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Circulating tumor cell (CTC) analysis holds great potential to be a nonin-

vasive solution for clinical cancer management. A complete workflow that

combined CTC detection and single-cell molecular analysis is required. We

developed the ChimeraX�-i120 platform to facilitate negative enrichment,

immunofluorescent labeling, and machine learning-based identification of

CTCs. Analytical performances were evaluated, and a total of 477 partici-

pants were enrolled to validate the clinical feasibility of ChimeraX�-i120

CTC detection. We analyzed copy number alteration profiles of isolated

single cells. The ChimeraX�-i120 platform had high sensitivity, accuracy,

and reproducibility for CTC detection. In clinical samples, an average

value of > 60% CTC-positive rate was found for five cancer types (i.e.,

liver, biliary duct, breast, colorectal, and lung), while CTCs were rarely

identified in blood from healthy donors. In hepatocellular carcinoma

patients treated with curative resection, CTC status was significantly associ-

ated with tumor characteristics, prognosis, and treatment response (all

P < 0.05). Single-cell sequencing analysis revealed that heterogeneous geno-

mic alteration patterns resided in different cells, patients, and cancers. Our

results suggest that the use of this ChimeraX�-i120 platform and the inte-

grated workflow has validity as a tool for CTC detection and downstream

genomic profiling in the clinical setting.
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1. Introduction

Cancer metastasis is the main cause of cancer-related

deaths worldwide [1]. Circulating tumor cells (CTCs)

are rare cancer cells that circulate in the bloodstream

after they are shed from tumors. CTCs are regarded as

‘seeds’ that initiate cancer progression and metastasis

[2,3]. Characterizing these rare cells from blood repre-

sents a potential surrogate for tumor biopsy and may

provide crucial information related to cancer progres-

sion, prognostication, and therapeutic response [4,5].

Furthermore, moving beyond the simple enumeration

of CTCs toward more sophisticated single-cell molecu-

lar analyses can fully realize their potential as

biomarkers used to understand underlying mechanisms

of cancer metastasis and develop new therapeutic

strategies [6–9].
Due to the scarcity of CTCs and the contamination

of other blood cells, CTCs are generally required to be

enriched from the patient’s blood sample before fur-

ther analysis. CTC enrichment methods are classified

based on whether they use the physical or biological

properties of the target cells [10]. Many microfluidic

platforms have been developed in the past few years as

a representative form of physical properties-based

CTC sorting, which allows for rapid and precise CTC

capture [11,12]. Currently, label-dependent positive

separation remains a major method used in CTC

enrichment. CellSearch system, the most frequently

used and the only US FDA-approved semi-automated

CTC detection device, enriched CTCs based on the

expression of the surface marker epithelial cell adhe-

sion molecule (EpCAM) [13,14]. However, surface

antigen-dependent CTC capture methods may cause

great loss of CTCs due to low or negative expression

of tumor epithelial cell markers [15,16]. These tradi-

tional platforms are also generally incompatible with

direct downstream single-cell molecular analyses,

which further limit their clinical utility for comprehen-

sive CTC-based analysis [13,17].

Molecular profiling of CTCs is also extremely chal-

lenging due to technical difficulties [18]. Technologies

for CTC capture and downstream single-cell molecular

profiling are generally designed for scientific research.

They require multiple batch-process steps and have rel-

atively limited throughput. A standardized workflow

that facilities integrated CTC enrichment, enumera-

tion, and single-cell analysis is needed.

Since populations of CTCs are highly heteroge-

neous, negative enrichment might be a more reason-

able strategy for CTC detection [16,19]. In this

approach, nontargeted blood cells (i.e., erythrocytes,

leukocyte, and platelets) are eluted, and targeted CTCs

are captured. Using this strategy, intact tumor cells

can be isolated, characterized, and even cultured,

which is an essential prerequisite for sophisticated

downstream analyses [20]. Here, an automatic plat-

form, ChimeraX�-i120, was developed to address the

limitations of label-dependent CTC enrichment

(Fig. 1). Our integrated approach for CTC detection

included negative enrichment, immunofluorescent

labeling, and machine learning-based CTC identifica-

tion (Fig. 2A,B). The results of CTC enumeration

demonstrated the potential utility of this platform for

different cancer types. A complete workflow for down-

stream single-cell micromanipulation and genomic

characterization of the isolated CTC was established

and tested for its feasibility. Our integrated standard-

ized workflow represents a promising solution for pre-

cise CTC enumeration and molecular profiling at the

single-cell level in the clinical setting.

2. Materials and methods

2.1. Participants enrollment and blood sample

collection

A total of 477 participants were prospectively enrolled

in the study (Zhongshan Hospital) from October 2017

to September 2019. The study population included 281

patients with different types of cancer, 71 patients with

chronic hepatitis B infection/liver cirrhosis (CHB/LC,

n = 31), and benign hepatic lesion (BHL, n = 40), and

125 healthy donors (HDs). The enrolled patients with

cancer, including hepatocellular carcinoma (HCC,

n = 145), intrahepatic cholangiocarcinoma (ICC,

n = 38), breast cancer (BC, n = 44), colorectal cancer

(CRC, n = 39), and lung cancer (LCA, n = 15),

accepted CTC testing before any palliative or curative

treatments were given. The diagnoses of the different

diseases were based on histological or typical imaging
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analysis results. Tumor stage was defined based on 8th

edition of American Joint Committee on Cancer

guidelines [21]. HDs without evidence of a history of

malignancy or systemic diseases were enrolled for the

analytical assay and clinical performance validation of

the CTC test.

