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Computational neuroscience has come a long way from its humble origins in the

pioneering work of Hodgkin and Huxley. Contemporary computational models of the

brain span multiple spatiotemporal scales, from single neuronal compartments to models

of social cognition. Each spatial scale comes with its own unique set of promises and

challenges. Here, we review models of large-scale neural communication facilitated by

whitematter tracts, also known as whole-brainmodels (WBMs). Whole-brain approaches

employ inputs from neuroimaging data and insights from graph theory and non-linear

systems theory tomodel brain-wide dynamics. Over the years, WBMmodels have shown

promise in providing predictive insights into various facets of neuropathologies such as

Alzheimer’s disease, Schizophrenia, Epilepsy, Traumatic brain injury, while also offering

mechanistic insights into large-scale cortical communication. First, we briefly trace the

history of WBMs, leading up to the state-of-the-art. We discuss various methodological

considerations for implementing a whole-brain modeling pipeline, such as choice of

node dynamics, model fitting and appropriate parcellations. We then demonstrate the

applicability of WBMs toward understanding various neuropathologies. We conclude by

discussing ways of augmenting the biological and clinical validity of whole-brain models.
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PHYSICAL MODELS OF THE BRAIN

Billions of years of evolution have invested the nervous system with tremendous complexity.
Modern neuroscience has sought to understand this complexity as a hierarchical ladder that spans
multiple spatial and temporal scales, starting from the interaction of biomolecules through to
more complex structures like neurons and neural networks. Building on the pioneering work of
Hodgkin and Huxley, significant progress took place toward the elucidation of the function of the
single neuron. However, in spite of all the remarkable achievements at the single neuron level,
relatively little is known about how populations of neurons coordinate with one another to facilitate
cognitive processes. While it is fair to characterize neurons, or even individual dendrites as the
canonical units of computation in the brain, it is evident that complex cognitive processes rely on
interactions between several neural ensembles (McIntosh, 2004; Bressler and Tognoli, 2006)1 that
are distributed across the cortex (Deco et al., 2008). Gaining an understanding of neural circuitry
assumes vital importance not only for explaining cognition, but also for the treatment of various
neurological diseases.

1Several thousand neurons exhibiting coordinated firing patterns.
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Early efforts toward bridging the gap between single-neuron
activity and circuit operation led to the formulation of neural
mass models (Beurle, 1956; Wilson and Cowan, 1972) which
conceptualized cortical activity as arising from the dynamic
interplay of multiple neural populations (or masses) with
excitatory-inhibitory feedback (Figure 1). Such models leverage
the fact that while the spiking of individual neurons is highly
irregular (even chaotic), the mean activity of neural ensembles
obeys fairly low-dimensional dynamics (Deco et al., 2008) 2.
Furthermore, mean-field descriptions of cortical tissue may be
extended in space and endowed with spatial gradients in neural
parameters that follow mathematically defined connectivity
(Amari, 1977). Field theory, with its deep roots in physics,
provides analytically tractable solutions and has been employed
extensively in neuroscience to explain wide-ranging phenomena.
A classic field-theoretic model is the one proposed by Amari,
which considered lateral-inhibition to explain oscillatory waves
and input-evoked transients (Amari, 1977). Two-dimensional
field models support diverse phenomena such as spiral and target
waves that are organized into complex checkerboard patterns,
reminiscent of neural activity observed during different brain
states (Ermentrout and Cowan, 1979; Jirsa and Haken, 1996).

By the turn of the century, neuroimaging modalities like
PET and fMRI were being increasingly used to study cognition.
The abstract nature of existing large-scale models made it
difficult to exploit the rich datasets which were being churned in
such experiments (Tagamets and Horwitz, 1998; Horwitz et al.,
1999, 2000). Additionally, despite their success in providing
theoretical accounts for neural phenomena such as traveling
waves (Amari, 1977) or resting-state dynamics, Robinson et al.
(2021) continuum field models had limited applicability in
the clinical setting since crucial medical observables such as
anatomical connectivity, functional correlations between brain
areas or distribution of various cell types cannot be expressed in
terms of mathematical expressions which can then be analytically
solved within the field-theoretic framework. Therefore, it was
deemed desirable to setup the neurodynamic model so that
patient-specific neuroimaging data (e.g., DTI, fMRI connectivity)
could be fused with simulations in order to facilitate precision
medicine (Ritter et al., 2013; Deco and Kringelbach, 2014).

