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The localization and measurement of neuronal activity magnitude at high spatial and
temporal resolution are essential for mapping and better understanding neuronal
systems and mechanisms. One such example is the generation of retinotopic
maps, which correlates localized retinal stimulation with the corresponding specific
visual cortex responses. Here we evaluated and compared seven different methods
for extracting and localizing cortical responses from voltage-sensitive dye imaging
recordings, elicited by visual stimuli projected directly on the rat retina by a customized
projection system. The performance of these methods was evaluated both qualitatively
and quantitatively by means of two cluster separation metrics, namely, the (adjusted)
Silhouette Index (SI) and the (adjusted) Davies-Bouldin Index (DBI). These metrics were
validated using simulated data, which showed that Temporally Structured Component
Analysis (TSCA) outperformed all other analysis methods for localizing cortical responses
and generating high-resolution retinotopic maps. The analysis methods, as well as the
use of cluster separation metrics proposed here, can facilitate future research aiming to
localize specific activity at high resolution in the visual cortex or other brain areas.

Keywords: retinotopic mapping, signal processing, cluster evaluation, visual cortex (V1), voltage sensitive dye
imaging

INTRODUCTION

Recording activity from a large population of neurons serves as an important tool for studying
numerous neural systems in general, and for exploring the basic mechanisms underlying the visual
process in particular. Various techniques exist that attempt to estimate and classify the cortical
responses from a noisy signal (Blumenfeld, 2010; Chemla and Chavane, 2010; Reynaud et al.,
2011), each method has its own advantages and limitations. Electrophysiological studies have
revealed that in mammals the localized stimulation of a specific retinal region (corresponding to
specific locations in the field of view) induces a localized response in V1 and that there is an
orderly representation of the visual field of view in the V1, the so-called retinotopic mapping
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(Hubel and Wiesel, 1959). Generation of retinotopic maps is
of great interest for studying retinal-visual cortex processing,
plasticity, circuitry, and for better understanding various
pathologies (Hubel and Wiesel, 1959; Gross et al., 2019). The
typical response in the visual cortex to localized retinal stimuli
is activity that starts spatially at the retinotopic site of the visual
stimulus (Bringuier et al., 1999; Roland et al., 2006; Gao et al.,
2012) and then spreads over several square millimeters (Hubel
and Wiesel, 1959; Grinvald et al., 1994; Michel et al., 2018).
Retinotopic maps, depicting the cortical area corresponding to
specific retinal (or visual field) locations, are usually generated
by a variety of signal processing methods, all of which use
prior temporal information about the response, noise, and the
stimulus design (Blumenfeld, 2010; Reynaud et al., 2011; Omer
et al., 2013). Many algorithms and methods for denoising and
extracting the cortical responses exist in the literature, ranging
from blank-subtraction and averaging (Chakraborty et al., 2007;
Bollimunta et al., 2008), PCA/ICA (Cannestra et al., 1996; Maeda
et al., 2001; Sornborger et al., 2003; Reidl et al., 2007; Omer et al.,
2013) to linear models (Reynaud et al., 2011; Chemla et al., 2017).

Here, we evaluate and compare (both qualitatively and
quantitatively) various analysis methods for extracting cortical
responses, specifically aiming to localize the elicited cortical
responses in order to generate the corresponding retinotopic
maps. As a first step, we used simulated artificial data to
initially evaluate various analysis methods. Then, we applied
the same methods on extensive experimental data from voltage-
sensitive dye imaging (VSDI) recordings of the rat’s visual cortex.
Following the generation of the retinotopic maps, we used cluster
separation metrics to quantify the resolution and accuracy of the
retinotopic maps generated by the analysis methods.

MATERIALS AND METHODS

General Approach
We implemented and compared seven different methods for
analyzing the cortical responses elicited by visual retinal
stimulation: (1) Average of Frames (AOF), (2) Multi-Parametric
Thresholding (MPT), (3) Maximal Cross-Correlation Delay
(Tmax), (4) Correlation to delayed responses (Corr), (5)
Temporally-Structured-Component-Analysis (TSCA), (6) the
Generalized Linear Model (GLM), and (7) a combination of
GLM and TSCA. A detailed description of these methods is
given below under “Seven methods for estimating individual
cortical responses.” As a first step in implementing the different
data analysis methods, we used simulated data for which
the signal and noise (and the SNR) are known, enabling us
to accurately quantify the ability of each method to extract
cortical responses and generate retinotopic maps (see retinotopic
map generation below). Then, we repeated these steps for
experimental VSDI data recorded from the rat visual cortex. To
estimate the cortical responses, the methods rely on a temporal
prior information of the signal. The theoretical response curve,
which is used by the TSCA, Tmax, Correlation, and GLM analysis
methods (see below) as the temporal prior of the response (i.e.,
signal), was constructed as described in Supplementary Material

the theoretical response curve section. The retinotopic maps
generated by the different analysis methods were evaluated using
statistical and cluster analysis methods.

