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Abstract: DNA vaccines still represent an emergent area of research, giving rise to continuous
progress towards several biomedicine demands. The formulation of delivery systems to specifically
target mannose receptors, which are overexpressed on antigen presenting cells (APCs), is considered
a suitable strategy to improve the DNA vaccine immunogenicity. The present study developed binary
and ternary carriers, based on polyethylenimine (PEI), octa-arginine peptide (R8), and mannose
ligands, to specifically deliver a minicircle DNA (mcDNA) vaccine to APCs. Systems were prepared
at various nitrogen to phosphate group (N/P) ratios and characterized in terms of their morphology,
size, surface charge, and complexation capacity. In vitro studies were conducted to assess the
biocompatibility, cell internalization ability, and gene expression of formulated carriers. The high
charge density and condensing capacity of both PEI and R8 enhance the interaction with the mcDNA,
leading to the formation of smaller particles. The addition of PEI polymer to the R8-mannose/mcDNA
binary system reduces the size and increases the zeta potential and system stability. Confocal
microscopy studies confirmed intracellular localization of targeting systems, resulting in sustained
mcDNA uptake. Furthermore, the efficiency of in vitro transfection can be influenced by the presence
of R8-mannose, with great implications for gene expression. R8-mannose/PEI/mcDNA ternary
systems can be considered valuable tools to instigate further research, aiming for advances in the
DNA vaccine field.

Keywords: HPV infection; mannose ligands; minicircle DNA vaccine; polyethyleneimine; R8 peptide

1. Introduction

Cancer is a disease that continues to proliferate worldwide and is a major cause of
mortality, however the probability of finding a cure is increasing. Cervical cancer is the
most relevant disease associated with human papillomavirus (HPV) infection, especially
when it is not detected early, evolving to invasive forms [1]. The overexpression of HPV
E6 and E7 oncoproteins interferes with cell cycle regulation and proliferation through
the impairment of p53 and pRb tumor suppressor proteins, respectively [2]. Although
prophylactic HPV vaccination is currently the best strategy for preventing cervical cancer,
this type of vaccine induces only humoral immunity (producing neutralizing antibodies)
to prevent future infections, however it is not effective in treating pre-existing infections.
To fill this gap, several types of therapeutic vaccines against HPV are being studied [3].
In this context, DNA vaccines have particular importance due to their ability to generate
cellular and humoral immune responses, based on the use of genetic material sequences
from the pathogen that is intended to be fought [4]. Among the different DNA vaccines,
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minicircle DNA (mcDNA) is an innovative and promising DNA molecule. The absence of
prokaryotic sequences on the mcDNA overcome some key limitations of the traditional
plasmid DNA [5]. E6 and E7 viral oncoproteins are suitable targets for the formulation of
therapeutic vaccines, since they are overexpressed in HPV-infected cells at early stages [1].

The success of DNA vaccines is strongly dependent on the development of convenient
and efficient gene delivery systems. They should be able to condense and protect the
DNA, binding to the membrane and internalizing in eukaryotic cells, overcoming all
intracellular and extracellular obstacles [6]. The intracellular delivery of nucleic acids
is thought to result from the electrostatic interactions between the positive charges of
the delivery system and the negative charges of the cellular membrane. Higher surface
charges mean stronger DNA loading capability, which favors effective cell uptake and
gene transfection [7]. Viral vectors offer high transfection efficiency for eukaryotic cells.
However, they present significant disadvantages, such as antigenicity, potential oncogenic
effects, possible virus recombination, or difficulty for large-scale production and storage.
To overcome these limitations, several attempts have been made to develop non-viral
gene delivery systems based on liposomes, synthetic or natural cationic polymers, and
cell-penetrating peptides (CPPs), among others [8].

Among non-viral delivery methods, cell-penetrating peptides (CPPs) have received
particular attention due to their ability to enter cells in a non-invasive manner, maintaining
the integrity of cell membranes, and they are considered highly efficient and safe [9]. These
peptides are generally short at up to 30 amino acids and can be separated into two main
groups: arginine-rich and amphipathic peptides [10]. Although the delivery properties
of CPPs are not questionable, the mechanism of cell uptake and endosomal escape is still
controversial [10]. Different studies are currently underway to better understand this mech-
anism. For instance, the translocation efficiency and cell localization of several arginine-rich
peptides with various chain lengths have been analyzed. In particular, the octa-arginine
(R8) peptide has shown very satisfactory results in terms of cell internalization and nucleus
accumulation [11–15]. In addition, CPPs can also be used to enhance nanosystem activity
and biocompatibility [16].

Cationic polymers have been extensively studied due to their ability to condense
DNA into polyplexes and facilitate gene delivery [8,17,18]. Polyethylenimine (PEI) is the
most used synthetic cationic polymer, existing in various molecular weights and linear or
branch structures. For instance, branched PEI with higher molecular weights shows greater
ability to condense nucleic acids than linear PEI [19]. The abundance of polyamines favors
the formulation of PEI/DNA nanocarriers with high surface charge, which improves the
transfection efficiency but also increases the toxicity. On the other hand, PEI-based DNA
carriers with low-molecular-weight are non-toxic but exhibit low transfection efficiency.
As such, PEI conjugation with other molecules is a possible approach to reduce toxicity [7].

Antigens encoded in DNA vaccines need to be processed by antigen-presenting cells
(APCs) to activate both humoral and cellular immune responses [20]. To increase the
efficiency of DNA vaccines in terms of immunogenicity, several strategies have focused on
targeting APCs [21]. Dendritic cells (DCs) and macrophages represent the crucial APCs for
efficient activation of T-cells and B-cells and are concentrated in areas of potential antigen
entry, especially around the epithelial and mucous surfaces [22]. Therefore, the develop-
ment of new and improved formulations containing specific ligands to target and deliver
DNA vaccines into APCs has been explored [21]. Mannose ligands are often used to bind
mannose receptors that are highly expressed on surfaces of DC and macrophages. Some
studies have evidenced the entrance of mannosylated formulations into Raw 264.7 cells
through receptor-mediated endocytosis [23,24]. In addition, the three-dimensional con-
formation and multimerization pattern of each mannose receptor determine its ability to
recognize multiple ligands and regulate immune responses [25].

In this work, binary and ternary delivery systems based on R8 peptide functionalized
with mannose ligands with and without the PEI polymer were designed to specifically
deliver the mcDNA vaccine to macrophages. R8-mannose/mcDNA and R8-mannose/PEI/
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mcDNA formulations were explored, optimized, and characterized in terms of their surface
morphology, size, surface charge, complexation capacity, and stability. Transfection studies
were conducted to assess the biocompatibility, cell internalization, and expression of the
genes encoded by the mcDNA vaccine carried by the developed systems. The presented
report provides relevant data on the conception, characterization, and transfection efficiency
of non-viral delivery systems and is a great contribution to progress in DNA vaccines.