Within this framework, anatomical connectivity derived from
diffusion MRI is used as a structural scaffold to simulate
mesoscopic neural interactions (Horwitz et al., 2000; Honey
et al., 2009). Nodes, representing mean-field activity of individual
brain areas, evolve according to differential equations under the
influence of coupling from other brain regions, external input
and noise (Deco et al., 2009). Parameters representing biological
or phenomenological properties of the nodes and edges are
systematically varied, and time-series obtained for each run. For
fMRI data, a further hemodynamic convolution is applied to the
time-series and functional correlations (FC) are estimated from

Abbreviations: MRI, Magnetic resonance imaging; WBM, Whole-Brain Model;
ROI, Region of Interest; BOLD, Blood oxygen level dependent; EEG/MEG,
Electro/Magneto encephalography; FC, Functional connectivity.
2 In mean field models, coarse-grained variables representing ensemble activity
such as the population firing rate are used to track the evolution of the system.

the resulting data (Deco and Kringelbach, 2014). Alternatively,
for EEG/MEG studies, FC is estimated from amplitude envelopes
that are extracted for each frequency band of interest and
downsampled to correspond with BOLD time-scales (Hipp et al.,
2012). Model fitting techniques are then utilized to obtain
working points and regimes that best capture the corresponding
empirical data. After model fitting, the researcher can ask how
this system responds to various perturbations like external inputs
(e.g., stimuli), noise or structural insults (e.g., lesions) (Figure 2).

Whole-brain models provide actionable insights into various
neurological deficits (e.g., identifying optimal resection zone in
epilepsy), while also retaining a link to fundamental dynamical
and graph theoretic concepts like attractors, metastability,
stochastic dynamics, chaos and modularity (Popovych et al.,
2019). In the following we outline the major variables that need
to be considered before establishing a successful WBM pipeline.

MODELING CONSIDERATIONS

Whole-brain modeling has tremendous clinical applicability
as it provides prognostic tools and predictive insights for a
host of neurological diseases (Deco and Kringelbach, 2014).
However, since not all brain pathologies have the same origin
or mechanism, the models seeking to understand them are also
customized according to the specific etiology of the disease
(Table 1). Following E.P Box’s adage- “all models are wrong,
but some are useful,” system equations are set up keeping in
mind the specific properties of the underlying clinical context
at the expense of biological realism. For example, it may be
unnecessary to include conduction delays in models seeking to
fit fMRI data due to the widely differing time-scales between
BOLD activity (seconds) and axonal propagation (milliseconds).
On the other hand, delays assume vital importance when the
object of study involves electrophysiological spectral coherence
between neural oscillators. Broadly, establishing an effective
whole- brain modeling pipeline essentially comes down to the
following choices- parcellation scheme, node dynamics, model
fitting technique and type of perturbation applied.

Structural Connectivity Matrices and the
Role for Parcellation
Firstly, thousands of voxels are reduced to only a few relevant
areas of interest. Diffusion imaging is performed to extract
anatomical connectivity matrices (Box 1). Connectivity matrices
specify fiber density across various white matter tracts. A crucial
decision at this stage is the choice of a parcellation scheme
for obtaining an adjacency matrix. In the absence of a general
consensus on what constitutes a “good” parcellation, one must
consider carefully how the parcellation scheme may affect the
WBM pipeline. Parcellation dictates the spatial resolution and
topology of the model. Topological properties are known to be
affected by the spatial scale of the parcellation used (Zalesky
et al., 2010). Zalesky et al. (2010) demonstrate that while the
basic properties of network topology such as scale-freeness or
small-worldness remain invariant across spatial scales, the extent
of these properties significantly varies between parcellations.
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Modeling has further corroborated that significant variability
exists in graph-theoretical attributes of network dynamics as
a function of the parcellation scheme (Domhof et al., 2021).
Significant inter-parcellation variability also exists in resting-state
dynamical models (Fornito et al., 2010). Additionally, since
the computation time for whole-brain models scales with the
number of coupled differential equations (same as the nodes in
the network), finer-grained parcellations may be computationally
cumbersome to solve. Further, diffusion MRI (dMRI) techniques
are biased against short-range and intracortical connectivity,
which may have significant ramifications for simulated dynamics
(Proix et al., 2016). Highly granular parcellation schema may
also lead to redundancy and rank-deficiency during source
reconstruction (Tait et al., 2021b).