Simulated Data
We generated the simulated data of an ideal retinotopic mapping
experiment, where visual stimuli are presented at different times
and at different locations of the retina while the cortical responses
are recorded. Accordingly, simulated cortical responses similar
to experimental VSDI cortical responses (Gross et al., 2019)
were generated at different cortical locations (Figure 1A). The
simulated responses were generated at a rate of 0.5 Hz for a
10-s “experiment”, to represent the expected responses in our
experimental setting, peaking every 2 s (at 1, 3, 5, 7, and 9 s)
(Figure 1B), corresponding to the stimulus that elicited them.
Each color represents the location of the response to a different
retinal stimulus. Each simulated cortical response was a collective
of pixels comprising a disc with a radius of 4 pixels, gaussian-
filtered with σ = 2 pixels. The temporal evolution of the signal
was a gaussian curve with a random amplitude drawn from a
uniform distribution between [0.5, 1.5], and σ = 1. Figure 1C1
shows a close-up of the spatial and temporal cortical response,
before noise was added, which is detailed next.

Noise was added to the data to simulate white noise (random
cortical activity) and periodic noise arising from heartbeat (3
Hz or breathing 0.67 Hz) (Lippert et al., 2007; Chemla et al.,
2017). First, a constant value (DC) was added to the entire
image, to mimic a constant noise level. Then, three noise sources
were linearly added to the signals (Figure 1D), with specific
spatial components: a random white noise (upper trace), a 2D
cosine function along the y-axis (median trace), and additional
random white noise (lower trace). The three corresponding
temporal components of the noise are as follows:ε(t) gaussian
white noise process N (0,σ), an almost periodic signal at 3 Hz,
and an almost periodic signal at 0.67 Hz. The almost periodic
signals were created by adding sinusoidal signals in a 0.4 Hz
bandwidth around the central frequency, with random amplitude
and phase [both drawn from ε(t)]. Figure 1C2 shows a close-
up of the spatial and temporal response polluted with additive
noise (SNR= 1.5 dB).

Different theoretical signal-to-noise ratios (SNRs) were
simulated, ranging from zero noise (infinite SNR) to an SNR of
−30 dB. We repeated the simulation 100 times for each SNR to
evaluate the performance of the six different analysis methods.
In each repeated simulation, the signals and noise were randomly
drawn from their corresponding distributions. Individual cortical
responses were extracted by each of the different methods
(see the detailed description below) and then were rescaled to
Blumenfeld (2010). Finally, retinotopic maps were generated
from the individual cortical responses (see “Retinotopic Maps
Generation” below).

VSDI Cortical Recordings
Animal Preparation
All experimental and surgical procedures were approved by the
Bar-Ilan University Ethics Committee for animal research and
were carried out in accordance with the ARVO guidelines for
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FIGURE 1 | Data analysis on stimulated cortical data. (A) Simulated spatial cortical responses at 5 different locations generated at a rate of 0.5 Hz. (B) The temporal
dynamics of the 5 simulated responses elicited at a rate of 0.5 Hz (corresponding to colors in A). (C1,C2) Upper row: A simulated cortical response without additive
noise. Lower row: A simulated cortical response with additive noise (SNR = 1.5 dB). (D) Spatial and temporal components of the additive noise; upper row: Additive
white noise; middle row: Additive periodic noise of 3 Hz; lower row: Additive periodic noise of 0.67 Hz.

the Use of Animals in Ophthalmic and Vision Research. We
used male and female 8–12-week-old (200–250 g) wild-type
Long Evans rats. Animals were initially subcutaneously injected
with Domitor (Medetomidine hydrochloride 1 mg/mL; 0.3
mg/100 g body weight, Orion Pharma, Finland) and put on
isoflurane inhalation (1.2 mL/h), with a periodic addition of half
the initial Domitor dose every 2 h. The animals’ temperature
was maintained throughout the experiment (36.5–37.5◦C)
with a homeothermic blanket, controlled through feedback
from a rectal probe.

