decomposition of multi-component signals by
combining energy decomposition and adaptive filtering [26]. At present, AM-FM decom-
position techniques mainly include the iterated Hilbert transform (IHT) [27], the empirical
mode of decomposition (EMD) [28], the local mean decomposition (LMD) approach [29],
etc. The IHT primarily separates the amplitude signal from the original signal. Then, a
filter is used to separate the single component from the amplitude signal. Multiple FM-FM
single components can be extracted from the original signal through the iterative use of the
Hilbert transform and filter. EMD is an adaptive signal processing method that adaptively
decomposes complex multi-component signals into the sum of several IMFs. Then, the
Hilbert transformation is performed to calculate the instantaneous frequency and the in-
stantaneous amplitude of each IMF component. EEG signals are usually mixed with certain
components of noise, and traditional digital filtering or wavelet denoising methods cannot
effectively reduce noise. Therefore, many scholars tend to use adaptive methods to process
EEG signals in order to improve the signal-to-noise ratios of EEG signals [30]. In this study,
the EEG signals were adaptively decomposed using the VMD approach to obtain multiple
IMF components, in which each IMF was defined as an FM-AM signal. Compared with
the empirical mode decomposition (EMD) approach, the VMD method is a completely
non-recursive time domain signal processing method, which can effectively avoid the
occurrence of modal aliasing [31]. Kaur et al. compared discrete wavelet transform (DWT),
combined with VMD and wavelet packet transform (WPT) to denoise physiological signals,
and achieved ideal denoising effects [32]. Therefore, we have use VMD to adaptively
decompose EEG signals to achieve signal noise reductions.

EEG signals are highly complex signals and are non-linear and non-stationary; there-
fore, linear analysis methods cannot adequately reflect the internality dynamic charac-
teristics of EEG signals. As one of the non-linear analysis methods, th mutlifractality
method can reveal the regularity problems within the non-linear system by studying its
dynamic characteristics, such as its disorder, irregularity and uncertainty. At present, the
mutlifractality method is widely used in physiological signal processing [33–35]. Addi-
tionally, as a non-linear processing method, entropy is also widely used in the detection
of driving fatigue [36–38]. Compared with the mutlifractality method [39,40], MMSE can
extract EEG features on a time scale, and the data length required by the MMSE method
is shorter in terms of EEG processing. Consequently, for the special situation of driving
fatigue detection, the MMSE method can better meet the needs of traffic safety. Wang et al.
analyzed drivers’ driving levels using the sample entropy value of the δ sub-band in the
drivers’ EEG signals. The results showed that the sample entropy value can distinguish
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between different driving levels of drivers [41]. Gao et al. proposed a new relative wavelet
entropy complex network method to identify driving fatigue, and the results showed that
this method could effectively improve the classification accuracy for driving fatigue [42].
The traditional single-scale entropy cannot adequately reflect the fatigue characteristics
in EEG signals. Therefore, in recent years, more and more scholars have used the multi-
scale entropy method to extract EEG features [43]. Zou et al. proposed a multi-scale
entropy-based empirical mode decomposition (EMD) method to identify the characteristics
of driving fatigue, and the results show that this method can effectively detect driving
fatigue [44]. Due to the coarse-graining procedure, the signal length of the traditional
multi-scale entropy gradually becomes shorter. When applied to a short-term time series,
the entropy estimation becomes inaccurate [45]. Wu et al. proposed an MMSE method to
transform the coarse-graining procedure into a moving-average process and introduced a
time delay to construct template vectors in the calculation of sample entropy [46]. In our
study, we use the moving-average method to multi-scale EEG signals in order to overcome
the disadvantage that the traditional multi-scale entropy causes the time series length to
become shorter with the increase of the scale factor.

Driving fatigue poses a great threat to road traffic, and relieving driving fatigue
effectively is of great significance for traffic safety. The traditional methods of relieving
driving fatigue include stopping to rest, ventilating the cab, as well as drinking coffee or
other irritating drinks. These methods require the driver to stop driving and the relief effect
is often not ideal; therefore, they are not suitable for long-distance driving environments.
In recent years, many researchers have begun to relieve driving fatigue using electrical
stimulation of human acupoints, such as stimulating the Hégǔ point (L14), the Neìguān
point (PC6) and the Fēngchí point (GB20) [47–49]. However, frequent electrical stimulation
of human acupoints to relieve fatigue will gradually reduce the relief effect. Studies have
shown that appropriately increasing drivers’ cognitive load—that is, performing a series
of secondary tasks while driving—can improve drivers’ alertness [50,51]. Oron–Gilad’s
research shows that the fatigue relief effect is the best when the driver’s workload is in
the optimal state [52]. In this study, we tried to stimulate drivers with interesting auditory
stimulation to achieve the effect of alleviating driving fatigue.