Broadly, atlases bin brain areas on the basis of either
anatomical or functional similarities. Commonly used
anatomical criteria for parcellating brain regions include
gross anatomy, cytoarchitecture, myeloarchitecture,
chemoarchitecture and gene expression profiles (Nowinski,
2021). By contrast, functional atlases utilize resting state or
task-related functional correlations to allocate ROIs (Craddock
et al., 2012; James et al., 2016). Anatomical atlases are known
to fare poorly in comparison to functional atlases when
it comes to reproducing FC patterns at the voxel scale
(Craddock et al., 2012). Since functional homogeneity is
a crucial precondition for modeling ROI dynamics, this
would argue for the superiority of functional over anatomical
parcellations for whole-brain modeling (Craddock et al., 2012).
On the other hand, with anatomically defined ROIs it is
easier to interpret results in the light of extant neuroscience
literature. Therefore, multimodal atlases which integrate
anatomical and functional criteria may offer a suitable
tradeoff to ensure functional homogeneity while retaining
anatomical specificity in whole-brain analysis (Glasser et al.,
2016).

Ultimately, the scope of the study dictates the choice
of parcellation. For example, it may be crucial to include
sub-cortical nodes where the primary pathology may involve
subcortical structures like the thalamus (Ji et al., 2016; Bazin et al.,
2020).

BOX 1 | Estimating anatomical connectivity

In-vivo estimation of white matter structural connectivity is enabled by

diffusion magnetic resonance imaging (dMRI). Broadly, dMRI approaches

measure the preferential direction of diffusion of water molecules in brain

tissue. Computational algorithms estimate fiber orientations (streamlines)

from dMRI data using a process known as tractography. Streamlines are

counted and averaged according to pre-defined brain parcellations to yield

adjacency graphs, which can then be submitted as input for whole-brain

models. Computational libraries that perform tractography include FSL

(Jenkinson et al., 2012), MRtrix (Tournier et al., 2012), BrainSUITE (Shattuck

and Leahy, 2002), and DSI studio (Yeh et al., 2013). Considerable variability

may exist in the output of different libraries due to differences in the choice

of diffusion models, model parameters and tractographic algorithms. Thus,

optimal algorithm selection remains an active area of research (Bastiani et al.,

2012; Zhan et al., 2015; Petrov et al., 2017).

FIGURE 1 | Evolution of computational neuroscience models from single

neurons to network models.

Node Dynamics
Node dynamics consist of differential equations specifying the
temporal evolution of the population activity of each region of
interest (ROI). Each anatomically defined node may potentially
consist of thousands of neurons and therefore, the dynamics
of the ensemble is reduced to a low-dimensional description
using mean-field formalisms. For example, Deco et al. reduce
a spiking neuron model with synaptic conductance to yield a
dynamic mean-field model that is subsequently used to specify
node dynamics (Deco et al., 2013; Roy et al., 2014). Examples
of node dynamics may range from the simple phenomenological
ones, such as the Kuramoto model (Breakspear et al., 2010) or
the normal form of the supercritical Hopf bifurcation (Lord et al.,
2017) to the more biologically inspired ones such as the Wilson-
Cowan model (Wilson and Cowan, 1972) or thalamocortical
motifs (Griffiths et al., 2020) (see Figure 3 and Table 1). For
example, the Kuramoto model reduces node dynamics to a phase
variable, which evolves according to a natural frequency and a
sinusoidal interaction term (Breakspear et al., 2010). On the other
hand, both asynchronous and synchronous dynamics can be
captured in the same set of equations in bifurcation models that
can possess a relaxation solution (damped oscillations) or limit
cycle solution (self-sustained oscillations) depending on the value
of the bifurcation parameter (Figure 3) (Lord et al., 2017). Most
computational studies model average functional connectivity,
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FIGURE 2 | Model pipeline. (A) Inter-regional functional correlations (empirical

functional connectivity or eFC) are extracted from resting state BOLD

time-series. (B) For EEG/MEG, raw electrode/sensor time series are used to

estimate source level activity, which is then bandpass filtered and hilbert

transformed to obtain amplitude envelopes. Band specific functional

connectivity is estimated from amplitude envelopes. DTI connectivity provides

information about inter-regional white matter fiber density. Euclidean distances

may be scaled to obtain temporal delay information. (C) Kuramoto model is

used here to demonstrate how DTI information is incorporated into the node

dynamics. For fMRI, an additional hemodynamic convolution is performed

(Balloon-Windkessel) to project model output to BOLD time scales before

estimating simulated FC (sFC). For EEG/MEG, amplitude envelopes are

extracted and simulated FC is estimated. Model fitting procedures estimate

model parameters based on eFC and sFC.

however, brain dynamics is also marked by transitions in
the patterns of functional connectivity with time. Switching
between FC configurations (FC state) requires node dynamics
to possess multistable solutions which may be imparted through
the addition of non-linear terms in model equations (Deco et al.,
2013; Hansen et al., 2015).