All surgical procedures and dye staining were performed
as described previously (Gross et al., 2019). Briefly, following
anesthesia, the head was fixed using a custom-made steel
chamber, attached to the skull above the right primary visual
cortex (V1). A craniotomy (6 mm) was performed; then the dura

was removed to expose V1. The exposed V1 was stained using a
mixture of Artificial Cerebro-Spinal Fluid (aCSF) and a voltage-
sensitive dye (RH-2080 1 mg/mL, a new modified version of the
RH-1691 (Shoham et al., 1999) with only different substituents
on the two-linked chromophores (Deneux and Grinvald, 2017);
Optical Imaging, Rehovot, Israel) for 2 h. The brain tissue was
kept hydrated throughout the entire procedure by replenishing
the chamber with aCSF. Following the staining procedure,
lukewarm agar was poured into the chamber and then sealed with
a microscope cover glass for optimal optical transmission.

Visual Stimulation
Visual stimuli were projected using a costume-built projection
system as previously described (Gross et al., 2019). The
system consists of a Digital Light Processor (DLP) Digital
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FIGURE 2 | The visual stimuli used in the VSDI experiments. (A) Retinal imaging (A1) and a schematic drawing (A2) showing the 8 location stimuli. (B) Retinal
imaging (B1) and a schematic drawing (B2) showing the 9 bar stimuli: Horizontal (left) and vertical (right) 9 bar stimuli.

Micrometer Device (DMD) projector (DLP LightCrafter 4500,
Texas Instruments, Inc., Dallas, TX, United States) controlled
by software and passive optical elements that project an image
onto the retina of the rat. The projector light source is a
green LED (520 nm). Five different visual stimuli were used for
eliciting the cortical responses, as follows: three 100 µm (∼1.5◦)
micrometer width vertical bars with a horizontal spacing of 300
µm (comprising ∼4.5◦ field of view in the rat eye), a grid of 4
rectangles with a diagonal distance of 270 µm (∼4◦ field of view
in the rat eye), a grid of 8 rectangles (Figure 2A1) at a diagonal
distance of 270 µm (comprising ∼4◦ field of view in the rat eye),
nine moving vertical bars (Figure 2B1) (horizontal distance∼2◦,
velocity of 4◦/s, a total retinal distance of 1.3 mm (∼18◦)); and
horizontal bars (vertical distance ∼1.67◦, velocity 3.3◦/s, a total
retinal distance of 1 mm (∼15◦).

To project the stimulus on the retina, the pupil was dilated
through topical application of Mydramide (Tropicamide 0.5%,
Fisher Pharmaceutical, Ltd.) and Efrin-10 drops (Phenylephrine
HCL 10%, Fisher Pharmaceutical, Ltd.), after which a microscope
cover glass (d = 13 mm) was mounted on the cornea, coupled
by an ophthalmic gel, similar to previous publications (Mandel
et al., 2013; Gross et al., 2019). Real-time imaging of the retinal
stimulus was performed by a camera (DMK 33GP1300, The
Imaging Source, Bremen, Germany), enabling the localization
and focusing of the stimulus on the retina at a desired location
with high precision throughout the experiment.

Image Acquisition
To record the fluorescence changes in the visual cortex, we
used the setup previously established by our group (Gross et al.,
2019). The cortex was excited with 630 nm light and the emitted

fluorescence was collected at 665 nm, captured by a CMOS
camera (Photonfocus, Switzerland, 12bit), at a rate of 100 Hz
and resolution of 1,080 by 1,308 pixels (∼200 pixels/mm, thus
capturing 5.39 mm by 6.53 mm of the brain). To reduce size
on disk and render data analysis more computationally efficient
frames were down-sampled by a factor of 4, resulting in ∼50
pixels/mm.

Data Processing and Analysis
Following acquisition, VSDI data from 22 sets of VSD recordings
from 7 different animals were pre-processed (see Supplementary
Material Data Pre-Processing). Then, six different methods were
implemented to localize the cortical responses to each retinal
stimulus. A detailed description of each method is presented
next. For all investigated methods and to ensure the validity of
the comparison, we used constant parameters across the entire
simulated data and the experimental data (see Supplementary
Tables 1, 2). Additionally, as a seventh analysis method, we
combined the TSCA and GLM methods. Data were then post-
processed for denoising and scaling (described in Supplementary
Material under Data Post-Processing) and retinotopic maps were
generated from the responses of individual retinal stimuli (see the
“Retinotopic Maps Generation” section below).