2. Materials and Methods
2.1. Materials

α-D-Mannopyranosylphenyl isothiocyanate (MPITC) and commercial branched PEI
with average Mw 25 kDa and GRS Taq DNA polymerase were purchased from Sigma
Aldrich Chemicals (St. Louis, MO, USA). R8 peptide was custom synthesized from GCC
Biotech Pvt. Ltd. (West Bengal, India). The TripleXtractor used in RNA extraction was
obtained from GRISP (Porto, Portugal). DMEM-F12 and DMEM-HG were purchased from
GIBCO (Waltham, MA, USA). Sodium bicarbonate was obtained from MP Biomedicals
(Santa Ana, CA, USA). DAPI was obtained from Invitrogen (Carlsbad, CA, USA). FITC
was obtained from Alfa Aesar (Lanchashire, UK). Agarose and GreenSafe were obtained
from NZYtech (Lisbon, Portugal).

2.2. Methods
2.2.1. Amplification and Purification of mcDNA Vector

To eradicate the oncogenic potential of HPV E7, the HPV E7 gene was modified by
NZYTech (Lisbon, Portugal) to include three point mutations preventing the interaction
with pRB but maintaining the normal structure of the E7 protein (more information in
Figure S1 of the Supplementary Materials). The mutated E7 gene was cloned into the
pMC.CMV-MCS-EF1-GFP-SV40PolyA parental plasmid (PP) vector (next to CMV7 pro-
moter), which was amplified in the ZYCY10P3S2T Escherichia coli host strain following
production under the induction conditions described by our research group [26]. Briefly,
the bacterial cultures were performed in 1 L Erlenmeyer flasks containing 250 mL of Terrific
Broth medium (20 g/L of tryptone; 24 g/L of yeast extract; 4 mL/L of glycerol; 0.017 M
KH2PO4, and 0.072 M K2HPO4, pH 7.0) in an orbital shaker at 42 ◦C and 250 rpm. For
the mcDNA-E7 vector production from its PP precursor, an induction mix containing
L-arabinose 0.01% (w/v) was added. The recombination process was carried out for 2 h at
32 ◦C. When induction was completed, cells were recovered by centrifugation and stored at
−20 ◦C. To obtain the mcDNA-E7 vector, a modified alkaline lysis method was performed
as described by Diogo et al. [27]. To isolate the mcDNA vector, resulting supernatants
were loaded directly onto a Sephacryl SF-1000 instrument, as previously described by our
research group [28]. An AKTA Pure system (GE Healthcare, Buckinghamshire, UK) with
UNICORNTM 6.3 software (GE Healthcare, Buckinghamshire, UK) was used to perform
all chromatographic runs. The resultant chromatographic fractions were desalted and
concentrated using Vivaspin® 6 centrifugal concentrators (Vivaproducts, Littleton, MA,
USA) and analyzed by agarose gel electrophoresis.

2.2.2. Agarose Gel Electrophoresis

The 0.8% or 1% (w/v) agarose gel (0.4 g or 0.5 g of agarose) was prepared for 50
mL of 1× TAE buffer (40 mM Tris base, 20 mM acetic acid, 1 mM EDTA at pH 8.0) and
stained with 0.6 µL of GreenSafe. Electrophoresis was performed for 40 min at 120 V and
the gel was analyzed using ultraviolet (UV) light through the Uvitec Fire-Reader system
(UVITEC, UK).

2.2.3. Synthesis of α-D-Mannopyranosylphenyl Isothiocyanate-Octa-Arginine Conjugate

Mannose was conjugated to R8 via the reaction between isothiocyanate and the
amine groups (Figure 1). Briefly, α-D-mannopyranosylphenyl isothiocyanate (MPITC)
was dissolved in methanol and added dropwise into the methanolic solution of R8 at the
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MPITC/R8 mole ratio of 1.2:1 under stirring for 24 h. The methanol was evaporated under
vacuum using a rotary evaporator.

Pharmaceutics 2021, 13, x FOR PEER REVIEW 4 of 20 
 

 

was analyzed using ultraviolet (UV) light through the Uvitec Fire-Reader system 
(UVITEC, UK). 

2.2.3. Synthesis of α-D-Mannopyranosylphenyl Isothiocyanate-Octa-Arginine Conjugate 
Mannose was conjugated to R8 via the reaction between isothiocyanate and the 

amine groups (Figure 1). Briefly, α-D-mannopyranosylphenyl isothiocyanate (MPITC) 
was dissolved in methanol and added dropwise into the methanolic solution of R8 at the 
MPITC/R8 mole ratio of 1.2:1 under stirring for 24 h. The methanol was evaporated under 
vacuum using a rotary evaporator. 

 
Figure 1. Synthesis scheme of MPITC-R8 conjugate. 

2.2.4. Characterization of Synthesized MPITC-R8 Conjugate 
The characterization of the synthesized MPITC-R8 conjugate was obtained using 1H 

NMR of the synthesized conjugate and size exclusion chromatography (SEC). 1H NMR 
was performed by dissolving the compound (10 mg) in deuterated methanol (CD3OD) (1 
mL) using a Bruker spectrometer (300 MHz, Bruker, Billerica, MA, USA) operating at 300 
mega Hz at 25 °C. The SEC was performed to estimate the molecular weight of the syn-
thesized MPITC-R8 conjugate. The samples were eluted through an Ultrahydrogel™ lin-
ear SEC column (7.8 mm × 300 mm) in a gel permeation chromatography (GPC) system 
(Waters Corporation, St. Louis, MO, USA). Milli-Q water was used as a mobile phase with 
a flow rate of 0.7 mL/min. The SEC standards were run before analyzing the conjugates. 

2.2.5. Preparation of R8-mannose/mcDNA and R8-mannose/PEI/mcDNA Complexes 
R8-mannose lyophilized powder was suspended in ultrapure water and aliquots of 

0.5 mg/mL were prepared. PEI stock solutions were prepared in sodium acetate buffer 
(0.1 mM sodium acetate/0.1 M acetic acid, pH 4.5). R8-mannose/mcDNA-E7 binary and 
R8-mannose/PEI/mcDNA-E7 ternary systems were prepared, characterized, and evalu-
ated to determine their potential as delivery systems. Formulation of R8-man-
nose/mcDNA-E7 binary particles was achieved by adding variable concentrations of pep-
tide solution to a fixed amount of mcDNA (1 μg) under vortexing for 1 min. To formulate 
R8-manose/PEI/mcDNA-E7 ternary systems, different amounts of PEI were added to a 
fixed volume of mcDNA and then variable concentrations of R8-mannose were added to 
PEI/mcDNA-E7 particles under vortexing for 1 min. All systems were left for 30 min at 

Figure 1. Synthesis scheme of MPITC-R8 conjugate.