Heterogeneity in node dynamics may be introduced by
assigning multiple oscillatory frequencies. For example, Deco
et al. (2017) show that models utilizing multiple natural
frequencies confirm better to empirical rsMEG networks.
Similarly, Roberts et al. devise a principled approach for natural
frequency allocation by scaling frequencies by the topological

degree of each node (Gollo et al., 2017). For non-oscillatory
node dynamics, temporal heterogeneity may be introduced by
modulating exponential decay rates or synaptic time constants
(Figure 3).

Another decision to be made at this step is the inclusion of
transmission delays (Nakagawa et al., 2014). Computational
models have demonstrated the value of including transmission
delays, particularly in explaining oscillatory activity at
electrophysiological time scales (Banerjee and Jirsa, 2007;
Deco et al., 2009). Neural delays are known to play a crucial
role in motor control, particularly in bimanual coordination
(Banerjee and Jirsa, 2007) and in explaining perceptual variability
in multi-sensory integration (Thakur et al., 2016). Conduction
delays, on the order of a few milliseconds, can flip the phase
relationship between two gamma oscillators from in-phase to
out-of-phase (Pajevic et al., 2014). Network delays crucially
dictate oscillation frequency (Niebur et al., 1991; Petkoski and
Jirsa, 2019; Pathak et al., 2021) and propagation of cortical
traveling waves (Ermentrout and Kleinfeld, 2001). Delays can
even cause the complete cessation of self-sustained oscillations
(amplitude death) in networks of coupled limit-cycle oscillators
(Reddy et al., 1998). On the other hand, under certain conditions,
time delays may also enhance neural synchrony (Dhamala et al.,
2004).

Conduction delays may be estimated by scaling cortico-
cortical tract lengths by conduction velocity, which is usually
parametrically varied between 1-30 m/s, in accordance with
experimental studies (Swadlow, 1982). However, given the
millisecond scale of delays involved, it may be redundant to
include delays in cases where the object of interest is fMRI BOLD
time scales.

Model Fitting
Typically, whole-brain models aim to explain data collected at
fMRI BOLD or electrophysiological (EEG, MEG, sEEG) time
scales. Functional time series collected from fMRI experiments
are used to estimate inter-areal functional connectivity. For EEG
or MEG, pre-processed signals are bandpass filtered in various
frequency bands of interest and Hilbert-transformed to extract
amplitude envelopes, which are then used to estimate functional
connectivity (Hipp et al., 2012; Deco et al., 2017). For both
fMRI and EEG/MEG, typically static correlations (presuming
stationarity) are employed to estimate model fit. However, recent
work has strongly argued that static measures fail to capture
the rich, higher-order dynamics inherent in neuroimaging data,
and therefore, have advocated the use of dynamic measures
of functional connectivity (dFC) (Hutchison et al., 2013; Preti
et al., 2017). dFC may be estimated through a windowed
manner, or through techniques not requiring arbitrarily chosen
temporal windows (Cabral et al., 2017). For dFC analysis, every
time step (or time window) has a characteristic FC pattern
associated with it. One way to perform model fitting for dFC
is by collapsing this 3D data structure (ROI*ROI*time) to a 2D
matrix (time*time) consisting of correlations between the leading
eigenvectors at each time point or window; the resulting matrix
may be considered as the object of model fitting (Cabral et al.,
2017).
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TABLE 1 | List of studies employing WBMs to understand neuropathologies.

References Clinical context Node dynamics Model fitted to Parcellation(N) FC (dynamic or static)

Alstott et al. (2009) Lesion Neural mass model BOLD FC Hagmann (998) Static

Demirtaş et al. (2017) AD Hopf Normal Form

(Stuart-Landau)

BOLD FC 78 Cortical Static

Vattikonda et al. (2016) Stroke Dynamic Mean

Field (DMF)

BOLD FC Desikan Killainy (68), Hagmann (998) Static

Jirsa et al. (2017) Epilepsy Epileptor SEEG spectral power EZ/PZ Static

Nakagawa et al. (2014) Aging Dynamic Mean

Field (DMF)

BOLD FC Modified CoCoMac (74) Static

Deco et al. (2017) Psychadelics Dynamic Mean

Field (DMF)

BOLD FC Automatic Anatomical Labelling (90) Dynamic

Griffiths et al. (2020) Stimulation Thalamocortical

Motif

AEC MEG Lausanne Scale 1 (68) Static

López-González et al.