A qualitative and quantitative evaluation of the generated
retinotopic maps was then performed in order to compare
the seven different methods. To this end, we used statistical
evaluation metrics and clustering separation metrics (the Davies-
Bouldin and Silhouette index) to evaluate the ability of each
method to extract cortical responses and generate a precise
retinotopic map (see detailed descriptions in the section
Retinotopic Maps Cluster Evaluation).
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Six Methods of Localizing Cortical Responses
(1) Average of Frames (AOF)

Through this technique, the cortical response is obtained
by averaging the N acquired frames at the timing window
where the response is expected. Given an expected
response onset at tres (for example, 150 ms post-stimulus
onset), the cortical response of this stimulus can be
obtained by:

map =
∑N−1

i=0 Z(tres+i)
N

(1)

where Z(t) is the frame at time t and N is the number
of frames to average. Given n projected stimuli, this
procedure can be repeated n times for each tres,k, k ∈ [1, n]
value. Hence, one free parameter is chosen manually: (1)
the number of frames to average from tres.

(2) The Multi-Parametric Thresholding System (MPT)
The multi-parametric thresholding is based on a method
recently reported by our group (Gross et al., 2019). Briefly,
the cortical response is extracted by a multi-thresholding
process and several criteria for each pixel are applied:
First, pixels responding above a certain threshold value
are selected. Next, the xth% of the pixels with the highest
peak amplitude and for which the peak amplitude (the
latency of the response) and return to baseline in limited
predetermined time windows, are selected. As such, this
technique has several free parameters that can be chosen:
the absolute threshold value, the percentage of the highest
peak amplitude to be isolated, the time window for
which the peak amplitude must be in, and the baseline
value and the time to return to it. These parameters are
chosen by trial and error, starting at thresholds that are
expected theoretically, and are adjusted until the optimal
map is obtained.

(3) Maximal Cross-Correlation Delay (Tmax )
This method is based on determining the stimulus that
elicited the maximal response using cross correlograms and
has been previously used to generate retinotopic maps to
moving bar stimuli in the mouse visual cortex (Polack and
Contreras, 2012). Briefly, a theoretical temporal reference
curve, g (t) , is generated with the shape of the expected
cortical response (usually an alpha function is chosen,
of the form g (t) = ate−btc). Then, each pixel’s temporal
response, zi (t) , is cross correlated with g (t), to produce
a cross correlogram delay function, defined as:

r (τ) ∼

∫
zi(t)g (t − τ) dt (2)

Each pixel’s cross correlation function peaks at a different
delay τmax, i.e., ∀τ,r (τmax) > r (τ) , corresponding to
an activation elicited by a stimulus at a specific time
(τmax −1t, 1t is the response latency + rise time). To
avoid representing cortical regions (pixels) that did not
produce a response, i.e., having a low correlation with g (t),
and to obtain a better visualization, only pixels with a
correlation peak above a certain threshold were considered

as responsive and are selected to be represented on a map.
Thus, this technique has two free parameters that can be
selected: the theoretical response shape and the (response)
threshold for maximal correlation.

(4) Correlation to Delayed Theoretical Responses (Corr)
This technique is inspired by the above-described Tmax
method; however, instead of cross correlating each pixel’s
temporal response, zi (t) , to the theoretical reference curve
g (t), each zi(t) value is correlated to a delayed version
of g (t) , gk (t) = g(t − tk). Assuming n different stimuli
given at times tk, k ∈ [1, n], an n× 1 vector of correlations,
vi
(
k
)
, is calculated for each pixel i by:

v
(
k
)
=

1
T
zi(t)g(t − tk) (3)

where T is the total recording time. The advantage of this
method over Tmax is that whereas Tmax sets a response
threshold using the maximum value of r (τ), it does not
consider the delay of the maximum correlation, which
might not be consistent with the expected response time.
The disadvantage of this method is that small changes in
the latency of the response can greatly affect the values
of v

(
k
)
. The 2 free parameters that can be selected using

this technique are the theoretical response, g (t) , the
shape, and latency.