2.2.4. Characterization of Synthesized MPITC-R8 Conjugate

The characterization of the synthesized MPITC-R8 conjugate was obtained using 1H
NMR of the synthesized conjugate and size exclusion chromatography (SEC). 1H NMR
was performed by dissolving the compound (10 mg) in deuterated methanol (CD3OD)
(1 mL) using a Bruker spectrometer (300 MHz, Bruker, Billerica, MA, USA) operating at
300 mega Hz at 25 ◦C. The SEC was performed to estimate the molecular weight of the
synthesized MPITC-R8 conjugate. The samples were eluted through an Ultrahydrogel™
linear SEC column (7.8 mm × 300 mm) in a gel permeation chromatography (GPC) system
(Waters Corporation, St. Louis, MO, USA). Milli-Q water was used as a mobile phase with
a flow rate of 0.7 mL/min. The SEC standards were run before analyzing the conjugates.

2.2.5. Preparation of R8-Mannose/mcDNA and R8-Mannose/PEI/mcDNA Complexes

R8-mannose lyophilized powder was suspended in ultrapure water and aliquots
of 0.5 mg/mL were prepared. PEI stock solutions were prepared in sodium acetate
buffer (0.1 mM sodium acetate/0.1 M acetic acid, pH 4.5). R8-mannose/mcDNA-E7 bi-
nary and R8-mannose/PEI/mcDNA-E7 ternary systems were prepared, characterized,
and evaluated to determine their potential as delivery systems. Formulation of R8-
mannose/mcDNA-E7 binary particles was achieved by adding variable concentrations
of peptide solution to a fixed amount of mcDNA (1 µg) under vortexing for 1 min. To
formulate R8-manose/PEI/mcDNA-E7 ternary systems, different amounts of PEI were
added to a fixed volume of mcDNA and then variable concentrations of R8-mannose were
added to PEI/mcDNA-E7 particles under vortexing for 1 min. All systems were left for
30 min at room temperature to allow particle formation and then centrifuged at 10,000 rpm
for 20 min at 4 ◦C.

Both systems were prepared at various N/P ratios, considering the molar ratio of
positively charged amine groups from R8 and PEI (N) to negatively charged phosphates in
the DNA backbone (P). The electrophoretic mobility of the supernatants from all nanopar-
ticle formulations was evaluated by agarose gel electrophoresis of 1% to ensure the entire
mcDNA amount was complexed (Figure S2).
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2.2.6. Characterization of Systems

Fourier transform infrared spectroscopy (FTIR) was applied to investigate the func-
tional groups on the particle surfaces. The pellet recovered from different formulations
was suspended in 10 µL of ultrapure water. The spectra were acquired using a Nicolet
iS10 FTIR spectrophotometer (Thermo Scientific, Waltham, MA, USA) with an average of
120 scans, a spectral width ranging from 4000 and 600 cm−1, and a spectral resolution of
32 cm−1. The spectra of isolated R8 and mcDNA samples were acquired for comparative
analysis.

Scanning electron microscopy (SEM) was used to obtain information concerning the
morphology of both systems. Different formulations were centrifuged and the pellet was
recovered and suspended in an aqueous solution containing 40 µL of tungsten. The solution
was placed in a round-shaped cover slip and dried overnight at room temperature. The
samples were sputter-coated with gold using an Emitech K550 (London, England) sputter
coater. A Hitachi S-2700 (Tokyo, Japan) scanning electron microscope with an accelerating
voltage of 20 kV at various magnifications was used to analyze the morphologies of binary
and ternary systems.

The average size and zeta potential of the particles were determined via dynamic light
scattering (DLS) at 25 ◦C using a Zetasizer nano ZS device (Malvern Instruments, Worcester-
shire, UK). DLS techniques were performed with a He-Ne laser at 633 nm with non-invasive
backscatter (NIBS) to assess systems size and with electrophoretic light scattering optics
using a M3-PALS laser (phase analysis light Scattering) for charge characterization. All
experiments were performed in triplicate and were analyzed using Malvern zetasizer soft-
ware v 6.34 (Malvern Instruments, Worcestershire, UK). The pellet containing the particles
was suspended in 5% glucose with 1 mM NaCl.

2.2.7. Stability Assays

R8-mannose/mcDNA-E7 and R8-mannose/PEI/mcDNA-E7 systems were incubated
for different time periods (0, 1, and 4 h) with 25 µL of DMEM medium supplemented with
10% FBS and 25 µL of trypsin solution at 37 ◦C. The release and mcDNA degradation were
monitored by 1% agarose gel electrophoresis.

2.2.8. In Vitro Transfection

Cell culture experiments were performed using human fibroblast cells (ATCC® PCS-
201-012™) and Raw 264.7 cells (murine macrophage cells, ATCC® TIB-71™). Human
fibroblast cells were grown with Dulbecco’s modified Eagle’s medium with Ham’s F-12
Nutrient Mixture (DMEM-F12) supplemented with 10% heat-inactivated fetal bovine
serum, 2.438 g/L sodium bicarbonate, and 1% (v/v) of a mixture of antibiotics composed
of penicillin (100 µg/mL) and streptomycin (100 µg/mL). Raw 264.7 cells were grown with
Dulbecco’s modified Eagle’s medium with High Glucose (DMEM-HG) supplemented with
10% non-inactivated fetal bovine serum, 1.5 g/L sodium bicarbonate, and with 1% (v/v) of
a mixture of antibiotics composed of penicillin (100 µg/mL) and streptomycin (100 µg/mL).
The cellular growth was promoted at 37 ◦C in a humidified atmosphere containing 5%
CO2. For transfection studies, human fibroblast cells and Raw 264.7 cells were seeded in
12-well plates at densities of 2.5 × 105 cells/well and 2 × 105 cells/well, respectively, in
1 mL complete medium. After 24 h and before transfection occurred, the medium was
replaced by a medium without FBS and antibiotic supplementation (incomplete medium)
in order to promote transfection. At confluency (50–60%), the medium was removed and
the cells were transfected with different particles dissolved in incomplete medium. For
human fibroblast transfection, 7.5 µg of encapsulated mcDNA from each system was added
per well. Raw 264.7 cells were transfected by adding 6 µg of encapsulated mcDNA from
each system per well. After 6 h of transfection, the incomplete medium was replaced by
complete medium.
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2.2.9. Biocompatibility Study

A resazurin assay was used in order to evaluate the systems’ biocompatibility. Human
fibroblasts and Raw 264.7 cells were seeded in 96-well plates at densities of 1 × 104 cells/well
and 0.8 × 104 cells/well, respectively. For human fibroblasts, 0.3 µg of encapsulated
mcDNA from each system was added per well. Raw 264.7 cells were transfected by adding
0.24 µg of encapsulated mcDNA from each system per well. After 24 and 48 h of transfec-
tion, the culture medium was discarded and 100 µL of fresh complete medium and 20 µL
of resazurin 0.1% (w/v) were added to each well and incubated over four hours in the dark
at 37 ◦C in a humidified atmosphere of 5% CO2. After incubation, the fluorescence was
measured in a spectrofluorometer (SpectraMAX® GeminiTM EM, Molecular Devices, San
Jose, CA, USA) at an excitation wavelength of 544 nm and emission wavelength of 590 nm
to analyze the resorufin fluorescence produced.