The inclusion criteria for the patients with HCC

were as follows: (1) HCC confirmed by histological

examination; (2) no history of other malignancies; (3)

no previous anticancer treatment; (4) accepted curative

resection, defined as all macroscopic lesions removed

using partial liver resection [22]; and (5) absence of

extrahepatic metastasis. HCC tumor stage was classi-

fied according to Barcelona Clinic Liver Cancer

(BCLC) staging system [23] and Chinese staging for

Liver Cancer (CNLC) guidelines [24]. The Edmondson

grading system was used to define HCC differentiation

[25].

The venipuncture for CTC detection was performed

following a standard procedure that the first 2 mL of

blood was discarded to avoid possible contamination

of epithelial skin cells. Then, peripheral blood (5 mL

samples) was collected into Vacutainer K2EDTA tubes

(BD Bioscience, USA) and processed within 12 h using

the ChimeraX�-i120 platform.

The study was approved by the Institutional Ethics

Committee of Zhongshan Hospital, Fudan University,

conformed to the ethical guidelines of the 1975 Decla-

ration of Helsinki. Written informed consent was

obtained from every participant.

Fig. 1. Sample preparation, CTC enrichment, identification, single CTC sequencing analysis workflow.
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Fig. 2. Detection and identification of CTCs using ChimeraX�-i120 platform. (A) Automatic CTC enrichment and staining process. (B)

Machine learning-based CTC identification. Scale bar, 10 lm.

2348 Molecular Oncology 15 (2021) 2345–2362 ª 2020 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

An integrated workflow for CTC analysis P-X. Wang et al.



2.2. Follow-up and tumor progression for

patients with HCC

For patients with HCC, follow-ups occurred every 2–
3 months during the first year after surgery and every

3–4 months thereafter; follow-ups ended in July 2020.

Patients were monitored by serum alpha-fetoprotein

(AFP) levels, abdominal ultrasonography, chest radio-

graphy, and abdominal computed tomography or

magnetic resonance imaging regularly based on post-

operative time. HCC recurrence was diagnosed based

on cytologic/histologic evidence or noninvasive diag-

nostic criteria according to the Guidelines for Diagno-

sis and Treatment of Primary Liver Cancer in China

(2017 edition) [24]. Time to recurrence (TTR) was

defined as the interval between resection and diagnosis

of any type of recurrence.

2.3. CTC enrichment and labeling using the

ChimeraX�-i120 platform

Each blood sample was first incubated at room temper-

ature for 10 min with 60 lL�mL�1 of a bifunctional

antibody cocktail containing tetrameric antibody com-

plexes, to specifically conjugate and deplete unwanted

leukocyte subsets and red blood cells (Genovo, GEN-

304777, San Diego, CA, USA). The sample was then

diluted with equal volumes of phosphate-buffered saline

(PBS) and carefully layered on top of 3.5 mL Ficoll–
Paque PLUS (d = 1.077 g�mL�1) (GE Healthcare, Pitts-

burgh, PA, USA). The sample barcode was then

scanned, and the sample was transferred into the Chi-

meraX�-i120 platform. Samples in the system were pro-

cessed using density gradient centrifugation (Video S1).

Each sample was separated into four visible layers (un-

wanted blood cells, Ficoll, buffy coat, and plasma) after

the centrifugation was completed. The centrifuge buck-

ets held the sample tubes on the top so that a charge-

coupled device (CCD) camera could take snapshots of

the samples, recognizing the interface between the blood

cell layer and Ficoll, and calculate the volume of super-

natant. To minimize cell loss, the liquid handling system

then transferred all the supernatant (containing Ficoll,

buffy coat, and plasma) to a new tube and proceeded

with the immunostaining steps (Fig. 2A).

During the immunofluorescence staining steps, each

sample was automatically fixed, washed, and stained

with a cocktail of 4’,6-diamidine-2’-phenylindole dihy-

drochloride (DAPI, Genovo, GEN-D1306), Alexa

Fluor 647-labeled mouse anti-human cytokeratin 19

(CK19, Genovo, GEN-628502)/pan-cytokeratin (pan-

CK, Genovo, GEN-628601)/EpCAM (Genovo, GEN-

511001), and Alexa Fluor 555-labeled mouse anti-

human CD45 antibodies (Genovo, GEN-304056) (all

2.5 lg�mL�1). Permeabilization and blocking reagents

were added in the washing buffer and staining buffer,

to reduce steps required and consequent cell loss.

Stained samples were output to 96-well plates and

scanned using a CellInsight CX5 High-Content Screen-

ing Platform (Thermo Fisher Scientific, Waltham,

MA, USA). Detected CTCs were defined as nucleated

(DAPI+) intact cells with positive pan-CK/CK19/

EpCAM and negative for CD45.

2.4. Image analysis and machine learning-based

CTC identification

Image analysis for picture segmentation and feature

extraction was performed using a customized pipeline

built in CellProfiler (Broad Institute, USA). The origi-

nal fluorescent images were preprocessed to correct

uneven illumination and remove noise. The OTSU

thresholding method was then applied to distinguish

foreground signals from background signals and to

identify outlines of objects [26]. More than 700 cellular

features (e.g., marker expression and cell morphology)

were recognized, extracted, and quantified. A cytologi-

cal profile was then created for each cell. Filters based

on cellular feature measurements were used to remove

debris and to only include cells in the identified objects

(Fig. 2B).