(5) Temporally Structured Component Analysis (TSCA)
This algorithm was introduced in Blumenfeld (2010);
it is also used (Omer et al., 2013) for generating
orientation maps in a behaving monkey. Generally, a raw
optical signal reflects both the desired neuronal activity
(signal) and the noise originating from neuronal sources
(spontaneous activity) and non-neuronal physiological
sources (e.g., heartbeat and breathing, environmental
noises, e.g., electrical pollution, and noises common to
the imaging signal). The main idea behind the TSCA
algorithm is to find components that maximize the power
originating from the signal while minimizing power arising
from the noise by exploiting a priori information about
the temporal characteristics of the signal and noise. The
advantage of TSCA over principle component analysis
(PCA) is that PCA performs poorly in terms of separating
the signal from the noise (Blumenfeld, 2010). In this
case, the principal components are “non-interpretable” and
reflect non-sensical mixtures of signal and noise.
The objective function to be maximized in the TSCA
method is defined as a weighted sum of the expected power
of the signal and noise: m (ψ) = γxs2x (ψ)+ γys2y (ψ) ,

where s2x (ψ) & s2y (ψ) are the expected signal power and
the noise projected on the component, respectively, and
γx and γy are the weights assigned for the signal and
noise powers, respectively. The first assumption of the
TSCA algorithm is clear from this objective function: the
additivity of the signal and noise. A quadratic estimator of
the form m̂Q (ψ) = ψtZQZtψt is proposed, where Z is the
multidimensional signal and Q is an arbitrary symmetric
T × T matrix. The solution to this maximization problem
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lies in the eigen-decomposition of the matrix M = ZQZt ,
where Q is selected as the minimal (Frobenius) norm
solution to the linear system of equations:

<Q,Ci
x> = γxtr

(
Ci
x
)
, <Q,Ci

y> = γytr
(
Ci
y

)
(4)

whereQ, which minimizes the Frobenius norm, is a linear
combination of Cx and Cy, the (known) correlation
matrices of the signal and the noise, respectively (see
Blumenfeld, 2010) for a comprehensive derivation of
Q). The eigenvalues of the eigenvectors ψi equal the
estimate of m (ψ) ; hence, ψi, with the highest eigenvalues,
maximizes the objective function. Two more assumptions
arise from this: (1) linear independency exists between
the sets of correlation matrices and (2) the availability of
enough data such that the estimator is close enough to its
asymptotic value. Given that the stimulation timings and
noise artefacts are known, one can obtain prior temporal
knowledge about the signal and noise and construct
Cx & Cy. The response shape (for a stimulus given at
t = 0) with random amplitude r is defined by a fixed
function rg(t); usually an alpha function, g (t) = ae−bt + c,
is chosen. We carried out TSCA for each response at times
tk, i.e., gk (t) = g(t − tk). The autocorrelation function
Cx is given by [Cx]jk = gk

(
j
)
gk(k). Regarding the noise

autocorrelation matrices, Cy, we used the identity matrix
to account for the influence of white noise in the data, and
we created almost periodic Toeplitz matrices to account for
the stationary oscillatory noises (see Omer et al., 2013) for a
full calculation of these matrices. Each use of TSCA reveals
spatial components that maximize the objective function,
with the signal defined as gk (t) for each iteration, i.e., the
cortical response map corresponding to the stimuli given at
time tk. The free parameters to be selected with this method
are γx and γy and Cx and Cy.

(6) Generalized) Linear Model Decomposition (GLM)
This technique uses a linear model (LM) that enables one to
denoise and extract the relevant signals of neuronal activity
dynamics (Reynaud et al., 2011). Each pixel is a time series
with a length of T, y (t) , t ∈ [0,T], which is decomposed
into a finite weighted sum of regressors (or predictors)
xk(t) with their respective weights βk, such that:

y (t) =
∑
k

βkxk(t)r(t) (5)

where r(t) are the residuals, drawn from a (white) gaussian
distribution with zero mean. Linear regression minimizes
the squared error J (β) =

∑
i (yi − βtXi)

2; hence, it is a
convex optimization problem with a unique solution that
lies at gradient zero, β =

(
XtX

)−1Xt . In order to efficiently
use a linear model, the set of regressors X needs to
accurately describe the observed time series and leave out
only white residuals. This method first assumes the linear
additivity of the signal and noise components. Cortical
signals usually have non-neural periodic components,
arising from breathing and heartbeat. These components

have a fundamental frequency and can be expressed with a
Fourier series. The Fourier coefficients can be estimated by
using the complex exponentials as regressors and are then
subtracted from the entire signal to denoise it from periodic
noise. The LM decomposition can be used as a denoising
step, and its superiority over blank subtraction has been
previously demonstrated (Reynaud et al., 2011). If all
“deterministic” components are regressed and subtracted
from the recorded signal, only random white (gaussian)
noise should remain. This noise can be attributed to
spontaneous neural activity and other random non-
physiological noises. In addition to denoising, one can also
use the response curves at different times (corresponding
to the expected response time after different stimuli)
as regressors and use their corresponding coefficients to
estimate individual cortical responses to every stimulus.
The free parameters that can be chosen using this method
are the regressors for the signal and noise components.