2.2.10. FITC Plasmid Labeling

Minicircle DNA was stained with FITC by assembling 16.3 µL of mcDNA, 2 µL of
FITC, and 66.7 µL of labeling buffer. Samples were placed under constant stirring at
room temperature for 4 h and protected from light. One volume of 3 M NaCl (85 µL) and
2.5 volumes of 100% ethanol (212.5 µL) were added. Samples with stained mcDNA were
incubated at −20 ◦C overnight. Subsequently, samples were centrifuged at 4 ◦C for 30 min
and the pellet was washed with 75% ethanol.

2.2.11. Cellular Uptake and Internalization

Confocal fluorescence microscopy was used to investigate the cellular uptake and in-
ternalization of carriers. Raw 264.7 cells were grown in an 8-well µ-slide (Ibidi, Martinsried,
Germany) until 50–60% confluence was achieved. Nuclei were stained by incubating the
cells with DAPI. FITC-labeled mcDNA was encapsulated into R8-mannose/PEI particles
and real live transfection was visualized using an LSM 710 confocal laser scanning micro-
scope (Carl Zeiss, Oberkochen, Germany) under 63× magnification and analyzed with
the Zeiss LSM 710 laser scanning confocal microscope (Carl Zeiss SMT, Inc., Oberkochen,
Germany). During the experiment, Raw 264.7 cells were maintained at 37 ◦C with 5% CO2.

2.2.12. Reverse Transcription Polymerase Chain Reaction (RT-PCR)

RT-PCR was used to detect the E7 mRNA transcripts resulting from the E7 gene
transcription encoded in the PEI/mcDNA and R8-mannose/PEI/mcDNA system vector.
After 24 h of transfection, cells were lysed through the addition of TripleXtractor and
incubated at room temperature for 5 min. Subsequently, 50 µL of chloroform was added
and stirred to allow the separation of different biomolecules in different phases, then
incubated at room temperature for 10 min. Samples were then centrifuged at 12,000× g
for 15 min at 4 ◦C to obtain the separation of the aqueous phase containing RNA and the
interphase and lower organic phase containing DNA and proteins. The aqueous phase
was carefully recovered and 125 µL of ice-cold isopropanol was added to precipitate the
RNA. Samples were centrifuged again at 12,000× g for 15 min at 4 ◦C and the pellet was
washed in DEPC water with 125 µL of 75% ethanol to eliminate organic compounds. A
new centrifugation was carried out at 12,000× g for 5 min at 4 ◦C and the RNA pellet was
resuspended in 20 µL of DEPC. To confirm the success of RNA extraction, electrophoresis
was performed on 1% agarose gel and the samples were quantified on a NanoPhotometer™.
The cDNA synthesis was performed by using Xpert cDNA Synthesis (GRiSP-Research
Solutions, Porto, Portugal), following the manufacturer’s protocol. PCR amplification was
performed by adding in each PCR reaction 8.25 µL of RNase-free water, 0.40 µL of forward
primer (5′−AAT CTA GAA TGC CTG ATA CAC CTA C -3′) and reverse primer (5′ -ATG
GAT CCT TAT GGT TTC TGA GAA CAG A -3′), 0.7 µL of MgCl2, 0.25 µL of dNTPs, 1.25
µL of PCR buffer, 0.25 µL of GRS Taq, and 1 µL of cDNA. The samples were homogenized
and a mini-spin was performed. Samples were then placed in a T100™ Thermal Cycler
(Bio-Rad Laboratories, Inc, Hercules, California, USA) with the following sequence: 95 ◦C
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for 5 min, 26 cycles of 30 s at 95 ◦C, 30 s at 60 ◦C, 1 min at 72 ◦C, and finally 10 min at 72 ◦C.
PCR products were analyzed by electrophoresis on an agarose gel and were visualized in a
UVItec Gel documentation system under UV light (UVItec Limited, Cambridge, UK).

2.2.13. Reverse Transcription Quantitative Real-Time PCR (RT-qPCR)

To quantitatively analyze the levels of transcripts, RT-qPCR was performed. The mix
for a reaction with primers designed for the transcript of the E7 gene was prepared with
10 µL of SYBR ™ Green Master Mix, 0.64 µL FW primer, 0.64 µL RV primer, 7.72 µL of
sterile H2O, and 1 µL of cDNA, resulting in a volume of 20 µL per reaction. The mix for
reaction with the primer pair of the GAPDH housekeeping gene transcript (FW: 5′- ATG
GGG AAG GTG AAG GTC G -3′; RV: 5′- GGG GTC ATT GAT GGC AAC AAT A -3′)
was prepared with 10 µL of NZY qPCR Green Master Mix (2x), 1.2 µL FW primer, 1.2 µL
RV primer, 7.5 µL of sterile H2O, and 1 µL of cDNA, resulting in a volume of 20 µL. The
reaction mixtures were placed in a Real-Time CFX ConnectTM system (BioRad, Hercules,
CA, USA) programmed with the following sequence of incubations: 10 min at 95 ◦C, 40 cycles
of 15 s at 95 ◦C, 30 s at 60 ◦C.

2.2.14. Statistical Analysis

Each experience was performed at least three times. Data are expressed as means
± standard error (S.D.). The statistical analyses performed were one-way and two-way
analyses of variance (ANOVA), followed by Tukey’s test. Data analysis was performed
in GraphPad Prisma 6 software. Here, p-values below 0.05 were considered statistically
significant; * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001.

3. Results and Discussion
3.1. Purification of mcDNA Vector

Size exclusion chromatography was used to perform the purification of the mcDNA
vector following the conditions previously described [28]. As expected in SEC, molecules
such as genomic DNA and plasmid DNA elute quickly, whereas molecules such as RNA
take a longer route through the pores of the matrix and are retarded in the chromato-
graphic column. Fractions were selected, concentrated, and desalted with Vivaspin con-
centrators and analyzed using 0.8% agarose gel electrophoresis. The results showed that
genomic DNA eluted mostly in the first peak, PP eluted mostly in the second peak, then
mcDNA molecules eluted mostly in the third peak (see details in Supplementary Materials,
Figure S3). The purified mcDNA vector (fractions from 10 to 15) was applied in in vitro
transfection studies to verify its performance.