In this study, the VMD algorithm was used to adaptively decompose drivers’ EEG
signals, obtained multiple IMFs. Then the multi-scale entropy features of each IMF were
calculated using a multi-scale sample entropy algorithm. Finally, multi-scale sample
entropy was used to detect driving fatigue. The alleviation of driving fatigue is of great
significance to traffic safety. Therefore, driving fatigue alleviation was studied from the
perspective of driver cognitive load in this study, that is, using the method of interesting
auditory stimulation to bring the driver’s cognitive level to a relatively optimal state to
achieve the alleviation of driving fatigue.

2. Materials and Methods
2.1. Experiment
2.1.1. Subjects

A total of 15 subjects (10 males and 5 females; aged 30 ± 3.6 (standard deviation,
SD)) participated in the experiment. They were required to perform driving tasks on a
driving simulator during the experiment. To trigger fatigue for the subjects, a monotonous
highway scene was selected for the experiment. All subjects had no history of sleep-related
disease or mental illness and had not consumed any irritant drinks or any irritant foods
or drugs within 48 h prior to the experiment. All subjects were informed regarding the
purpose of this experiment and written consent forms were signed. The experiment was
divided into two experimental modes—the normal driving mode and the interesting
auditory stimulation mode. In the former experimental mode, the subjects performed a
normal monotonous driving task. In the latter experimental mode, the subjects performed
normal driving tasks in the driving simulator while the experimenter played Chinese
traditional cross-talk for them. All subjects were required to complete two types of driving
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experiments. It should be noted that the interesting auditory stimulation mode of the
experiment could only be carried out after all subjects have completed the normal driving
mode of experiment. Each of the modes required 3 h of driving. To render the subjects
more susceptible to fatigue, the experiment was selected during the time period from
1:00 p.m. to 4:00 p.m., and was divided into seven stages of collection, each of which
took 5 min (stage 1—1:00 p.m.; stage 2—1:30 p.m.; stage 3—2:00 p.m.; stage 4—2:30 p.m.;
stage 5—3:00 p.m.; stage 6—3:30 p.m.; stage 7—4:00 p.m.). The subjects were asked about
their current mental status in the five minutes prior to each EEG acquisition and were
scored based on the Karolinska sleepiness scale (KSS). To avoid the potential influence of a
lack of sleep on the results of the experiment, the subjects were asked to rest for half an
hour before the the experiment (12:00 p.m.–12:30 p.m.).

2.1.2. EEG Acquisition Device

The Emotiv device was used to collect EEG data in this experiment. The sampling rate
of the device was 128 Hz and the 14 electrodes were arranged according to the international
10–20 system (14 channels = AF3, AF4, F3, F4, FC5, FC6, F7, F8, T7, T8, P7, P8, O1, O2).
The electrode caps were correctly attached to the subjects before the experiments were
conducted, and the connection status of the 14 electrodes was checked at all times during
the experiments to ensure the validity of the data. In addition, we ensured that the
experiment environment was quiet to reduce noise disturbances. The equipment used for
this experiment is shown in Figure 1.

Entropy 2021, 23, x FOR PEER REVIEW 4 of 17 
 

 

ditory stimulation mode. In the former experimental mode, the subjects performed a nor-

mal monotonous driving task. In the latter experimental mode, the subjects performed 

normal driving tasks in the driving simulator while the experimenter played Chinese tra-

ditional cross-talk for them. All subjects were required to complete two types of driving 

experiments. It should be noted that the interesting auditory stimulation mode of the ex-

periment could only be carried out after all subjects have completed the normal driving 

mode of experiment. Each of the modes required 3 h of driving. To render the subjects 

more susceptible to fatigue, the experiment was selected during the time period from 1:00 

p.m. to 4:00 p.m., and was divided into seven stages of collection, each of which took 5 

min (stage 1—1:00 p.m.; stage 2—1:30 p.m.; stage 3—2:00 p.m.; stage 4—2:30 p.m.; stage 

5—3:00 p.m.; stage 6—3:30 p.m.; stage 7—4:00 p.m.). The subjects were asked about their 

current mental status in the five minutes prior to each EEG acquisition and were scored 

based on the Karolinska sleepiness scale (KSS). To avoid the potential influence of a lack 

of sleep on the results of the experiment, the subjects were asked to rest for half an hour 

before the the experiment (12:00 p.m.–12:30 p.m.). 