Combining Methods
We tested several combinations of the above-described methods
to achieve better localization and increased SNR. The clearest
retinotopic maps, both qualitatively and quantitatively, were
obtained by combining the first denoising data with GLM and
then applying TSCA analysis. This combined processing can
be parameterized by setting Cy (the noise covariance matrix of

TSCA) to only be the identity matrix, Cy
(
i, j
)
=

{
1, i = j
0, otherwise

,

since after applying GLM, only white noise should remain in
the signal. A more detailed explanation of how we attempted to
combine the methods as well as an example of the combination
of AOF and Corr with TSCA (separately) can be seen in
Supplementary Material under combining methods.

Retinotopic Map Generation
Following the extraction and localization of the cortical response
from each retinal stimulus by the seven above-mentioned
analysis methods, the localized responses were post-processed
(see Supplementary Material) and then combined to generate
the retinotopic map in which each pixel was then associated
with a specific retinal stimulus. Each pixel received a (likelihood)
score for each specific stimulus and the stimulus with the highest
score (i.e., the stimulus that elicited the maximum response in
the pixel) determined the stimulus associated with the pixel for
generating the retinotopic map. At the end of this analysis, each
pixel is defined by two characteristics: the stimulus associated
with it (represented by the hue) and the score (represented by
the value). For better visuality, only pixels with maximum scores
(values) above the 90th percentile of all the maximum scores
were selected and displayed. Finally, the retinotopic maps were
post-processed to remove (salt) noise and then scaled.

Retinotopic Mapping Evaluation Metrics
Statistical Evaluation Metrics of Retinotopic Maps
(Simulation Only)
In a simulation study the correct or expected response is
readily known; therefore, performance evaluation can be easily
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performed using several straightforward statistical methods. We
used six different methods, namely, Mean Square Error (MSE),
Peak-SNR (PSNR), the Contrast-to-Noise Ratio (CNR), the Mean
Structure Similarity Index (MSSIM), the Correlation Coefficient
(CC), and the Correlation Parameter (CP). These metrics were
introduced in Wang et al. (2004) and Salinas and Fernández
(2007), and are detailed in Supplementary Material.

Cluster Analysis of Retinotopic Maps (Simulation and
Experimental Data)
As opposed to simulation studies, no a priori knowledge of
what the “correct” retinotopic map is in experimental data is
available. We therefore considered the cortical responses to
various stimuli at each retinotopic map as clustered responses
and evaluated the separation of the cortical responses using
cluster analysis. First, we evaluated the retinotopic maps using
two cluster analysis methods, namely, the Davies-Bouldin Index
(DBI) (Davies and Bouldin, 1979) and the Silhouette Index (SI)
(Rousseeuw, 1987). The DBI method uses the clusters’ scatter and
(centroid) distances to evaluate the similarity. The SI calculates
the similarity of each data point to its own cluster as opposed to
all other clusters. The expected number of clusters and cluster
sizes are known; thus, we propose an adjusted Silhouette and
DBI; every cluster is penalized according to its size and every
map is penalized according to the number of activity centers
(clusters) extracted. Full details regarding the adjusted indices are
described in Supplementary Material (Equations s10 and s11)
under Cluster Separation Metrics.

RESULTS

Simulation Study
Figure 3 shows a characteristic cortical map generated by
averaging 100 repetitions of simulated data with an SNR of
−10 dB. The retinotopic maps generated by each of the seven
analysis methods are compared to the expected map (lower
right). Figure 3A shows representative average retinotopic
maps generated by each of the above-described methods, and
the combined TSCA&GLM (T&G). A qualitative evaluation
shows that all methods except MPT and Tmax could generate
distinctive retinotopic maps from the noisy signal. However,
TSCA and TSCA&GLM reproduced the maps with the highest
SNR and contrast.