3.2. Synthesis and Characterization of MPITC-R8 Conjugate

After the procedure to synthesize the MPITC-R8 conjugate, the final product was
analyzed by NMR (Figure 2). The chemical shifts at 7.3 and 1.5–2.0 in the 1NMR spectrum
represented the aromatic protons present in MPITC and the methylene protons present in
R8, respectively. The size exclusion chromatogram is shown in Figure S4 of the Supplemen-
tary Information. The relative molecular weight of MPITC-R8 is 1622 Da (Table S1). The
ratio of observed to theoretical molecular weights (0.987) indicated successful conjugation
of MPITC and R8 at 1:1.
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3.3. The Properties of R8-Mannose/mcDNA and R8-Mannose/PEI/mcDNA Complexes

The R8 peptide is a biocompatible and cationic CPP known to promote interaction
and access to the inside of cells [29]. Its ability to bind, interact, and consequently condense
DNA has been explored via the functionalization of systems for the delivery of genetic
materials to eukaryotic cells [30,31]. Additionally, the PEI polymer has been widely applied
in the formation of DNA-based systems, since it strongly interacts with DNA, condens-
ing it and showing the capacity to efficiently deliver DNA both in vitro and in vivo [32].
PEI is a synthetic polymer that is highly soluble in water, positively charged, and whose
cationic amines reduce the negative charge of DNA after complexation, causing its conden-
sation [33]. A wide variety of ligands have also been explored to create functionalized and
targeted delivery vehicles. The effectiveness of mannosylated devices is related to their
ability to target mannose receptors, which are highly expressed on DCs and macrophages.
Following this knowledge, the present study investigated the conception of mcDNA binary
and ternary delivery systems, both of which were functionalized with mannose to enhance
the interaction of formulations with macrophages.

Fourier transform infrared spectroscopy (FTIR) was used to evaluate interactions
between components of each system, as well as for the presence of mannose. Figure 3
shows the FTIR spectra from different components and systems.
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mannose/mcDNA (C), and R8-mannose/PEI/mcDNA (D) samples.

The spectrum of mcDNA (Figure 3A) presents peaks in the region of 1700–1500 cm−1

corresponding to the nitrogen bases, while the absorption peak seen at 1061 cm−1 is known
to be related to ribose vibration (C-C sugar) [34]. The spectrum corresponding to the R8-
mannose conjugate (Figure 3B) shows absorption peaks characteristic of the octa-arginine
peptide already identified in other studies. The prominent peak at 1678 cm−1 is attributed
to the elongation of guanidine N = C and carbonyl C = O and the peaks at 1199 cm−1 and
1157 cm−1 are attributed to the elongation of C (O) -O and N–C, respectively [35]. Peaks in
the region of 1100 and 1000 cm−1 attributed to the C-O vibration of the mannose suggest
its presence on the system’s surface [36,37]. The spectrum of the R8-mannose/mcDNA
system (Figure 3C) suggests the existence of R8-mannose and mcDNA. The presence of R8
is evidenced by its characteristic absorption peaks, which suffered displacement due to the
complexation process. It is possible to identify prominent peaks at 1642 cm−1, 1278 cm−1,
and 1129 cm−1. The spectrum of R8-mannose/PEI/mcDNA (Figure 3D) was analyzed in
order to verify whether the addition of PEI would influence the surface compositions of the
systems, confirming the presence of mannose. Thus, PEI polymer shows its most important
peaks at approximately 1497 cm−1 and 1793 cm−1, representing the N-H bonds that occur
from encapsulation with the other components [38]. The absorption peak at 1055 cm−1

confirmed the presence of mannose. The absorbance peak at 970 cm−1 can be attributed
to mcDNA. The comparison between the FTIR spectra before and after PEI conjugation
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confirmed its successful complexation to the R8-mannose/mcDNA system, as the amide
group peaks of R8, mannose, and mcDNA were found.

Scanning electron microscopy was applied to identify the morphologies of the systems
under study. Figure 4 shows images of these carriers prepared at several N/P ratios.

Pharmaceutics 2021, 13, x FOR PEER REVIEW 10 of 20 
 

 

attributed to mcDNA. The comparison between the FTIR spectra before and after PEI con-
jugation confirmed its successful complexation to the R8-mannose/mcDNA system, as the 
amide group peaks of R8, mannose, and mcDNA were found. 

Scanning electron microscopy was applied to identify the morphologies of the sys-
tems under study. Figure 4 shows images of these carriers prepared at several N/P ratios. 

 
Figure 4. Scanning electron micrographs of particles formulated at the (A) R8-mannose/mcDNA N/P ratio of 1:1; (B) R8-
mannose/mcDNA N/P ratio of 1.5:1; (C) R8-mannose/mcDNA N/P ratio of 2:1; (D) R8-mannose/PEI/mcDNA N/P ratio of 
1:5:1; (E) R8-mannose/PEI/mcDNA N/P ratio of 1.5:5:1; (F) R8-mannose/PEI/mcDNA N/P ratio of 2:5:1; (G) R8-man-
nose/PEI/mcDNA N/P ratio of 1:10:1; (H) R8-mannose/PEI/mcDNA N/P ratio of 1.5:10:1; and (I) R8-mannose/PEI/mcDNA 
N/P ratio of 2:10:1. 

Both systems exhibit an oval or spherical shape, which makes them suitable for a 
process of cellular internalization. Previous studies have shown that spherical shaped par-
ticles benefit cell uptake and transfection efficiency [39,40]. DLS experiments were per-
formed to obtain information regarding the mean sizes and surface charges of binary and 
ternary systems formulated at different N/P ratios. The respective results are presented in 
Figure 5. 

Figure 4. Scanning electron micrographs of particles formulated at the (A) R8-mannose/mcDNA N/P ratio of 1:1; (B)
R8-mannose/mcDNA N/P ratio of 1.5:1; (C) R8-mannose/mcDNA N/P ratio of 2:1; (D) R8-mannose/PEI/mcDNA
N/P ratio of 1:5:1; (E) R8-mannose/PEI/mcDNA N/P ratio of 1.5:5:1; (F) R8-mannose/PEI/mcDNA N/P ratio of 2:5:1;
(G) R8-mannose/PEI/mcDNA N/P ratio of 1:10:1; (H) R8-mannose/PEI/mcDNA N/P ratio of 1.5:10:1; and (I) R8-
mannose/PEI/mcDNA N/P ratio of 2:10:1.