2.1.2. EEG Acquisition Device 

The Emotiv device was used to collect EEG data in this experiment. The sampling 

rate of the device was 128 Hz and the 14 electrodes were arranged according to the inter-

national 10–20 system (14 channels = AF3, AF4, F3, F4, FC5, FC6, F7, F8, T7, T8, P7, P8, O1, 

O2). The electrode caps were correctly attached to the subjects before the experiments 

were conducted, and the connection status of the 14 electrodes was checked at all times 

during the experiments to ensure the validity of the data. In addition, we ensured that the 

experiment environment was quiet to reduce noise disturbances. The equipment used for 

this experiment is shown in Figure 1. 

 

Figure 1. Experimental setup. 

2.2. Methods 

The EEG is susceptible to interference from external environmental noise, and there 

are phenomena such as baseline drift in the raw EEG, which can seriously influence the 

extraction of fatigue features. Thus, pre-processing of the EEG is crucial. In this paper, 

EEGLAB software was used to perform the baseline correction of the raw EEG signals, 

followed by independent component analysis (ICA) to remove eye movements, blinks 

and EMG artifacts. Studies have shown that fatigue features are easily found in the 0.5–44 

Hz sub-band of EEG signals [53,54]; therefore, low-pass filtering was performed on the 

EEG to obtain 0.5–44 Hz EEGs. In this study, the VMD algorithm was used to adaptively 

decompose the pre-processed EEG signals to obtain several IMF components. As each IMF 

component contains different fatigue characteristics, it is necessary to select the IMF com-

ponent. First, a single-scale sample entropy algorithm was used to calculate the single-

scale entropy characteristics of each IMF component. Secondly, the LSM was used to fit 

(A) Emotiv

(C) Auditory 

Material Player

(B) Switch Button (D) Speaker

A

BC

D

Figure 1. Experimental setup.

2.2. Methods

The EEG is susceptible to interference from external environmental noise, and there
are phenomena such as baseline drift in the raw EEG, which can seriously influence the
extraction of fatigue features. Thus, pre-processing of the EEG is crucial. In this paper,
EEGLAB software was used to perform the baseline correction of the raw EEG signals,
followed by independent component analysis (ICA) to remove eye movements, blinks and
EMG artifacts. Studies have shown that fatigue features are easily found in the 0.5–44 Hz
sub-band of EEG signals [53,54]; therefore, low-pass filtering was performed on the EEG
to obtain 0.5–44 Hz EEGs. In this study, the VMD algorithm was used to adaptively
decompose the pre-processed EEG signals to obtain several IMF components. As each
IMF component contains different fatigue characteristics, it is necessary to select the IMF
component. First, a single-scale sample entropy algorithm was used to calculate the single-
scale entropy characteristics of each IMF component. Secondly, the LSM was used to
fit the change trends of the characteristics of the subjects’ 7 driving stages. Finally, the
IMF component with the most obvious change trends in terms of fatigue characteristics
was selected according to the slope of the fitting. Multi-scale entropy characteristics were
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calculated according to the selected IMF component. Then, the LSM was used to fit the
change trends of multi-scale entropy characteristics with the 7 driving stages of the subjects.
According to the fitting slope, the scale factor of multi-scale entropy features with the most
obvious change trend was selected.

2.2.1. Variational Mode Decomposition

The 0.5–44 Hz sub-band EEG signals contain a certain component of low-frequency
noise, which affects the extraction of fatigue features. Thus, the 0.5–44 Hz narrow-band
signal was decomposed using VMD in this study. The main idea of VMD is to decompose
the signal into multiple narrow-band IMFs based on the central frequency, which is con-
tinuously updated during the decomposition process. The VMD adaptively obtains the
variational mode function by solving the optimal solution of the constrained variational
model. The calculation process was as follows.

The VMD defines each mode as an AM-FM signal.

uk = Ak(t) cos(φk(t)) (1)

where, Ak(t) is the instantaneous amplitude, dφk(t)/dt = ωk(t), and ωk(t) is the instanta-
neous frequency. The VMD constraint is that the sum of the modal components is equal to
the input signal and that the sum of the estimated bandwidths of each mode is minimized.
The model with these constraits is shown as follows.

min
{uk}{ωk}

{
∑
k

∥∥∥∂t[(δ(t) +
j

πt ) ∗ uk(t)]e−jωkt
∥∥∥2

2

}
s.t.∑

k
uk = f

(2)

where uk represents the K IMF from the decomposition, and ωk represents the central
frequency of the corresponding IMF.