Based on these cellular features, five classifiers includ-

ing stochastic gradient boosting (GBM), AdaBoost clas-

sification trees (ADABOOST), support vector machines

(SVM), random forest (RF), and extreme gradient

boosting (XGB) were implemented and compared to

rapidly classify cells as CTC candidates, or not [27]. All

code for the machine learning algorithm was written in

R 3.1.0 (R Foundation for Statistical Computing, Aus-

tria). All the classifiers were developed using caret, a

machine learning library in R (http://topepo.github.io/

caret/index.html). An in-house manually annotated

CTC test dataset was randomly split into training (75%

data, with 10-fold cross-validation) and testing (25%

data) sets for classifier development and assessment

(Fig. S1). The overall performance of classifiers was

evaluated using receiver operating characteristic (ROC)

analyses, accuracy, precision, recall, F1 score, true-posi-

tive rate (TPR), and false-positive rate (FPR) [27]. The

identities of the cells identified by the algorithm were

confirmed by two trained pathologists (Video S2).

2.5. Cell lines and culture

Four human cancer cell lines with different EpCAM

expression levels (i.e., SkBr3, HT-29, HepG2, and T24
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cell lines) were purchased from the Typical China

Academy Culture Collection Commission Cell Library

(Shanghai, China). Cell lines were maintained in an

incubator (37 °C and 5% CO2). Passages were per-

formed when cells reached 70–80% confluency in a T-

25 flask. Using the image analysis pipeline, the relative

EpCAM expression levels in four cancer cell lines were

quantified based on average fluorescence intensities

after staining with EpCAM-AF647 antibodies.

2.6. Analytical performance validation of CTC

detection

Accuracy, limit of detection (LOD), precision, specificity,

and anti-interference capability of the ChimeraX�-i120

platform in CTC detection were assessed (Table 1) [28].

In the assay, SkBr3 cells were harvested with 0.25% tryp-

sin-EDTA (Gibco, Grand Island, NY, USA), spiked into

the blood samples from HDs, and processed using the

ChimeraX�-i120 platform. Recovery rate (%) = (number

of cells recovered/number of cells spiked) 9100.

2.7. Detection of CTCs using the CellSearch

system

Positive enrichment and enumeration of EpCAM+ CTCs

in preclinical spike-in experiments and clinical samples

were performed using a CellSearch system (Menarini Sili-

con Biosystems, Huntington Valley, PA, USA), as previ-

ously described [14]. The CTC enumeration results were

presented as the numbers of cells per 7.5 mL blood.

2.8. Single CTC micromanipulation, library

preparation, and sequencing

CTCs enriched by the ChimeraX�-i120 platform were

transferred into polymerase chain reaction (PCR)

tubes containing cell lysis buffer using an automated

micromanipulation platform, CellCelectorTM (ALS,

Jena, Germany). Single-cell whole-genome amplifica-

tion (WGA) and the sequencing library were prepared

using the SMARTer� PicoPLEX� Gold Single-Cell

DNA-Seq Kit (Takara Biosystems, Tokyo, Japan),

according to the manufacturer’s instructions. The

libraries were quantified using Qubit dsDNA HS

Assay Kits with a Qubit 2.0 Fluorometer (Thermo

Fisher Scientific). Fragment analysis was performed

using Agilent High Sensitivity DNA Kits and an Agi-

lent Bioanalyzer 2100 (Agilent Technologies, Santa

Clara, CA, USA). Quantitative PCR (qPCR) was per-

formed on 12 randomly selected loci on different chro-

mosomes to evaluate the genomic integrity of the

amplification products. The library with at least eight

out of 12 loci amplified at an expected melting temper-

ature (Tm) and cycle threshold (Ct) number < 30 was

subjected to sequencing.

For tissue samples, DNA was extracted using All-

Prep DNA/RNA Mini Kits (Qiagen, Duesseldorf, Ger-

many). DNA libraries were prepared using TruSeq

DNA HT Sample Prep Kits (Illumina, San Diego,

CA, USA) with 100 ng DNA added per library prepa-

ration. The library was sequenced using an Illumina

HiSeq X Ten System (read lengths: 2 9 150 bp, aver-

age depth: 0.5–2.09).

2.9. Bioinformatic analysis

Raw data were first mapped to the UCSC human ref-

erence genome hg19 using BWA 0.7.17. After align-

ment, SAMTOOLS 1.7 software was used to sort the

alignment files to sorted.bam files. These files were

marked duplicate by Picard 2.18.0. The output reads

data were then analyzed using Ginkgo (http://qb.c

shl.edu/ginkgo), an open-source platform suitable for

Table 1. Description of characteristics in analytical validation of ChimeraX�-i120 platform

Characteristics Samples Assessment

Accuracy Spiked peripheral blood from healthy donors with

a range of cells (0–250), repeat for 5 days

Average recovery rate linearity of detected

cell numbers

Limit of detection (LOD) Spiked peripheral blood from healthy donors with a range

of cells (0–5), repeat for 10 times

Lowest measurable CTC count per 5 mL blood

Precision (reproducibility) Spiked peripheral blood from healthy donors with 20 cells

processed by 2 operators in 3 days, repeat for 3 times

Intra-assay and interassay variability

calculated by coefficient of variation (%CV)

Specificity Peripheral blood from healthy donors, repeat 10 days. False-positive detection rate

Anti-interference capability Spiked peripheral blood (20 cells) from healthy donors with

or without endogenous interfering reagents (bilirubin,

triglycerides, hemoglobin) at a high level, repeat for 3 times

Difference in recovery rates between the

interfering group and the control group
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analysis of low-depth sequencing coverage of single-

cell copy number alteration (CNA). Quality metrics

data, including index of dispersion, Lorenz curves, and

histograms of read count distributions, were calculated

as a part of the Ginkgo analysis pipeline. Putative can-

cer driver genes among the CNA regions were ana-

lyzed based on a recent study on The Cancer Genome

Atlas (TCGA) database [29].