(2021)

Disorders of

Consciousness

(DOC)

Hopf Normal Form

(Stuart-Landau)

BOLD phase synchrony Shen (214) Dynamic

Tait et al. (2021a) Seizure Propensity

in AD

Theta Model EEG phase locked FC Brainnetome (40) Static

Hellyer et al. (2015) Traumatic Brain

Injury

Kuramoto Oscillator BOLD FC Desikan-Killainy (68) Static

Cabral et al. (2013) Schizophrenia Linear relaxation

process

BOLD FC AAL (90), Hagmann (66) Static

Yang et al. (2014) Schizophrenia Dynamic Mean

Field (DMF)

BOLD FC Hagmann (66) Static

Model parameters are systematically varied and simulated
FCs (static or dynamic) are estimated for each parametric set.
Estimation of the optimal parameter set (often referred to as
the dynamic working point of the system), offering closest
concordance with empirical FC may be achieved by minimizing
an error function or by maximizing correlation between
empirical and simulated FCs (Deco and Kringelbach, 2014).
Bayesian modeling is often employed to estimate parameters
associated with the underlying generative models (Vattikonda
et al., 2016; Hashemi et al., 2020). Here, models are initialized
with a randomly chosen parameter set; stochastic gradient
descent is then used to update model parameters.

Instead of FC, one could alternatively perform model fitting
against other empirical features of the data. For example, Jirsa
et al. (2017) develop a personalized epileptic brain model by
estimating model parameters from the spectral distribution of
stereotactic (SEEG) electrodes. Indeed, it is even possible to do
away with model fitting altogether when the research question
is of a qualitative nature. For example, Mejias and Wang (2022)
simulate a large-scale model of primate neo-cortex to elucidate
the emergence of distributed attractor states subserving various
internal processes. In such studies, explaining the salient aspects
of the underlying system takes precedence over precise model
fitting (Mišić et al., 2015; Mejias and Wang, 2022).

Perturbation
After successfully fitting the model to relevant empirical data, it is
desired to introduce various perturbations to the model in order
to understand the fallout of various pathological scenarios (Deco
et al., 2015). For example, in the case of stroke or TBI, one would

like to induce partial or complete lesions at various network
nodes and study the differential contribution of node topology in
disease progression (Alstott et al., 2009; Vattikonda et al., 2016).
Since the thrust here is to understand recoverability, individual
node dynamics can be endowed with plasticity mechanisms that
homeostatically regulate firing rates (Vattikonda et al., 2016;
Abeysuriya et al., 2018; Páscoa Dos Santos and Verschure,
2021). Similarly, stimulation protocols require providing current
input to specific nodes in the network to study network
response (Griffiths et al., 2020). Epilepsy models require altering
node dynamics such as channel properties or neurotransmitter
concentrations to model seizure spread from the seizure onset
zone (SOZ) (Jirsa et al., 2017). Levels of consciousness in whole-
brain models can be manipulated by adjusting neural gain, say,
mediated by subcortical structures (Shine, 2021).

CLINICAL APPLICATIONS

Modeling Seizure Propagation
Epilepsy is marked by the occurrence of frequent seizures,
which often spread from an onset zone to other distal areas
along white matter tracts. In some cases, this necessitates the
surgical resection of epileptogenic tissue. Due to the obvious
role of network dynamics and structural topology, epilepsy is
particularly well-suited for whole-brain modeling, as described
in previous sections (Engel Jr et al., 2013; Taylor et al.,
2014; Jirsa et al., 2017). Since surgery carries obvious risks,
it is desirable to minimize the extent of resected tissue. Jirsa
et al. show that personalized whole-brain modeling can be
used to aid medical decision making for optimal surgery
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FIGURE 3 | Node dynamics. Node dynamics may be categorized on the axis of biological validity. Purely phenomenological models such as Kuramoto, Linear

Stochastic, Linear Threshold or the normal form of Hopf bifurcation may be regarded as toy models which seek to focus on a conceptual aspect of underlying

phenomena at the expense of biological realism. On the other hand, it may be necessary to impart nodes with biologically detailed dynamics (SJ3D or Thalamocortical

motifs) to explain a certain biological feature of the research problem. Further, nodes may be categorized on the type of underlying dynamics, such as damped

oscillators, limit cycle oscillators, relaxation processes, multistable solutions or bursting patterns (represented schematically).