The Lagrangian multipliers λ(t) and the penalty factor α are introduced to trans-
form the constrained variational problem into an unconstrained variational problem by
calculating the optimal solution in Equation (2), the expression of which is shown as

L({uk}, {ωk}, λ) = α∑
k

∥∥∥∂t[(δ(t) +
j

πt ) ∗ uk(t)]e−jωkt
∥∥∥2

2

+

∥∥∥∥ f (t)−∑
k

uk(t)
∥∥∥∥2

2
+

〈
λ(t), f (t)−∑

k
uk(t)

〉 (3)

where 〈•〉 denotes the inner product operation, and the alternate direction method of
multipliers (ADMM) iteratively updates un+1

k , ωn+1
k and λn+1 to search for the augmented

Lagrangian function, that is, the “saddle point” of Equation (3), and the expression of
un+1

k is,

un+1
k = argmin

uk∈X

α

∥∥∥∥∂t[(δ(t) +
j

πt
) ∗ uk(t)]e−jωkt

∥∥∥∥2

2
+

∥∥∥∥∥ f (t)−∑
i

ui(t) +
λ(t)

2

∥∥∥∥∥
2

2

 (4)

where ωk = ωn+1
k , ∑

i
ui(t) = ∑

i 6=k
ui(t)

n+1. According to Parseval’s theorem and the

Plancherel theorem, Equation (4) can be converted to the frequency domain.

ûn+1
k = argmin

ûk

{α‖j(ω−ωk)[(1 + sgn(ω))ûk(ω)]‖2
2

+

∥∥∥∥ f̂ (ω)−∑
i

ûi(ω) + λ̂(ω)
2

∥∥∥∥2

2

} (5)
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Using the Hermitian symmetry of real-valued signals, Equation (5) is rewritten into a
half-space integral over non-negative frequencies.

ûn+1
k = argmin

ûk

{∫ +∞
0 4α(ω−ωk)

2|ûk(ω)|2

+2
∣∣∣∣ f̂ (ω)−∑

i
ûi(ω) + λ̂(ω)

2

∣∣∣∣2dω

} (6)

Finally, we obtain ûn+1
k as follows.

ûn+1
k (ω) =

f̂ (ω)− ∑
i 6=k

ûi(ω) + λ̂(ω)
2

1 + 2α(ω−ωk)
2 (7)

The iterative optimization formula for ωk is as follows.

ωn+1
k = argmin

ωk

{∥∥∥∥∂t

[(
δ(t) +

j
πt

)
∗ uk(t)

]
e−jωkt

∥∥∥∥2

2

}
(8)

Transform the optimization problem of Equation (8) into the Fourier domain to obtain:

ωn+1
k =

∫ ∞
0 ω|ûk(ω)|2dω∫ ∞

0 |ûk(ω)|2dω
(9)

Update ûn+1
k , ωn+1

k and λ̂n+1(ω) using the following equation, respectively.

ûn+1
k (ω) =

f̂ (ω)− ∑
i<k

ûn+1
i (ω)− ∑

i>k
ûn

i (ω)+ λ̂n(ω)
2

1+2α(ω−ωn
k )

2

(10)

ωn+1
k =

∫ ∞
0 ω

∣∣∣ûn+1
k (ω)

∣∣∣2dω∫ ∞
0

∣∣∣ûn+1
k (ω)

∣∣∣2dω

(11)

λ̂n+1(ω)← λ̂n(ω) + τ( f̂ (ω)−∑
k

ûn+1
k (ω)) (12)

Based on the above analysis, it can be shown that in the process of solving the varia-
tional model, the central frequency of each IMF component, as well as the bandwidth, is

continuously iteratively updated until the condition ∑
k

‖ûn+1
k −ûn

k‖
2
2

‖ûn
k‖

2
2

< e is satisfied and the

iteration is stopped, and for a given accuracy e > 0, the loop is finished. The real signal
is decomposed into K IMF components according to the frequency domain characteris-
tics, completing the adaptive decomposition of the signal and effectively avoiding the
phenomenon of modal aliasing.