2.10. Statistical analysis

All results were presented as mean � standard devia-

tion values. Between-group comparisons for individual

variables were performed using Student’s t tests, Wil-

coxon signed-rank tests, or Mann–Whitney U tests,

where appropriate. Categorical data were analyzed

using chi-squared tests or Fisher’s exact tests. The

diagnostic value of CTCs was estimated by ROC curve

analysis. Cumulative recurrence rates were estimated

by the Kaplan–Meier analysis; differences between

groups were assessed using log-rank tests. Two-sided

values of P < 0.05 were considered statistically signifi-

cant. SPSS 24.0 for windows (IBM, Armonk, NY,

USA) was used for the statistical analysis.

3. Results

3.1. Analytical evaluation of ChimeraX�-i120

platform by spike-in experiments

Analytical performance of the ChimeraX�-i120 plat-

form for CTC detection was evaluated using a series

of spike-in experiments at varying cell concentrations.

An average recovery rate of 75.6% (range, 71.3–
83.2%) was obtained for 10, 50, 100, and 250 spiked

cells (Fig. 3A). Linear regression analysis revealed

excellent assay linearity (R2 = 0.99, Fig. 3B). A single

tumor cell spiked in 5 mL peripheral blood (LOD = 1

CTC/5mL peripheral blood) can be retrieved by the

platform, which indicated its high sensitivity for CTC

detection.

To better characterize platform precision, the coeffi-

cient of variation (% CV) of recovery rate was evalu-

ated across 3 separate days (n = 3) by two operators

(n = 2) using paired blood samples. The results of

these intra- and inter-assays showed the high repeata-

bility of the platform; the calculated % CVs were

12.4% for Operator A and 11.1% for Operator B

(P > 0.05, Fig. 3C). Blood samples from HDs were

added with high levels of endogenous interfering

reagents to evaluate the anti-interference capability of

the platform. The differences in average recovery rates

between groups with and without interfering reagents

were less than 10% (P > 0.05, Fig. 3D). No false-posi-

tive tumor cells were found in un-spiked healthy blood

in our preclinical experiment, thereby showing assay

specificity.

3.2. Comparison of different methods for CTC

detection

Because positive enrichment is one of the most com-

mon approaches used in CTC detection, we tested the

performance of the ChimeraX�-i120 platform and

CellSearch system in CTC detection. First, relative

EpCAM expression levels of four cancer cell lines

(SkBr3, HT-29, HepG2, and T24) were determined

using immunofluorescence labeling (Fig. 3E,F). To

allow for a direct comparison, each of the four cell

lines was spiked separately in blood drawn in parallel

from HDs and enriched using the CellSearch system

or ChimeraX�-i120 platform. The results indicated

that the CellSearch system yielded a recovery rate sim-

ilar to the ChimeraX�-i120 platform only for the HT-

29 cells (72.3% vs. 55.7%, P = 0.124), a cell line with

high EpCAM expression. The recovery rates of cell

lines with low or intermediate EpCAM expression

were significantly lower than those of the ChimeraX�-

i120 platform (T24, 10.7% vs. 60.7%, P < 0.001;

SkBr3, 44.3% vs. 78.0%, P = 0.003; HepG2, 39.3%

vs. 59.7%, P = 0.006). However, the ChimeraX�-i120

platform generated a similar recovery rate of 67.7%

(range, 59.7–78.0%) across the four cell lines, regard-

less of their EpCAM expression level (Fig. 3G).

A small cohort containing twenty-three cancer

patients (HCC, n = 14; ICC, n = 5; CRC, n = 4) were

then enrolled in the comparison assay (Table S1).

Using the CellSearch system, 10 of 23 (43.5%) patients

had detectable CTCs. A blinded comparison of paired

samples revealed that the ChimeraX�-i120 platform

had more captured CTCs (mean, 2.09 � 1.91 vs.

0.83 � 1.19, respectively, P = 0.004) and higher posi-

tive rates (69.5% vs. 43.5%, respectively, P = 0.031,

Fig. 3H). A preliminary comparative assessment was

made in this study, and these results indicated that a

negative CTC sorting strategy may reduce the cell loss

during CTC enrichment.

3.3. The throughput of blood samples

processing and machine learning-based

identification of CTC

To fulfill the clinical demands of throughput and effi-

ciency for CTC detection, we built a streamlined work-

flow and optimized many parameters in blood sample
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preparation, CTC isolation, immunofluorescence label-

ing, and CTC identification from images. It takes

about four hours to process up to six blood samples

simultaneously for our approach.

The integrated high-content fluorescent screening

platform enabled per cell high-definition image analy-

ses after CTC enrichment by the ChimeraX�-i120

platform. Original screened fluorescent images of the

enriched cells were analyzed via a customized image

analysis pipeline (Fig. 2B), during which the images

were automatically preprocessed for further analyses.