(Vattikonda et al., 2016; Jirsa et al., 2017). Patient-specific brain
connectivity is integrated to model empirical EEG data for the
identification of the epileptogenic zone (EZ). This technique is
particularly useful for instances where conventional methods
for EZ identification provide sub-optimal results due to a lack
of a clear MRI lesion (Hashemi et al., 2020). Recently, whole-
brain modeling has also been used to explain seizures in non-
epileptic conditions as well. For example, it is known that patients
with Alzheimer’s disease are about 6-10 times more likely to
develop seizures as compared to the normal population (Pandis
and Scarmeas, 2012). Tait et al. (2021a) using a whole-brain
pipeline, find that functional connectomes of AD patients show
a greater propensity to transition into seizure states as compared
to healthy connectomes. Here individual nodes in the network
are modeled as phase oscillators capable of producing neuronal
spiking in response to inputs. By systematically varying the
excitability parameter of individual nodes, the authors show that
AD connectomes are more ictogenic as compared to control
connectomes for a wide range of excitatory input (Tait et al.,
2021a).

Lesions
Neural tissue undergoes lesioning due to various factors like
traumatic brain injury, stroke or neurodegenerative diseases
(Alstott et al., 2009). Focal lesions can cause disruptions in
large-scale functional connectivity, leading to severe cognitive
and behavioral impairment. Alstott et al. (2009) demonstrate
that the extent and severity of functional deterioration depends
on the topological profile of the lesioned nodes, with nodes
occupying the most central position causing the greatest network
deficit upon lesioning. Vattikonda et al. (2016) extend this
idea to gauge potential recoverability from stroke induced
lesions by endowing node dynamics with an inhibitory plasticity
mechanism that can rescue neural firing rates in response to
structural insult (Figure 4). Recently, Good et al. used whole-
brain modeling to predict the chronic outcomes following
traumatic brain injury. Their approach, which utilizes the Virtual
Brain simulation platform (Sanz Leon et al., 2013), is able to
distinguish semiacute mild to moderate TBI patients from a
control group (Good et al., 2022). The effect of lesions on
segregative and integrative tendencies can be quantified using
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FIGURE 4 | Vattikonda and colleagues use a whole-brain pipeline to elucidate

network recovery after lesional insult. (A) DTI structural connectivity is used in

conjunction with mean field node dynamics (with feedback inhibition) to

generate ROI time series which are then convolved with hemodynamic

function to obtain simulated BOLD time-series. Resting state FC is calculated

using pearson correlation. (B) Global working point of the system is estimated

by comparing simulated FC with empirical FC. Histogram shows the ROI-wise

average firing rate for optimal global coupling. Heat Maps show empirical and

optimal simulated FC (averaged across subjects). (C) Network recovery takes

place due to local plasticity implemented through feedback inhibition. Here

lesion was introduced in the right caudal anterior cingulate node. The top 3

figures display connections that have significantly changed before

re-establishing local E-I balance. The bottom 3 figures represent the

connections that have significantly changed after re-establishing local E-I

balance. Adapted from Vattikonda et al. (2016), with permission from the

authors.

WBMs. For example, Hellyer et al. (2015) estimate metastability-
a measure of segregation and integration, and find disrupted
metastable dynamics in patients with traumatic brain injury
(TBI). By simulating a network of phase oscillators on topology
specified by connectomes obtained from TBI patients, the
authors demonstrate how structural disconnection can lead to
a reduction in metastable brain dynamics. These observations
provide a mechanistic explanation for the significant reductions
in cognitive flexibility and information processing, often seen
in patients recovering from TBI lesions. Váša et al. (2015)

highlight the usefulness of computational lesion studies by
demonstrating how graph theoretic properties of network nodes
such as modularity determine synchrony and metastability in
response to virtual lesioning. The authors find that lesions to
nodes with high eigenvector centrality or to nodes which connect
segregated modules lead to a decrease in global synchrony along
with an increase in global metastability (Váša et al., 2015).

Alzheimer’s Disease
Alzheimer’s Disease (AD) has traditionally been regarded as
a disease of the gray matter, however, recent neuroimaging
studies have implicated white matter abnormalities in the
pathogenesis of AD (Sachdev et al., 2013). This is reflected in
aberrant functional connectivity patterns observed in preclinical
populations. Demirtaş et al. (2017) fit a whole-brain model to
healthy controls; the model parameters thus obtained are then
systematically varied to generate FCs which match empirical
FCs seen in preclinical AD, Mild Cognitive Impairment and
AD. The authors find that simulated FCs mimic pathological
FCs as the individual node dynamics is shifted toward damped
oscillations by altering the bifurcation parameter (Demirtaş
et al., 2017). Stefanovski et al. (2019) fuse PET-derived Amyloid
beta levels with averaged healthy connectomes to shed light
on possible pathogenetic mechanims of AD. In this model,
Amyloid beta levels modulate the regional Excitation/Inhibition
balance, providing a mechanistic explanation for EEG alterations
in AD. Further, their whole-brain approach provides therapeutic
insights by accounting for large-scale functional reversibility of
EEG alterations by modeling the effect of memantine (NMDA
receptor antagonist) on local neural populations (Stefanovski
et al., 2019). Recently, whole-brain network models have also
been utilized for virtual data completion to augment multimodal
AD datasets such as the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) dataset (Arbabyazd et al., 2021).