Figure 3B presents the results of the six statistical evaluation
metrics used for a quantitative comparison of the maps
generated by the seven methods for an SNR = −10 dB.
TSCA and the combined (TSCA&GLM) methods significantly
outperformed the other methods in extracting the response
(a multiple comparison t-test with Tukey-HSD, p < 0.05) in
all metrics except the CNR. The combined method did not
significantly perform better than TSCA alone. The statistical
measures for a range of SNR (5–10 dB) are detailed in
Supplementary Figure 3. An additional comparison between
the retinotopic maps generated by the seven methods was
obtained using clustering separation metrics [the Silhouette
Index (SI) and the David Bouldin Index (DBI)], as is shown

in Figure 3C. In agreement with the statistical evaluation
metrics, the TSCA and the combined TSCA&GLM methods
achieved a significantly better clustering performance with
significantly higher SI compared to all the other methods, and
a significantly lower DBI compared with Tmax GLM and Corr
(a multiple comparison t-test with Tukey-HSD, p < 0.05).
There was no statistically significant difference between TSCA
and the combined TSCA&GLM. Both TSCA and the combined
TSCA&GLM have a positive median silhouette index (0.67
and 0.69, respectively), indicating that most of the pixels were
correctly mapped to their corresponding responses. Moreover,
these values also approach the median SI of the simulated signals
of 0.86 (Figure 1A). Both methods have the lowest median DBI
(0.18 and 0.17, respectively), which is just above the ideal DBI
of the simulated signals of 0.14 (Figure 1A), suggesting that in
general, the clusters are well separated. In contrast, the Tmax
and MPT methods failed to extract the response from the noise
and thus barely generated a clear retinotopic map. This failure is
probably because these methods do not attempt to denoise the
signal. Thus, for the MPT method with the low SNR data the
peak amplitude deviates randomly from the expected response
latency, therefore affecting the calculated score of every pixel
assigned to a specific stimulus. Similarly, for the Tmax method, a
noisy signal leads to erroneous cross-correlation values of many
pixels, therefore leading to noisy, low scores, and poor retinotopic
mapping. Interestingly, the Corr and AOF methods performed
slightly better in analyzing noisy data compared with MPT and
Tmax because the theoretical response curve and timing of the
response are known.

Figure 4 depicts the average adjusted SI (left) and the adjusted
DBI (right) calculated for each SNR from 100 simulation trials.
Reducing the signal-to-noise ratio was associated with decreased
cluster separation performance (decreasing SI and increasing
DIB), thus validating the use of these metrics for quantifying
the retinotopic maps. The combined TSCA&GLM and the
TSCA methods resulted in similarly high performance compared
to other methods in terms of the cluster separation metrics,
particularly under low SNR conditions.

To evaluate the effect of combining Corr or AOF with TSCA,
we performed further simulation analysis, as described in the
Combining Methods section in Supplementary Material. We
found that the combination of either of these methods resulted
in a degradation of both the statistical and the cluster analysis
measures compared to the TSCA method alone (Supplementary
Figure 4). Note that TSCA’s computation time (reduced time,
eigen-decomposition of a subset of eigenvectors instead of
ZQZt) is at least two orders of magnitude longer than all
other methods (Table 1). Thus, though TSCA (and TSCA and
GLM) outperformed all other methods, it is not suitable for
real-time applications.

Experimental Data
As a first step toward generating retinotopic maps, we evaluated
the visual cortex response to 8-location grid short (20 ms) stimuli
projected at a rate of 1 Hz. Figure 5A shows the maximum
normalized Z-score (see Supplementary Material Data Pre-
Processing) of each pixel throughout the entire experiment.
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FIGURE 3 | Simulated data retinotopic maps. (A) An average “retinotopic map” generated by each method, following 100 repetitions of simulated stimuli with an
SNR = –10 dB. (B) The six statistical performance evaluation measures of the generated retinotopic maps presented in (A). MSE, Mean Square Error; PSNR, Peak
Signal-to-Noise Ratio; CNR, Contrast-to-Noise Ratio; MSSIM, Mean Structure Similarity Index; CC, Correlation Coefficient; CP, Correlation Parameter (CP).
∗ Significantly Different than the TSCA and TSCA & GLM methods (p < 0.05). (C) Cluster evaluation metrics of the generated retinotopic maps presented in (A). The
Silhouette index (left) and DBI (right). Significantly Different than the TSCA and TSCA and GLM methods (p < 0.05).