Because manual CTC recognition from numerous

images is time-consuming and laborious, we addition-

ally developed a method by machine learning-based

Fig. 3. Construction and evaluation of ChimeraX�-i120 CTC detection platform. (A) Recovery efficiency of 0–250 spiked SkBr3 cells in 5mL

blood by ChimeraX�-i120 platform (n = 5). (B) Linear regression analysis. (C) Precision analysis of ChimeraX�-i120 platform performed in

multiple days (n = 3) by two operators (n = 2) using paired blood samples, repeated for three times. (D) Anti-interference experiment by

adding endogenous interfering reagents to the blood, repeated for three times. (E) Typical images of four cancer cell lines when stained by

EpCAM-AF647 antibody. (F) Relative EpCAM expression level of SkBr3, HT-29, HepG2, and T24 cell lines measured by average

fluorescence intensity. (G) Comparison of recovery rate between ChimeraX�-i120 platform and CellSearch system of spiked four cancer cell

lines (T24, HepG2, SkBr3, HT-29). (H) Comparison of ChimeraX�-i120 platform with CellSearch system in paired clinical samples from

cancer patients (n = 23). Each error bar represents the standard deviation (SD). Statistical analysis was performed using the unpaired

Student’s t-test. Significance is indicated by **P < 0.010 and ***P < 0.001. Scale bar, 10 lm.
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CTC identification to find and distinguish tumor from

nontumor cells easily. The detailed principle for the

development of the machine learning-based classifiers

is presented in Fig. S1a. All the five classifiers achieved

high performance according to the ROC curve analy-

ses (area under the curve (AUC) > 0.99). Among these

classifiers, Classifier XGB resulted in the highest recall

value (99.3%, Fig. S1b). With the help of this method,

the standard CTC test report can be generated after a

simple confirmation by the pathologist.

3.4. Validation of CTC detection in blood

samples from cancer patients

The performance of ChimeraX�-i120 platform for

CTC detection for multiple indications was validated.

A total of 406 participants including 281 patients with

five cancer types (HCC, ICC, CRC, BC, and LCA)

and 125 healthy individuals were recruited into the test

cohort (Table S2). Representative images of CTCs and

circulating tumor microemboli (CTM) from a patient

with HCC are presented in Fig. 4. The results showed

that the platform could detect CTCs from a broad

spectrum of malignancies with similar positive CTC

rates (Fig. 5A, B). CTCs were detected in 59.3% (86/

145; mean, 1.37 � 2.01) of HCC patients, 63.2% (24/

38; mean, 1.42 � 1.75) of ICC patients, 63.6% (28/44;

mean, 2.52 � 3.93) of BC patients, 61.5% (24/39;

mean, 1.62 � 2.11) of CRC patients, and 66.7% (10/

15; mean, 2.73 � 5.06) of LCA patients; only one

CTC was detected in the blood of a healthy individual

(1/125, 0.8%). ROC curves for the entire cancer

patient cohort and the controls (i.e., HDs) are pre-

sented in Fig. 5C. The AUC for cancer diagnosis was

0.804 (95% confidence interval (CI) 0.76–0.84; optimal

sensitivity of 61.2% and specificity of 99.2%).

3.5. Clinical feasibility of CTC detection for

diagnosis, prognosis prediction, and treatment

response surveillance in patients with HCC

The clinical feasibility of the platform was further

investigated in a combined cohort consisted of the

patients with HCC (n = 145), and the patients with

CHB/LC (n = 31), and BHL (n = 40), and HDs

(n = 125). The CTC-positive rates were 6.5% (2/31,

mean, 0.10 � 0.40) in the CHB/LC group and 2.5%

(1/40, mean, 0.03 � 0.16) in the BHL group (Fig. S2).

The calculated AUC for CTCs in HCC diagnosis was

0.789 (95% CI = 0.74–0.84, P < 0.001, Fig. 5D).

When CTCs were combined with serum AFP level, the

diagnostic value improved and the AUC was 0.883

(95% CI = 0.84–0.93, P < 0.001; optimal sensitivity of

80.7% and specificity of 92.3%). More importantly,

CTCs were identified in 53.3% (57/107) of early-stage

HCC patients and 52.6% (40/76) of AFP-negative

(AFP ≤ 20 ng�mL�1) HCC patients. These results sug-

gested that CTC analysis may help identify early-stage

HCC (AUC = 0.758) and AFP-negative HCC

(AUC = 0.755, Fig. 5D).

The clinical characteristics of the HCC patients who

underwent curative resection are presented in Table 2.

The patients were divided into two groups based on pre-

operative CTC status (CTC = 0 and CTC ≥ 1). We

found that the patients with CTCs ≥ 1 were more likely

to have tumors with advanced characteristics including

larger size (P = 0.007), vascular invasion (P = 0.001),

advanced stage (BCLC, P = 0.013; CNLC, P = 0.013),

and multiple tumors (P = 0.094). Advanced HCC was

also associated with higher CTC counts (P = 0.007 for

BCLC, Fig. 5E; P = 0.007 for CNLC, Fig. 5F).

The prognostic value of CTC counts was then inves-

tigated. With a median follow-up time of 20.5 months,

Fig. 4. Representative images of detected CTCs and circulating tumor microemboli. Scale bar, 10 lm.
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Fig. 5. Clinical evaluation of ChimeraX�-i120 platform in CTC detection. (A) CTC count of patients with different type of cancers (n = 281) and

healthy donors (n = 125). (B) CTC-positive rate (CTC ≥ 1) of patients with different types of cancer (n = 281) and healthy donors (n = 125). (C)

ROC analysis of CTC detection in pan-cancer diagnosis (pan-cancer vs. HD). (D) ROC of CTC detection in HCC diagnosis. From left to right: HCC

vs. CHB/LC + BHL+HD, early HCC vs. CHB/LC + BHL+HD, AFP-negative HCC vs. CHB/LC + BHL+HD. (E) CTC count of HCC patients with BCLC

0-A and B-C stage (n = 145, Mann–Whitney test). (F) CTC count of HCC patients with CNLC stage Ⅰ and stages Ⅱ-Ⅲ(n = 145, Mann–Whitney

test). (G) CTC count of HCC patients with (n = 58) or without recurrence (n = 87, Mann–Whitney test). (H) Recurrence ratio of HCC patients with

CTC ≥ 1 (n = 86) or CTC = 0 (n = 59) during the follow-up period (chi-squared test). (I) The Kaplan–Meier analysis of rates of recurrence in HCC

patients (n = 145) stratified by CTC status, differences between groups were assessed using log-rank tests. (J) CTC count of HCC patients before

and after curative resection (paired Wilcoxon signed-rank test). Significance is indicated by **P < 0.010 and ***P < 0.001. Scale bar, 10 lm.