2.2.2. Sample Entropy

The SampEn, which is modified from ApEn, reflects the complexity of the time series.
The SampEn method was first proposed by Richman and Moorman to analyze random
data sets with known probabilities. The research of Richman and Moorman also showed
that a larger SampEn value indicates a more irregular time series, whereas a smaller the
entropy value indicates the stronger regularity of the time series [55]. In recent years, the
SampEn has been widely used in the field of EEG signal processing. Shalbaf et al. used
SampEn characteristics to reflect the effect of sevoflurane anesthesia. The results showed
that the SampEn had a faster reaction to the transients of EEGs during the induction of
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anesthesia [56]. In this study, the SampEn algorithm was used to extract the EEG fatigue
characteristics. The SampEn algorithm is calculated as shown in the following procedure.

A time-series of length N is denoted x(1), x(2), . . . , x(N), and the embedding dimen-
sion is set to m and the time delay to τ.

Xτ
m(i) = {x(i), x(i + τ), . . . , x[i + (m− 1)τ]}; 1 ≤ i ≤ N − (m− 1)τ (13)

Calculating the distance between any pair of m-dimension vectors:

d[Xτ
m(i), Xτ

m(j)] = max[x(i + kτ)− x(j + kτ)];
0 ≤ k ≤ m− 1; i 6= j; 1 ≤ i, j ≤ N − (m− 1)τ

(14)

Given a threshold r, we calculate the number at which the distance maximum differ-
ences between the above two m-dimension vectors is less than r, and calculate the ratio of
this number to the total numbers.

Bm
i (r) =

1
N − (m− 1)τ

{number o f d[Xτ
m(i), Xτ

m(j)] < r, i 6= j} (15)

Bm
i (r) is the ratio of the number, less than the threshold r, to the total number, with

the mean value calculated as follows.

Bm(r) =
1

N − (m− 1)τ

N−m+1

∑
i=1

Bm
i (r) (16)

in which Bm(r) is the mean of the m-dimension sequence ratio.
The signal is added to m + 1 dimensions and the above steps are repeated to obtain

the mean value Bm+1(r) of the ratio of the m + 1 dimension sequence.
The SampEn of the EEG signal is

SampEn(X, m, r, τ) = − ln
Bm+1(r)

Bm(r)
(17)

2.2.3. Modified Multi-Scale Entropy

The modified multi-scale entropy (MMSE) approach was proposed by Wu et al. [46],
and the calculation procedure requires two steps: (1) a dynamic system representing
different time scales is obtained through the moving-average procedure; (2) the entropy
value of a moving-average time series with a scale factor τ is calculated using the SampEn
method with a time delay τ.

Using Xτ to represent a moving-average time series with a time scale of τ, the formula
is shown as follows.

xτ
j =

1
τ

j+τ−1

∑
i=j

xi (1 ≤ j ≤ N − τ + 1) (18)

The entropy value of the moving-average time series Xτ is calculated using the
SampEn with a time delay τ, calculated as,

SampEn(Xτ , m, r, τ) = − ln
Bm+1(r)

Bm(r)
(19)

According to a previous study [57], the similarity tolerance r = 0.2SD (SD is the
standard deviation of the raw EEG) and the embedding dimension m = 2 were chosen for
this study.

2.2.4. Least Squares Method

The main idea of the LSM is to fit the existing data points to obtain the correspon-
dence between variables and other variables. The data can be predicted according to the
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correspondence between different variables. In this paper, the LSM was used to fit the
fatigue characteristics in seven driving stages to obtain the slope of the change trends of
the fatigue characteristics.

2.2.5. Statistical Analysis Algorithm

In this study, the statistical method of two-tailed t-tests was used to compare and
analyze the differences in the experimental results. In this part of the comparative analysis,
the two-tailed t-test was used to compare and analyze the significant differences between
the normal driving mode and the interesting auditory stimulation mode.

3. Results
3.1. Selection of Intrinsic Mode Function Components

The VMD is a completely non-recursive time domain signal processing method.
Figure 2 shows a time domain signal diagram, decomposed using the VMD from the first
stage of the O1 channel, with the subject driving in normal driving mode.
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Figure 2. IMF component.

Each IMF component contains different fatigue components; therefore, it is necessary
to select the IMF component with the most obvious driving fatigue characteristics from the
five IMF components. In this study, we used the LSM to perform one linear fitting process
to the single-scale entropy change trends of the five IMFs in the seven driving stages, and
then calculated the slope of the fatigue change trends in the seven driving stages. The
means of the absolute values of the calculated slopes for 15 subjects are shown in Figure 3.