Schizophrenia
The dysconnection hypothesis posits that symptoms of
Schizophrenia are best characterized as emerging from
functional, rather than anatomical disconnection (Friston,
1998). In line with this assertion, several studies have observed
extensive decrease in resting state functional connectivity of
patients, pointing to disrupted integration between segregated
brain areas (Lynall et al., 2010). Cabral et al. (2013) employ
structural connectivity matrices obtained from adolescent
patients with early onset schizophrenia and show that functional
disruptions associated with Schizophrenia are better explained by
reductions in global coupling rather than structural differences,
in line with the dysconnection hypothesis. Yang et al. (2014) use
whole-brain modeling to show that widely reported differences
in global brain signal (GBS) in resting state fMRI of patients
may be explained by changes in the net strength of overall
brain connectivity in schizophrenia, further corroborating
dysconnection. Anticevic et al. (2012) use whole-brain models
to identify the role for glutamate in establishing large-scale
functional patterns associated with Schizophrenia. Their
whole-brain approach, which allows for the introduction of
pharmacological manipulations, provides a framework for
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understanding the role of NMDA-mediated disruption of
cortical excitation/inhibition balance and its role in producing
the cognitive symptoms of schizophrenia.

Disorders of Consciousness
Loss of consciousness is either temporary, like in deep sleep or
anesthesia- or permanent- like in brain injury or other Disorders
of Consciousness (DoC). Efficient classification of brain states
as either reversibly or irreversibly unconscious is needed to
advance therapeutics. One way to gauge whether a certain
unconscious state is transient or permanent is from the response
of that state to externally provided perturbation. Recently, whole-
brain models have been used to characterize brain states in
terms of their stability toward perturbation. Sanz Perl et al.
(2021) demonstrate that perturbational analysis can complement
machine-learning based algorithms which classify different states
of consciousness. López-González et al. (2021) use structural
connectivity from healthy and injured subjects to show that
low-level states of consciousness are associated with decreased
network interactions, leading to segregation of synchronization
patterns in fMRI brain dynamics. Segregative tendencies are
found to be associated with the global coupling parameter that
scales the weights of the SC matrix.

PROMISES AND PITFALLS

Since whole-brain approaches leverage neuroimaging modalities
for modeling neural dynamics, future improvement is contingent
upon parallel advances in diffusion imaging, functional
imaging and signal processing techniques. Here, we discuss
a few directions that can significantly augment current
neurocomputational models.

One potential avenue for enriching current whole-brain
models is by improving the estimation of structural adjacency
matrices. For example, DTI derived structural matrices are
bidirectional, whereas actual white matter fibers have a
well-defined point of origin and termination which imparts
directionality and has obvious consequences for the emerging
dynamics. Additionally, current protocols for structural
estimation rely on the number of streamline (NOS) methods
which reconstruct structure by counting the number of
streamlines between ROI pairs. Although showing concordance
with tract-tracing, the NOS method has inherent limitations
as it does not consider other biologically crucial parameters
like conduction speeds. Thus, estimation of structural
connectivity matrices can be further improved by inclusion
of myeloarchitecture, since myelin plays a crucial role in
determining conduction speeds across axons (Boshkovski et al.,
2021). One way to achieve this is by weighting the connectome
with longitudinal relaxation rate (R1), which is sensitive to
myelin. Boshkovski et al. (2021) show how including myelin
weighted structural connectomes is successful at separating
transmodal regions from unimodal regions . Inclusion of
myelin in network simulations has particular application at
electrophysiological time-scales where phase lags often arise due
to finite conduction delays (Petkoski and Jirsa, 2019). g-ratio,
which quantifies the ratio between axon diameter and myelin

thickness, has recently been shown to be estimable through
MRI protocols (Berman et al., 2019; Drakesmith et al., 2019).
In vivo g-ratio mapping has the potential to provide novel
insights into cortical conduction speeds (Berman et al., 2019;
Drakesmith et al., 2019). Another method being currently
explored for the estimation of cortical conduction velocity
uses direct electrical stimulation to measure the propagation
of electrophysiological responses across the cortex in patients
implanted with intracranial electrodes for seizure monitoring
(David, 2021). Harnessing signal propagation information has
far-reaching applications, especially toward understanding
various demyelinating disorders such as multiple sclerosis.