2354 Molecular Oncology 15 (2021) 2345–2362 ª 2020 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

An integrated workflow for CTC analysis P-X. Wang et al.



40.0% (58/145) of the patients experienced tumor

recurrence. We found that CTC counts were signifi-

cantly higher in patients with tumor recurrence as

compared with those without recurrence (mean,

1.67 � 1.79 vs. 1.18 � 2.13, median, 1.00 vs. 0, respec-

tively; P = 0.006, Fig. 5G); 44 of 86 (51.2%) patients

with preoperative CTC ≥ 1 developed HCC recurrence

(Fig. 5H). The Kaplan–Meier analysis revealed that

CTC-positive patients had higher cumulative recur-

rence rates (56.8% vs. 25.5%, respectively, P = 0.001)

and shorter median TTR (23.2 months vs. not reached,

P = 0.001) than those without detectable CTCs

(Fig. 5I). Moreover, twenty-three patients accepted an

additional CTC tests at 1 month after surgery, and

postoperative CTC burdens of most patients decreased

dramatically (positive rate: 21.7% vs. 69.6%, respec-

tively; mean: 0.39 � 0.84 vs. 1.30 � 1.26, median, 0

vs. 1.00, respectively; P = 0.002, Fig. 5J).

3.6. Downstream analyses of single tumor cells

after enrichment

The ChimeraX�-i120 platform had four changeable

channels that allowed for multiple protein biomarkers

CTC labeling. In addition to CTC enumeration, the

CTCs enriched by our ChimeraX�-i120 platform were

compatible with downstream cellular morphology eval-

uation (e.g., Fig. 3E, F), multi-biomarker expression

measurements, and single-cell molecular analyses.

Here, we used spiked HepG2 cells to present the

working principle of our optimized single CTC CNA

analysis via low-pass single-cell whole-genome

sequencing (WGS) [30] (Fig. 6). After CTC enrich-

ment, fluorescence-labeled cells were collected by a

CellCelector platform. The prior image analysis pipe-

line could output coordinates of cells of interest, which

helps the operator of the CellCelector find where cells

locate in the well easily. This approach allowed for

accurate CTC positioning and minimally invasive sin-

gle-cell collection, retained the integrity of the isolated

cell. Once identified, each target cell was automatically

isolated from the bulk population containing cells, pla-

telets, and debris, following a customized two-step iso-

lation protocol: The robot arm was programmed to

first aspirate the CTCs from the sample region and

deposit them into a new well containing PBS. Thus,

the sample was diluted and allowed for a second, more

purified single-cell CTC collection (Fig. 6A,B and

Video S3). The total time and capture efficiency of this

step were approximately 10 min and > 85%, respec-

tively. Then, rigorous quality control criteria were fol-

lowed at every step to ensure the followed single-cell

sequencing accuracy and efficiency (Fig. 6C–F). Copy
number profiles of single HepG2 cell and pooled

HepG2 cells were plotted (Fig. 6F), and most CNAs

were matched (r = 0.954).

To test the feasibility of single CTC CNA analyses

in the clinical setting, a total of 17 CTCs and 3 white

blood cells (WBCs) were picked from 10 patients with

cancer (3 HCC, 3 ICC, and 4 BC) and subjected to

CNA analysis. These CTCs exhibited heterogeneous

chromosomal CNA distribution patterns. Distinctly

different CNA patterns were observed between CTCs

from two patients (P5 and P6) with HCC and their

matched normal WBCs (Fig. 7A).

Table 2. Baseline characteristics of HCC patients undergoing

curative resection

Variable

CTC = 0 CTC ≥ 1

P(n = 59) (n = 86)

Gender Male 50 (84.7%) 76 (88.4%) 0.525

Female 9 (15.3%) 10 (11.6%)

Age (years) ≤50 9 (15.3%) 20 (23.3%) 0.237

>50 50 (84.7%) 66 (76.7%)

Tumor number Single 49 (83.1%) 61 (70.9%) 0.094

Multiple 10 (16.9%) 25 (29.1%)

Tumor diameter

(cm)

≤5 47 (79.7%) 50 (58.1%) 0.007

>5 12 (20.3%) 36 (41.9%)

Tumor capsule Complete 37 (62.7%) 46 (53.5%) 0.270

None 22 (37.3%) 40 (46.5%)

Vascular invasion No 43 (72.9%) 38 (44.2%) 0.001

Yes 16 (27.1%) 48 (55.8%)

Edmondson stage Ⅰ-Ⅱ 30 (50.8%) 36 (41.9%) 0.286

Ⅲ-Ⅳ 29 (49.2%) 50 (58.1%)

Liver cirrhosis No 28 (47.5%) 46 (53.5%) 0.475

Yes 31 (52.5%) 40 (46.5%)

HBsAg Negative 14 (23.7%) 29 (33.7%) 0.196

Positive 45 (76.3%) 57 (66.3%)