Both systems exhibit an oval or spherical shape, which makes them suitable for a
process of cellular internalization. Previous studies have shown that spherical shaped
particles benefit cell uptake and transfection efficiency [39,40]. DLS experiments were
performed to obtain information regarding the mean sizes and surface charges of binary
and ternary systems formulated at different N/P ratios. The respective results are presented
in Figure 5.
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Figure 5 shows that all particles are below 500 nm. Additionally, and for all formula-
tions, this parameter strongly varies with the N/P ratio; it decreases with increments of the
N/P ratio. The size values obtained for particles of R8-mannose/PEI/mcDNA-E7 showed
that by maintaining the N/P ratios for PEI (5 and 10) and changing only the N/P ratios for
R8 (1, 1.5, and 2), the particle size decreases, with the lowest value corresponding to the
highest N/P ratio. The same kind of observation is valid for the situation where the R8
N/P ratios were kept constant and the amine charges from PEI were varied, e.g., when PEI
N/P ratios of 5 and 10 were considered. Moreover, systems prepared at an R8 N/P ratio of
2 exhibit a significantly smaller size (234.56 nm) than for a PEI N/P ratio of 10. Due to its
primary, secondary, and tertiary amines, PEI shows higher positive charge at physiological
pH compared to R8 peptide. PEI also exhibits impressive endosomolytic activity since
it can change its ionization degree with its pH. Additionally, the increasing molecular
weight of PEI (25 kDa) and the increase of its N/P ratio will resulted in the formation
of more stable and smaller systems. This can, however, induce higher cytotoxicity [41].
Nevertheless, the results obtained confirm that the increase of the amine group content
will result in a greater degree of mcDNA condensation, resulting in smaller complexes [32].
The high charge density and the great condensing capacity of both PEI and R8 enhance the
strong interaction with the mcDNA, leading to the formation of smaller particles.
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In fact, an increase in the molecular weight of the PEI results in a decrease in the
complex size and an increase in surface charge. However, for both linear and branched PEI
structures, the N/P ratio is the determining parameter, since its variation can influence not
only the size of the complexes but also the zeta potential they display. As the N/P ratio
increases, the size of the complexes is reduced. Similarly, the effect of the N/P ratio on the
surface charges is more pronounced as the N/P ratio increases [19].

Regarding the zeta potential values, it was found that R8-mannose/mcDNA-E7 system
presents certain variations for the N/P ratios tested. With the N/P ratio increase, the zeta
potential values become more positive. The N/P ratio of 1:1 shows a negative value
(−0.67 mV), while systems with the highest tested ratio present positive surface charges
(varying between +1.78 and +6.11 mV). These results indicate that the negative mcDNA
charges can be neutralized by increasing the N/P ratio. Regarding the zeta potential values
achieved for the R8-mannose/PEI/mcDNA-E7 system, it is clear that maintaining the
N/P ratios of PEI and varying the N/P ratios of R8-mannose or by maintaining only the
N/P ratios of R8-mannose and increasing the N/P ratios of PEI, there is an increment of
the surface charge. The proportion of primary amines from the polymer in relation to
phosphate groups from the plasmid results in an increase of the positive charge on the
systems surface. The systems that proved to be the most suitable for delivery purposes
based on size and surface charge were those prepared at an R8-mannose N/P ratio of
2 and PEI N/P ratio of 10, because they exhibit the smallest size (234.56 nm) and the
highest zeta potential (+14.67). The formulation of mcDNA systems conjugated with PEI
and R8-mannose results in the formation of ternary systems with higher positive zeta
potential values when compared with R8-mannose binary systems. Some studies have
reported the formation of complexes additionally packaged with PEI to construct ternary
systems, which showed resistant properties against serum proteins and rapid cellular
uptake, leading to improved gene transfer efficiency [41]. Song and collaborators prepared
a novel polyethyleneimine-RRRRRRRR(R8)-heparin (HPR) nanogel as an efficient gene
delivery system. The R8 peptide was grafted onto PEI (R8-PEI) to increase the charge
density, reduce the toxicity of the gene delivery system, and thus enhance cellular uptake
and gene transfection efficiency [42]. Our results from DLS measurements, showing that
the addition of PEI to the R8-mannose/mcDNA-E7 system not only considerably reduces
the size of particles but also increases the positive charge they carry, agree well with the
results found in the literature.

3.4. Stability Assay

To evaluate the stability of both systems in the extracellular compartment and the
protection that the systems confer to the DNA vector encoding HPV E7 gene, formulations
at various N/P ratios were incubated at 0, 1, and 4 h with DMEM medium supplemented
with 10% FBS and with a trypsin solution at 37 ◦C. Figure 6 shows the obtained results.
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trypsin (B,D,F): 1- mcDNA control; A and B: R8-mannose/mcDNA-E7; C and D: R8-mannose/PEI/mcDNA-E7 systems
formulated by maintaining a PEI N/P ratio of 5 and changing R8 N/P ratios; E and F: R8-mannose /PEI/mcDNA-E7
systems formulated by maintaining PEI N/P ratio of 10 and changing R8 N/P ratios.

Data obtained for R8-mannose/mcDNA-E7 systems show the presence of mcDNA
in the supernatants of all formulations conceived at different N/P ratios at 0 h of incu-
bation with the complete medium (Figure 6A). The electrophoretic profile also suggests
a partial degradation of mcDNA in some cases. The same formulations were incubated
with trypsin (Figure 6A) in another experiment to evaluate its action regarding the pro-
tection of the mcDNA-E7 vector. Once more, it was shown that the system is not able
to maintain its integrity when incubated with trypsin. The decomplexation of mcDNA
occurs at 0 h for the complete medium and trypsin incubations, suggesting the instabil-
ity of these binary systems, which can compromise the protection, carriage, and in vitro
and in vivo cell transfection efficiency [43]. On the other hand, the data obtained for R8-
mannose/PEI/mcDNA-E7 formulations at different R8-mannose N/P ratios and both PEI
N/P ratios (5 and 10) incubated with complete medium and trypsin at different times indi-
cated the higher stability of ternary systems (Figure 6B,C). The electrophoretic migration of
supernatants resulting from these experiments reveal absence of mcDNA in all incubations
made with trypsin (Figure 6B,C) and a vestigial presence in incubation experiments with
complete medium, mainly after 4 h period of incubation (Figure 6B,C). Curiously, this
behavior is more evident in formulations with a PEI N/P ratio of 10. Nevertheless, and as
discussed before, PEI has a higher capacity to condense DNA as it interacts strongly with
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this molecule. Therefore, these data suggest that R8-mannose/PEI/mcDNA-E7 ternary
systems are more suitable than R8-mannose/mcDNA-E7 binary systems for delivery of
DNA vaccines, probably due to the presence of PEI [42].