As can be seen from Figure 3, all five IMF components contain a certain component of
fatigue characteristics. However, the change trend of the fatigue characteristics contained
in IMF3 was more obvious and more conducive to driving fatigue detection, compared
to the others. Compared to the other IMF components, the standard deviation of IMF3
was smaller, which indicated that IMF3 was less affected by individual differences and
contained a more stable trend in terms of fatigue characteristics. In order to better detect
and analyze the characteristics of driving fatigue, IMF3 was used to detect driving fatigue
characteristics in this paper.

3.2. Multi-Scale Selection

To analysis the influence of scale factors on EEG extraction in relation to driving
fatigue features, we calculated the change trend of MMSE for IMF3 at scale factors 1–7
over seven driving stages. The fatigue feature change trends of the seven driving stages
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based on MMSE on a 1–7 scale were fitted using the LSM and then the obtained slopes
were calculated in terms of absolute values. The distribution of the slopes’ absolute values
for the 15 subjects under the seven scale factors is shown in Figure 4.
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As shown in Figure 4, the absolute slope, corresponding to the change trend of the
MMSE, increases continuously with the increase of the scale factor when the scale factor
is selected in the range of 1–4. The absolute slope is largest when the scale factor is four.
After the scale factor becomes greater than four, the absolute slope starts to decrease
gradually. This result indicates that the change trend of the MMSE is more obvious for
the 15 subjects when the scale factor is four. The distributed of data for a scale factor of 4
is more centralized than the distributed of data for other scales, which indicates that the
fatigue features extracted using MMSE are less affected by individual differences when the
scale factor is four, which is more conducive to the detection of driving fatigue. Therefore,
we selected a scale factor of four for fatigue feature extraction.

3.3. Modified Multi-Scale Entropy Feature

After the above analysis, IMF3 was selected to extract MMSE features with a scale
factor of four. Studies have shown that more obvious fatigue features can be extracted from
EEGs in the occipital lobe [58,59]. Therefore, the O1- and O2-channel EEG signals were
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selected to extract MMSE features for the two driving modes, respectively. The results are
shown in Figure 5.
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driving modes; (b) Variations in MMSE characteristics of the O2 channel in the two driving modes.

As can be seen in Figure 5, the MMSE of the O1 and O2 channels displayed significant
downward trends with the extension of the driving time in normal driving mode, indi-
cating a gradually deepening of driver fatigue. When the driver performs monotonous
driving tasks for a long time in normal driving mode, the driver experiences an insufficient
cognitive load, which easily leads to passive fatigue. With the extension of driving time,
the driver’s reaction time in response to emergency situations becomes gradually longer,
they become less alert, their perception of the outside world is weakened and their fatigue
level gradually increases. The MMSE showed a slight downward trend with the extension
of the driving time during interesting auditory stimulation, indicating that driver fatigue
increased more slowly when driving tasks were performed. When exposed to interesting
auditory stimulation, drivers were at their cognitive optimum and were not prone to pas-
sive fatigue. However, with the extension of driving time, drivers emerged slightly fatigued.
As a result, the MMSE demonstrated a slight decrease during interesting auditory stimula-
tion. Additionally, there was a significant difference between the two driving modes
(O1: |t| = 5.138 > t0.05,15 = 2.131, p =1.64 × 10−5 < 0.05; O2: |t| = 6.47 > t0.05,15 = 2.131,
p = 1.731 × 10−6 < 0.05). We also used one-way ANOVA to analyze the fatigue characteris-
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tics calculated based on MMSE for the two experiments. The results showed a significant
difference between the two driving modes (O1: F = 4.78 > F(1,12) = 4.75, p = 0.0493 < 0.05;
O2: F = 4.98 > F(1,12) = 4.75, p = 0.0455 < 0.05). Consequently, the interesting auditory
stimulation method used in this paper can effectively relieve driving fatigue.