HBV DNA (IU/mL) ≤10 37 (62.7%) 57 (66.3%) 0.659

>10 22 (37.3%) 29 (33.7%)

AFP (ng/mL) ≤400 48 (81.4%) 64 (74.4%) 0.328

>400 11 (18.6%) 22 (25.6%)

ALB (g/L) ≤34 1 (1.7%) 2 (2.3%) 1.000a

>35 58 (98.3%) 84 (97.7%)

ALT (U/L) ≤50 49 (83.1%) 67 (77.9%) 0.447

>50 10 (16.9%) 19 (22.1%)

Child-Pugh A 59

(100.0%)

86

(100.0%)

1.000

Class B 0 (0.0%) 0 (0.0%)

BCLC stage 0-A 50 (84.7%) 57 (66.3%) 0.013

B-C 9 (15.3%) 29 (33.7%)

CNLC stage Ⅰ 50 (84.7%) 57 (66.3%) 0.013

Ⅱ-Ⅲ 9 (15.3%) 29 (33.7%)

AFP, alpha-fetoprotein; ALB, albumin; ALT, alanine aminotrans-

ferase; BCLC, Barcelona Clinic Liver Cancer Staging System;

CNLC, Chinese Liver Cancer Staging System; HBsAg, hepatitis B

surface antigen.
a

Continuous correction.

Bold values indicate P-value < 0.05.
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One patient with HCC was further selected to inves-

tigate the relationship between primary tumor tissue

and CTCs. The same sequencing assay as that used for

CTCs was performed for resected tumor and para-tu-

mor tissue. We found that compared with the primary

tumor tissue, some CTCs had a different CNA pattern

(Fig. 7B). Multiple HCC-associated oncogenes (e.g.,

Notch1, ABL1, JAK2, FGFR1, and MYC; Fig. 7C)

were exclusively identified in the CTCs at regions with

high copy number [31–34]. These specific genomic

alterations may be responsible for CTC survival or ini-

tiation of tumor metastasis.

4. Discussion

Applying comprehensive CTC analyses to guide cancer

diagnostics and genome-informed therapeutics in the

clinical setting is promising but remains challenging

because of the requirements for highly reliable meth-

ods. In the study, we built and optimized the Chi-

meraX�-i120 platform for CTC detection. Critical

analytical assessment of the platform on CTC enrich-

ment was conducted by evaluating a series of assay

performance characteristics. Its compatibilities for

CTC enumeration and downstream single CTC profil-

ing for multiple cancers were validated. Our image and

molecular analysis workflow facilitate a simultaneous

evaluation of the target protein expression, morphol-

ogy characteristics, and genomic alterations of a single

CTC. Thus, the ChimeraX�-i120 platform and the

established workflow represent a reliable solution for

comprehensive CTC analyses in the clinical setting.

Numerous systems have been designed to enumerate

CTCs in the last 10 years. However, many are tumor

antigen-dependent or require multiple batch processes

in laboratories, or both. These characteristics may nar-

row their potential applications due to great cell loss

and time costs [14,35]. Because CTC subpopulations

exhibit great heterogeneity, it is rational to combine

negative enrichment and biomarker identification to

minimize cell loss and decrease the false-positive CTC

detection rates [16]. Following this strategy, our plat-

form used negative enrichment and the canonical

tumor marker EpCAM and cytokeratin, among other

markers, which have been regarded as clinical

standards in CTC labeling [14,36]. Many recently

developed CTC platforms also rely on the epithelial

marker for CTC labeling, since some epithelial-to-mes-

enchymal markers (i.e., vimentin) are also expressed

on the surrounding leukocytes [15]. Some researchers

also indicated that epithelial features were required for

CTCs to seed distant metastases [37]. The preclinical

results from the spike-in experiments demonstrated

that the ChimeraX�-i120 platform achieved an unbi-

ased enrichment of CTC subpopulations with insuffi-

cient expression of EpCAM. This result was less likely

with an EpCAM microbead-based magnetic sorting

method (e.g., CellSearch). Thus, the negative selection

mode of the platform may better provide a compre-

hensive and unbiased view of tumor cells in the blood-

stream of cancer patients.

Standardized CTC isolation and enumeration proto-

cols are necessary for direct CTC comparisons between

multiple measurements for cancer patients (e.g., thera-

peutic response monitoring, recurrence surveillance)

[38]. During platform design, reproducibility and

automation were incorporated to ensure the robustness

of CTC enrichment. The combination of the automatic

pipetting unit and CCD camera for interface recogni-

tion enables stable and precise liquid handling after

the centrifugation, minimizes the possibility of cell loss

and contamination of blood cells, while the manual

collection of the CTC enriched layer is can be highly

variable. Beginning with spiking experiments, a series

of analytical validation tests demonstrated that the

platform had high accuracy, reproducibility (intra-as-

say and interassay), specificity, and anti-interference

capability for CTC detection. Meanwhile, manual

identification of CTCs from numerous images remains

user-dependent and time-consuming, which is a com-

mon point of criticism for traditional CTC enrichment

platforms [27,39]. Defining standardized recognition

criteria for CTCs is also essential for clinical applica-

tions. To address this issue, we showed a method for

CTC identification powered by machine learning. The

proprietary method utilized multiple graphic features

(such as morphologic parameters, marker expressions)

to recognize and pinpoint CTCs, which enabled an

automatic or operator-assisted identification of desired

cells and minimized the possibility of selecting

Fig. 6. ChimeraX�-i120 platform CTC single-cell genomic analysis pipeline. (A) Immunofluorescence labeling and screening of CTC,

coordinates of cells of interest can be generated. (B) Two-step single-cell micromanipulation by CellCelector platform. (C) Schematic

diagram of single-cell library preparation. (D) Typical amplification curve of QC-Passed single HepG2 cell (Cell-1) and pooled HepG2 cells,