3.5. Biocompatibility Evaluation

The biocompatibility of the developed systems was evaluated through resazurin assay
on human fibroblast and Raw 264.7 cells to determine if the studied systems had any
toxic effect towards the cells once transfected. The results on human fibroblast and Raw
264.7 cells at 24 and 48 h for the various carriers at different N/P ratios are summarized in
Figure 7.
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It was observed that none of particles are toxic to the Human fibroblast cells since
cellular viability shows values superior to 80% regardless the transfection period. The
results on Raw 264.7 cells are identical once all systems have a viability greater than 80%
even 48 h after transfection. Branched PEI polymers are known to compact DNA more
efficiently due to the higher density of its primary amine groups. However, the cytotoxic
effect associated with branched polymer structures must be taken into consideration,
especially with branched PEI 25 kDa since it can induce cell membrane damage and initiate
apoptosis. As found before, the molecular weight, the architecture of the polymer and
the N/P ratio are all relevant parameters that can influence cellular viability. The N/P
ratio appears to be the main factor determining cellular viability as branched PEI polymers
are only biocompatible for the lower N/P ratios. The higher the N/P ratio used at vector
preparation step, the higher the cytotoxicity of PEI 25 kDa. Nevertheless, it does not
compromise its use, at least, until N/P ratio 15. To reduce the cellular toxic effects of
branched PEI 25 kDa, lower N/P ratios should be considered so as not to increase the
content of free amines that are responsible for cytotoxicity [19]. Considering that some
studies report percentages of cell viability above 80% are considered non-cytotoxic [44],
these results confirm an improvement in biocompatibility of PEI-based vectors, probably
due to the presence of R8 peptide on the formulations.

3.6. Cellular Uptake and Intracellular Location of Complexes

The capacity for cellular uptake and internalization of the developed systems was
evaluated. The uptake of PEI/mcDNA and R8-mannose/PEI/mcDNA systems into Raw
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264.7 cells and their intracellular co-localization after 3 h of transfection was visualized by
fluorescence confocal microscopy. The images are presented in Figure 8.
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Figure 8. The transfection ability and intracellular co-localization of PEI/mcDNA (N/P ratio of 5:1) and R8-mannose/PEI/
mcDNA (N/P ratio of 2:5:1) systems was investigated by fluorescence confocal microscopy. Nuclei were stained blue
by DAPI, while green represents the mcDNA stained with FITC. Live cell images: Raw 264.7 non-transfected cells (A);
Raw 264.7 cells after 3 h of transfection with PEI/mcDNA (N/P ratio of 5:1) system (B) and Raw 264.7 cells after 3 h of
transfection with R8-mannose/PEI/mcDNA (N/P ratio of 2:5:1) system (C).

Nuclei were stained blue by DAPI, while green represented the mcDNA stained
with FITC. The cell live imaging presented in Figure 8A corresponding to non-transfected
cells (control) shows that cells do not exhibit green fluorescence signals. According to
Figure 8B, corresponding to PEI/mcDNA formulations in the absence of R8-mannose, it is
clear that mcDNA systems have less ability to reach the nuclei of target cells. Figure 8C,
corresponding to the transfection mediated by R8-mannose/PEI/mcDNA systems, shows
the presence of stained mcDNA into the cells, revealing higher ability from these systems
to reach the nuclei of target cells. Therefore, the results suggest that these systems are able
to overcome both extracellular and intracellular barriers and the presence of R8-mannose
seems to efficiently improve the cell entry, internalization, and mcDNA accumulation into
the nucleus [15,45]. Once inside the nucleus, it is expected that transcription and expression
of the target gene will occur.
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3.7. Expression of E7 Gene

The cellular transfection mediated by PEI/mcDNA systems was monitored in the
absence and presence of R8-mannose to evaluate the influence on the systems this process,
namely on E7 gene expression. The characteristics exhibited by the PEI/mcDNA complexes
are strongly dependent on the N/P ratio used. A higher N/P ratio leads to a strong
polymer amine density that can efficiently condense the mcDNA molecule and form
delivery systems with a higher positive charge, favoring the interaction with negatively
charged proteoglycans present in the cell membrane and facilitating their entry into the
cell [46].

RT-PCR was used to evaluate the transcription efficiency of the E7 gene into the cells
transfected by PEI/mcDNA and R8-mannose/PEI/mcDNA systems. Non-transfected
cells were used as control and amplification of E7 transcripts was performed using specific
primers. Samples were then analyzed using 1% agarose gel electrophoresis, the results of
which are presented in Figure S5. However, as the assessment of the band intensities was
in some cases unclear, the RT-qPCR technique was employed to quantify E7 expression
levels, as this is a more precise method allowing for an accurate evaluation. The obtained
results for gene expression after transfection with the developed systems are presented in
Figure 9.
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from three independent measurements (mean ± S.D., n = 3); * p < 0.05; ** p < 0.01: ns—no significance. 

As shown in Figure 9, there is a general increase in the expression of E7 transcripts 
in relation to non-transfected cells (control). In the RAW 264.7 cell line, R8-man-
nose/PEI/mcDNA ternary systems show higher levels of E7 transcripts when compared 
to PEI/mcDNA binary systems. These results are in agreement with the previous tendency 
observed in confocal experiments (Figure 8), suggesting that the presence of R8-mannose 
influences the systems’ internalization, therefore favoring the subsequent processes of nu-
cleus targeting and gene expression. In fact, this behavior could be related to the presence 
of the R8 peptide, which has shown quite satisfactory results in terms of cell membrane 
uptake and nuclear localization [14,16]. R8-mannose/PEI/mcDNA ternary systems at a PEI 
N/P ratio of 5 have higher levels of gene transcription than ternary systems at a PEI N/P 
ratio of 10. These results indicate that the PEI N/P ratio of 10 can reduce the proportion of 

Figure 9. RT-qPCR of E7 expression levels in RAW 264.7 cells (A) and human fibroblast cells (B): Control–non-transfected
cells; 1- PEI/mcDNA N/P ratio 5:1; 2- R8-mannose/PEI/mcDNA N/P ratio 2:5:1; 3- PEI/mcDNA N/P ratio 10:1; 4-
R8-mannose/PEI/mcDNA N/P ratio 2:10:1. Data obtained from three independent measurements (mean ± S.D., n = 3);
* p < 0.05; ** p < 0.01: ns—no significance.

As shown in Figure 9, there is a general increase in the expression of E7 transcripts in re-
lation to non-transfected cells (control). In the RAW 264.7 cell line, R8-mannose/PEI/mcDNA
ternary systems show higher levels of E7 transcripts when compared to PEI/mcDNA bi-
nary systems. These results are in agreement with the previous tendency observed in
confocal experiments (Figure 8), suggesting that the presence of R8-mannose influences the
systems’ internalization, therefore favoring the subsequent processes of nucleus targeting
and gene expression. In fact, this behavior could be related to the presence of the R8
peptide, which has shown quite satisfactory results in terms of cell membrane uptake and
nuclear localization [14,16]. R8-mannose/PEI/mcDNA ternary systems at a PEI N/P ratio
of 5 have higher levels of gene transcription than ternary systems at a PEI N/P ratio of 10.
These results indicate that the PEI N/P ratio of 10 can reduce the proportion of R8-mannose
included in the ternary system (probably due to the charge repulsion), decreasing the posi-
tive effects of this mannose-R8 conjugate in terms of cell recognition and internalization,
consequently affecting the transcription of the E7 gene.
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As the PEI/mcDNA N/P ratio of 5:1 and R8-mannose/PEI/mcDNA N/P ratio of 2:5:1
showed successful results in Raw 264.7 cells, they were chosen in an attempt to understand
and clarify the influence of R8-mannose in human fibroblast cells (Figure 9B). The obtained
results followed the same tendency as for RAW 264.7 cells, since ternary systems showed
higher levels of E7 transcripts than binary systems, suggesting a positive influence of
R8 in cell uptake and nucleus accumulation [15,31]. However, comparing the E7 gene
transcription obtained by the R8-mannose/PEI/mcDNA ternary system in both cell lines,
higher levels were attained in Raw 264.7 cells than in human fibroblast cells. These results
could be related to the cumulative effects of mannose ligands, which can improve the
system internalization through the recognition of mannose receptors of RAW cells. It is
well known that Raw 264.7 cells expressing moderate mannose receptors might constitute a
suitable and valuable opportunity to investigate the transfection efficiency of mannosylated
systems [24,45]. Some studies have reported applications of mannosylated systems with
improved transfection efficiency, whose results confirm that mannosylated systems are
more effective for gene transcription and expression in Raw 264.7 cells [24]. Once again,
the results suggest that the presence of both mannose and R8 may influence the extent
of cellular internalization of the systems, preferentially by APCs such as macrophages.
This fact in turn may dictate the success of gene transcription and consequently protein
expression, and therefore the therapeutic effect.