3.4. Subjective Questionnaire

This experiment evaluated the different fatigue states of drivers using a 9-level KSS
(1—extremely alert; 2—very alert; 3—alert; 4—rather alert; 5—neither alert nor sleepy;
6—some signs of sleepiness; 7—sleepy, no effort to stay awake; 8—sleepy, some effort to
stay awake; 9—very sleepy, great effort to stay awake). Figure 6 shows the changing trends
of the questionnaire scores for the 15 subjects in the seven driving stages.
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As can be seen in Figure 6, the questionnaire scores showed an upward trend when
subjects were performing the two driving modes, indicating that the fatigue level gradually
increased over the extension of he driving time. However, there was a significant difference
between the two driving modes (|t| = 5.897 > t0.05,15 = 2.131, p = 2.41 × 10−6 < 0.05). In
addition, we conducted one-way ANOVA on the KSS scores for the two types of experi-
ments. The results showed a significant difference between the two types of experiments
(F = 4.87 > F(1,12) = 4.75, p = 0.0475 < 0.05). Due to the influence of interesting auditory
stimulation, drivers’ cognitive levels reached relatively optimum levels. Accordingly,
drivers’ fatigue levels increased relatively slowly during the interesting auditory stimu-
lation mode, compared to the normal driving mode, which indicated that the interesting
auditory stimulation method used in this paper was effective for alleviating driving fatigue.

4. Discussion

Previous studies have shown that when people are experiencing driving fatigue, their
actions become dulled, their concentration decreases and they are more likely to make
misjudgments, which poses a threat to traffic safety [60]. Every year, traffic accidents
caused by driving fatigue account for a large proportion of the total number of traffic
accidents [61]. Therefore, it is necessary to detect the mental fatigue of drivers and alleviate
it in time. Research shows that driving fatigue easily occurs when drivers have a low
cognitive load [62]. In our study, we tried to appropriately increase subjects’ cognitive
loads to combat driving fatigue caused by a monotonous driving environment.

4.1. VMD-MMSE Method

SampEn is suitable for feature detection in small sample datasets and has little de-
pendence on data length, which is suitable for real-time online detection [40]. Studies
have shown that the SampEn method is able to extract fatigue features from EEGs [63,64].
Wang et al. used SampEn to calculate the characteristics of heart rate variability (HRV) to
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analyze the changes in the levels of driving fatigue. The results showed that SampEn could
effectively detect subjects’ driving fatigue in real time [65]. Wang et al. calculated the mean
SampEn values of two EEG channels to detect drivers’ mental fatigue states. The results
showed that the method was effective in detecting driving fatigue [66]. The traditional
SampEn method can only be used to calculate entropy values based on a singe scale,
neglecting the influence of the time scale on the results. On the other hand, multi-scale
entropy analysis takes into account the influence of the time scale on fatigue characteristics.
In this study, the VMD-MMSE method was used to extract fatigue features. Studies have
shown that three factors—drivers’ age, gender and driving time—are the main factors
affecting driving fatigue [67,68]. In this study, the effects of drivers’ age, gender and driving
time on driving fatigue were analyzed using a linear-mixed effects model. The results of
our analysis using SPSS software are shown in Table 1.

Table 1. Analysis results of linear-mixed effects model.

Source Numerator Degrees
of Freedom

Denominator
Degrees of
Freedom

F Significance

intercept 1 100 16,573.398 6.32 × 10−113

gender 1 100 2.761 0.315
age 2 100 2.070 0.473
time 1 100 895.094 1.07 × 10−51

As can be seen in Table 1, the drivers’ age and gender had no significant influence
on the degree of driving fatigue (p > 0.05). However, the driving time had a significant
influence on the degree of driving fatigue (p < 0.05). Therefore, the LSM was used to
linearly fit the driving time and entropy characteristics of subjects in this study. In order to
verify the effectiveness of the VMD-MMSE method, based on the O1 channel EEG data
in normal driving mode, the change trends of the fatigue characteristics, calculated using
SampEn and the VMD-MMSE method, were fitted with the seven driving stages. The
results are shown in Figure 7.
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The change trends of fatigue features, extracted using the VMD-MMSE method, were
more obvious, as can be seen in Figure 7. In this paper, the mean and standard deviation
of the slopes of the changes in fatigue characteristics across the seven driving stages for
15 subjects were calculated using the SampEn and VMD-MMSE methods. The results are
shown in Table 2.
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Table 2. Comparison of characteristic change trends.