QC-Failed single HepG2 cell (Cell-2) in quantitative PCR step for quality control. (E) Schematic diagram of whole-genome sequencing. (F)

Bioinformatic analysis of sequencing data. Representative images showed the results of Lorenz curve coverage uniformity assay (top), copy

number profile of single HepG2 cell (Cell-1, mid), and copy number profile of pooled HepG2 cells (Bulk_gDNA, bottom). Scale bar, 10 lm.
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Fig. 7. Genomic analysis of single CTCs and tissues from cancer patients. (A) CNA pattern of 17 CTCs and 3 WBCs. (B) CNA profile of

CTCs, WBC, and paired tumor, para-tumor tissue of patient P6. (C) CNA analysis to explore chromosomal region that may contain

potentially actionable or cancer driver genomic alterations of patient P6.
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inappropriate objects such as debris or noise signal.

The outstanding results of these evaluation parameters

(e.g., AUC, recall, precision, F1 score) of the machine

learning-based classifiers demonstrated high concor-

dance between this method and manual identification

of CTCs. Also, a recent study reported their machine

learning-based CTC recognition protocols with more

than 90% sensitivity and specificity [39]. We believe

this method could effectively reduce the time required

for manual image screening, reduce artificial errors,

and potentialize standardized CTC recognition in clini-

cal practice.

CTC enumeration is a widely used noninvasive mar-

ker for cancer diagnosis [40]. In our study, the Chi-

meraX�-i120 platform yielded a similar between-

cancer CTC-positive rate of 60%; false-positive CTCs

were rarely found in healthy individuals (1/125, 0.8%),

suggesting the diagnostic use of CTCs. The CTCs

detected also exhibited moderate diagnostic potential

for differentiating patients with HCC from healthy

individuals and patients with CHB/LC and BHL, with

enhanced diagnostic efficiency if combined with a tra-

ditional serological biomarker (i.e., AFP). These

results supported the use of the platform as a comple-

mentary tool to assist in the screening and early diag-

nosis of cancers. However, considering the limited

cohort size of the present study, further well-designed,

multicenter, large population study is still warranted

to validate the diagnostic value of CTC.

Other than the utility for cancer diagnosis, CTC

detection could provide valuable information for real-

time cancer status evaluation and prognosis prediction,

these applications were also demonstrated in this study

[41]. Globally, HCC is one of the most frequently

diagnosed malignancies [1,22]. Patients with HCC who

undergo curative resection still suffer from a high inci-

dence of tumor recurrence [22]. We previously reported

that preoperative EpCAM+ CTC numbers could pre-

dict prognosis in patients with HCC [16,42]. In this

study, the prognostic significance of CTCs detected

using the ChimeraX�-i120 platform was also con-

firmed. The decrease in CTC load was also observed

soon after resection, which is usually associated with a

decreased probability of recurrence [19].

Downstream analysis of individual cancer cells pro-

vides a new approach for exploring tumor biological

phenotypes [43]. By combining the ChimeraX�-i120

platform and the integrated workflow, we could obtain

reliable and qualified single CTCs for many down-

stream molecular analyses (e.g., PCR, next-generation

sequencing).

In this proof-of-concept study, diverse CNA patterns

of single CTCs were identified in 10 cancer patients by

low-pass sequencing. Such genomic discrepancies in

CTCs might be attributed to intra- and intertumor

heterogeneity, which would be too minor to be depicted

using traditional pathologic methods [44,45]. In patient

P6, CNA analysis revealed distinct patterns between

CTCs and paired WBCs or para-tumoral tissue. This

result also demonstrated the potential of CTC sequenc-

ing as a noninvasive method in differentiating benign

and malignant diseases in the clinic (Fig. 7A). Another

key finding from this patient with HCC was that some

significant genomic alterations were exclusively found in

the CTCs, but not in the matched tissues (Fig. 7C).

Indeed, some reports showed that the dissemination of

CTCs is likely not a random, but is a convergent evolu-

tion process during tumor development. Sophisticated

genomic rearrangements are required before primary

tumor cells turn to CTCs [44–46]. Thus, we hypothe-

sized that these CTCs analyzed were subclonal origin

from the primary tumor, and these significant genomic

alterations conferred them metastatic potential and sur-

vival advantages [8,9,47]. Therefore, with such hetero-

geneity unveiled from single-cell sequencing analysis, we

envisioned that our approach for single CTC genomic

profiling will not only be useful for studying tumor evo-

lution and dissemination but will also be a powerful tool

to enable the personalized therapeutics of cancer.

This study reported an integrated workflow for

robust CTC enrichment, identification, and down-

stream single-cell analysis. However, it did have some

limitations. We used a relatively small cohort size with

a short follow-up time for validation, and the data

were from a single medical center. The clinical signifi-

cance of our protocols for CTC detection was only

evaluated in patients with HCC. How well the plat-

form and the established workflow perform across

other malignant tumors need to be further evaluated

in large-scale, prospective, and well-designed studies.

5. Conclusions

Altogether, the ChimeraX�-i120 platform and the

standardized workflow enable precise, highly auto-

mated single CTC enumeration and molecular charac-

terization. It represents a readily accessible and

clinically feasible approach to make CTC detection an

essential tool to provide real-time clinical information.
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