A successful anti-cancer vaccine depends on its ability to induce humoral and cellular
immunity against a specific antigen. Antigens are known to be delivered by various
dendritic cell receptors, including C-type lectin receptors (CLRs), which are important
pattern recognition receptors involved in the induction of adaptive immunity against
pathogens [47,48]. Numerous receptors expressed on DCs have been identified, and each
of them have shown potential as targets for cancer vaccine design. Most studies to date
have used mannose to target the mannose receptors, as it is highly expressed on DCs and
macrophages and plays a key role in antigen recognition [45,48]. However, some studies
have shown good results with other CLRs, such as langerin, DC-SIGN, and others. A
comparative study between DC-SIGN and langerin showed functional differences, despite
similarities in carbohydrate recognition domains. As with mannose receptors, DC -SIGN
also recognizes carbohydrates on pathogens mediating endocytosis, thereby activating the
adaptive immune response against pathogens [47–49]. Although our data show evidence
of efficient E7 gene transfection via the developed R8 mannose/PEI/mcDNA-E7 systems,
further studies are needed to evaluate the immune response. It would also be relevant to
verify whether these nanoparticles, when recognized by pathogen recognition receptors such
as C-type lectin, could stimulate the immune response, and thus serve as vaccine adjuvants.

4. Conclusions

The main challenge associated with DNA vaccines and its main limitation for clinical
application is the delivery barriers to targeted immune cells, which obstruct the stimulation
of effective antigen-specific immune responses in humans, which ultimately, leads to low
therapeutic efficacy. In this report, novel delivery systems have been developed, aiming to
add a significant contribution to DNA vaccines by exploring the assets of non-viral systems.
Pursuing this goal, R8-mannose/mcDNA-E7 binary and R8-mannose/PEI/mcDNA-E7
ternary systems have been conceived at several N/P ratios and their physicochemical
properties have been assessed. The carriers have shown a set of properties related to
their morphology, size, surface charge, and cytotoxic profile, which opens the possibility
to use them as suitable delivery vehicles. In vitro studies and a comparison between
the formulated carriers revealed that R8-mannose/PEI/mcDNA-E7 systems are more
functional DNA vaccine delivery carriers. These ternary systems, either incubated with
trypsin or DMEM medium, were able to efficiently condense mcDNA, since there was no
evidence of decomplexation or degradation of particles. The addition of the PEI to the
R8-mannose/mcDNA-E7 system not only considerably reduces the size of the particles
but also increases the zeta potential; the vectors were also revealed to be biocompatible.
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Finally, expression of the E7 gene was more intense with ternary systems, which suggests
the influence of mannose and R8 for receptor recognition and cellular internalization. To
guarantee a better effect of R8-mannose/PEI in the recognition of mannose receptors and
internalization by R8, control of the proportion of PEI is needed.

This work constitutes a significant advance in the conception of non-viral delivery
systems to carry DNA vaccines, offering to this field a suitable tool to be further evaluated.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/pharmaceutics13050673/s1: Figure S1: Schematic representation of three mutations in
the HPV E7 gene and cloning of mutated genes in the parental plasmid vector. (A) E7 gene se-
quence from HPV wildtype. (B) Identification of three mutations in the HPV E7 wildtype gene.
(C) Sequencing of E7 mutant gene. (D) cloning of E7 mutant gene in the parental plasmid vector.
Figure S2: Chromatographic profile of mcDNA isolated by size exclusion chromatography in the
Sephacryl SF-1000 column (A), using the following conditions: flow-rate of 0.3 mL/min, sample
loading of 2 mL and fractionation of 3 mL; and agarose gel electrophoresis of fractions from peak
III (B). Figure S3: SEC chromatogram of MPITC-R8. Figure S4. Electrophoretic mobility of su-
pernatants from several formulations studied at various N/P ratios. (A) R8-mannose/mcDNA.
(B) R8-mannose/PEI/mcDNA maintaining PEI N/P ratio at 5 and changing R8 N/P ratios. (C)
R8-mannose/PEI/mcDNA maintaining PEI N/P ratio at 10 and changing R8 N/P ratios. Image
A: lane 1-R8-mannose/mcDNA N/P ratio of 1:1; lane 2-R8-mannose/mcDNA N/P ratio of 1.5:1;
lane 3-R8-mannose/mcDNA N/P ratio of 2:1. Image B: lane 1-R8-mannose/PEI/mcDNA N/P ratio
of 1:5:1; lane 2-R8-mannose/PEI/mcDNA N/P ratio of 1.5:5:1; lane 3-R8-mannose/PEI/mcDNA
N/P ratio of 2:5:1. Image C: lane 1-R8-mannose/PEI/mcDNA N/P ratio of 1:10:1: lane 2-R8-
mannose/PEI/mcDNA N/P ratio of 1.5:10:1; lane 3-R8-mannose/PEI/mcDNA N/P ratio of 2:10:1.
Figure S5. Analysis of RT-PCR products by agarose gel electrophoresis. Evaluation of E7 transcripts
in Raw cells (A) and fibro cells (B). Lane 1—DNA molecular weight marker; lane 2-control without
cDNA sample; lane 3-non-transfected cells; lane 4-cells transfected by PEI/mcDNA N/P ratio 5:1;
lane 5-cells transfected by R8-mannose/PEI/mcDNA N/P ratio 2:5:1; lane 6-cells transfected by
PEI/mcDNA N/P ratio 10:1; lane 7-cells transfected by R8-mannose/PEI/mcDNA N/P ratio 2:10:1.
Table S1: The molecular weight of each MPITC-R8 conjugate by SEC analysis.
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