VMD-MMSE SampEn

Subject1 −0.08301 −0.05894
Subject2 −0.08075 −0.06331
Subject3 −0.08229 −0.0576
Subject4 −0.07985 −0.05903
Subject5 −0.08089 −0.06074
Subject6 −0.08315 −0.05638
Subject7 −0.08161 −0.06208
Subject8 −0.08405 −0.06065
Subject9 −0.07863 −0.05447

Subject10 −0.08357 −0.05872
Subject11 −0.08304 −0.05679
Subject12 −0.08142 −0.05894
Subject13 −0.08059 −0.05923
Subject14 −0.08391 −0.05272
Subject15 −0.07584 −0.06054

mean −0.08151 −0.05868
S.D. 1 0.00215 0.00266

1 S.D. denotes the standard deviation.

It can be seen in Table 2 that the average of the changes in fatigue characteristics of
the 15 subjects extracted using VMD-MMSE method was smaller than that extracted using
the SampEn method. The results show that the fatigue characteristics extracted using
VMD-MMSE method were more obvious. Moreover, the standard deviation of the fatigue
change trends calculated using the VMD-MMSE method was smaller, which indicates
that fatigue characteristics calculated using this method were less affected by individual
differences. As EEG signals do not show complex dynamics with perfect regularity and
complete randomness, complex dynamics usually reveals structures on multiple spatial and
temporal scales. The traditional SampEn method only calculates the EEG characteristics on
a single scale, ignoring the inherent complex time fluctuation of the EEG. However, MMSE
can provide more details about complex dynamics, which is more suitable for quantifying
EEGs with multiple temporal and spatial scales. Consequently, these multi-scale features,
which are ignored in the SampEn method, are explicitly addressed in the MMSE algorithm.

4.2. Interesting Auditory Stimulation Alleviates Driving Fatigue

The results of the VMD-MMSE analysis showed that there was a significant differ-
ence in the fatigue change trends between the normal driving mode and the interesting
auditory stimulation mode (O1: |t| = 5.138 > t0.05,15 = 2.131, p = 1.64 × 10−5 < 0.05; O2:
|t| = 6.47 > t0.05,15 = 2.131, p = 1.731 × 10−6 < 0.05). Previous studies have shown that en-
tropy values show a downward trend with the increase of the driving fatigue level, which
is consistent with our research results [69]. As can be seen in Figure 5, when performing
normal driving tasks, the fatigue features extracted using the VMD-MMSE method showed
an obvious downward trend after subjects performed the monotonous driving task for
a long time, due to inadequate cognitive stimulation of the driver, indicating that the
fatigue level of the driver increased with the extension of the driving time. Compared
with normal driving mode, there was no passive fatigue during the interesting auditory
stimulation mode. When stimulated by minor tasks, the central nervous system of the
driver is more active and the cognitive level of the driver reaches a relatively optimum level.
Consequently, the fatigue features extracted based on the VMD-MMSE method showed a
slower downward trend, indicating that the driving fatigue was relieved. Furthermore, as
can be seen in Figure 6, the variation trends of the questionnaire scores in the two driving
modes corresponding to the variation trends of the fatigue characteristics extracted using
the VMD-MMSE method. The questionnaire scores of the two driving modes presented
significant differences (|t| = 5.897 > t0.05,15 = 2.131, p = 2.41 × 10−6 < 0.05). Therefore, the
interesting auditory stimulation method used in this paper can effectively relieve driving
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fatigue. Additionally, the equipment used in this experiment is portable, easy to oper-
ate and convenient to implement in real-time, which is of great significance for practical
applications in the future.

4.3. Limitations

Although interesting auditory stimulation was proven to be effective in relieving
long-term driving fatigue, we have not performed much research into the semantic content
of auditory stimulation. Whether semantic content that is more exciting, neutral or boring
is more conducive to relieving mental fatigue has not yet been studied.

4.4. Future Lines of Research

In future research, our work will be divided mainly into three aspects. One involves
choosing different auditory material in terms of semantic content to determine the re-
lationship between the semantic content and the effect of relieving driver fatigue. The
next involves comparing interesting auditory stimulation with existing effective fatigue-
relieving methods, such as the use of electrodes for head-resting, to further improve
these methods. Finally, we intend to use our method to alleviate driver fatigue in real
driving situations.

5. Conclusions

The main contribution of this study is that the VMD-MMSE method was applied to
the detection of driving fatigue and interesting auditory stimulation was used to alleviate
driving fatigue. Furthermore, we found that the VMD-MMSE method was capable of
detecting driving fatigue more effectively, compared with the SampEn method. In this
paper, the cognitive load of the subjects was appropriately increased through exposure
to interesting auditory stimulation to alleviate driving fatigue. These results indicate that
interesting auditory stimulation can effectively relieve driving fatigue. In addition, the
method does not affect normal driving, and is easy to use in normal driving.
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