Further augmentation of whole-brain connectomes comes
from incorporating neuromodulatory information (Deco et al.,
2018; Kringelbach et al., 2020; Naskar et al., 2021). Multi-modal
integration between diffusion imaging (structural connectivity)
and PET (receptor density) allows for the infusion of dynamic
information to static network models. Kringelbach et al. (2020)
have employed a similar pipeline to model the bidirectional
interaction of neuronal and neurotransmitter systems that
sheds light on the action of psilocybin on human resting
state activity. Understanding large-scale functional impact of
neuromodulation is of primary importance to computational
neuropsychiatry given the therapeutic potential of psychedelics
in the treatment of anxiety and depression (Deco et al., 2018).

Another limitation of most current large-scale models is
the absence of sub-cortical nodes in the network. This is
partly due to inadequate resolution offered by most atlases
at the sub-cortical level. Additionally, various sub-cortical
structures (e.g., thalamus) possess unique network architecture,
requiring the development of specialized node dynamics (see
thalamocortical motifs, Figure 3). Here we direct the interested
reader to some recent efforts toward addressing this lacuna (see
Shine et al., 2018; Griffiths et al., 2020; Shine, 2021). Future
developments in high field strength imaging, sub-cortical node
dynamics and parcellations offer the possibility of having truly
whole-brain models.

Despite substantial progress in the field, most successful
whole-brain models are limited to either BOLD (fMRI) or
BOLD time-scale (amplitude envelopes) functional correlations.
Lacunae exist about the extent to which whole-brain models may
explain phenomena at electrophysiological time-scales, especially
since neural oscillations are so well-linked to the underlying
white matter structure and are crucial to cognition (Chu et al.,
2015; Hindriks et al., 2015). Signal processing techniques that
circumvent or correct for volume/field spread effects which tend
to contaminate electrophysiological data would go a long way
toward informing whole-brain modeling (Hipp et al., 2012).

Similarly, the present thrust of whole-brain approaches is
oriented toward modeling recordings while participants are not
engaged in overt cognition, aka resting-state (Biswal et al., 1995;
Deco et al., 2011; Popovych et al., 2019). Going forward, whole-
brain models could also be explored for explaining various
tasks and learning paradigms, requiring richer node dynamics
with neuromodulatory and plasticity properties (Abel et al.,
2013; Maniglia and Seitz, 2018; Zhang et al., 2021). Finally,
foundational discoveries in graph theory and non-equilibrium
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physics will continue to offer new insights into the mechanistic
underpinnings of large-scale brain dynamics.

CONCLUSION

Computational neuroscience aims to understand the biophysical
principles underlying brain function. Many cognitive
phenomena crucial for understanding the brain in health
and disease evolve at the mesoscopic scale, where the firing
patterns of individual neurons get averaged out, thereby
offering an opportunity for radical dimensionality reduction.
Whole-brain models leverage new advances in neuroimaging
techniques to simulate white matter-mediated large-scale brain
networks that underlie cognitive and behavioral processes in
health and disease. In this article, we provided a brief outline
of how coarsely grained models of brain dynamics may be
employed to gain insights into the mechanistic underpinnings
of brain dynamics, an endeavor central to the emerging field of
computational psychiatry. We summarized the various choices at
hand for the successful implementation of whole-brain pipelines
and discussed those in the context of relevant case studies.
Researchers must be mindful of how the choices of parcellation,
node dynamics, model fitting procedure and perturbation impact
the modeling pipeline and relate to the underlying scientific
objective of the study.

We discussed how large-scale modeling has provided crucial
insights into the biology of various neuropathologies like
Epilepsy, Stroke, Traumatic Brain Injury, Alzheimer’s Disease,
Schizophrenia and Disorders of Consciousness. Like any
emerging field, whole-brain modeling also requires further
developments to tap into its full potential and we provided
methodological and technical recommendations for the growth
of large-scale modeling. Improvements in structural brain
imaging and signal processing techniques can significantly

enhance the accuracy of neurocomputational models. Similarly,
the inclusion of sub-cortical, neurotransmitter and myelination
information can lead the field toward truly whole-brain
models. Going forward, the continued development of new
computational platforms like the Virtual Brain simulator
(Sanz Leon et al., 2013) is likely to bridge the gap between
theory and implementation, making whole-brain modeling more
accessible tomedical professionals and biologists alike. In closing,
whole-brain models are the newest addition to the rich arsenal of
computational neuroscience techniques and promise to usher in
a new era in personalized medicine.
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