Supplementary Figure 1 shows the dF/F signal. Only pixels
with a maximum value above the 90th percentile of all values
are selected and presented in the map. Figure 5B shows an

image of the brain, overlaid with the selected pixels. The size
of the region of interest (ROI) (denoted by a red dashed line)
is 310× 120 µm. Figure 5C shows the average response of the
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FIGURE 4 | Average values of the adjusted Silhouette Index (left) and the adjusted DBI (right) of retinotopic maps generated by the seven analysis methods for
simulated cortical responses with decreasing signal-to-noise ratios.

TABLE 1 | Computation times of the seven analysis methods for a single repetition of simulation.

TSCA Tmax AOF Corr GLM MPT

Computation time (ms) 16,582.2 ± 1.25 222.45 ± 43.2 1.28 ± 0.27 2.57 ± 0.64 84.46 ± 8.64 386.17 ± 37.89

ROI throughout the entire 8-s stimuli. Figure 5D depicts the
average response of the ROI to a single stimulus duration of 1
s), which greatly resembles the theoretical characteristic response
used in analyzing the experimental data (see Supplementary
Figure 2).Next, we generated retinotopic maps for the 8-location
grid retinal stimuli (see Figure 2A1) using the 7 analysis methods
(described in section “Materials and Methods”). Figure 6 depicts
a representative map where each color represents the location
of the response to the matched retinal stimuli. As shown in this
example of a low-noise experiment, all seven methods extracted
the responses well enough to generate a suitable retinotopic map.
All retinotopic maps exhibited the expected counter-clockwise
rotation of the cortical respones, compared with the retinal
stimulus locations (shown in the lower right panel), in agreement
with previous retinotopic mapping experiments (Gias et al.,
2005). Qualitative evaluation suggests that TSCA&GLM and
TSCA produce retinotopic maps with the clearest distinction
between cortical responses to different retinal location stimuli.
Specifically, the responses in the center of the ROI (teal and
red) are better represented in the combined TSCA&GLM map
than with maps generated by other analysis methods. This is
probably because both the TSCA and GLM methods are not
biased toward stronger responses and thus can better localize the
cortical response and consequently correctly associate the pixels
with the corresponding retinal stimulus. Additionally, qualitative
evaluation (Supplementary Figure 6) revealed that the combined
method generated a stable and consistent retinotopic map

following 4 repetitions of the same experimental sessions in
the same animal. In contrast, other analysis methods showed
a gradual deterioration in map quality, arising from both
physiological and physical (e.g., dye bleaching) factors, causing
a decreased signal-to-noise ratio as the experimental sessions
progressed.Examples of retinopic maps generated in response
to 9 (horizontally and vertically) bar stimuli are shown in
Figure 7. Each color represents the location of the cortical
response to the matched retinal stimuli in Figure 2B1. In this
experiment, the retinal space between the retinal stimuli was
significantly smaller than the 8-location stimuli (140 µm vs.270
µm), making the retinotopic mapping even more challenging.
It should be mentioned that the resolution of this stimulation
is still within the rat’s visual acuity of 1 CPD (Prusky et al.,
2000; Lorach et al., 2015). Additionaly, this specific experiment
contained significant surrounding noise, i.e., high energy noise
outside the area of the responses (ROI). Similar to the results
obtained for the 8-location stimulus paradigm, qualitative
evaluation of the maps (Figures 7A,B) for this noisy signal
revealed that GLM denoising combined with TSCA seems to
outperform the other extraction methods, showing a map that
corresponds relatively well to the expected response (the lower
right Figure). All other analyses generated poor mapping of this
high-resolution experiment.

Following the qualitative analysis described above, we
performed a quantitative analysis by examining the cluster
separation ability of the seven methods using the SI and DB
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FIGURE 5 | Visual cortex responses to short visual stimuli. (A) A color map representation of the cortical response amplitude (normalized Z-score) induced by visual
stimuli. Scale bar and map orientations are overlaid. A, anterior; P, posterior; M, medial, and L, lateral. (B) Image of the brain overlaid with corresponding pixels in the
visual cortex ROI (dashed red line). (C) A raw (z-scored) VSD signal in response to 8-grid stimuli given at a rate of 1 Hz in the ROI. (D) Characteristic average
response to a single stimulus.

indices as described in section “Materials and Methods.” Figure 8
shows a box plot of the median adjusted SI and the adjusted
DB indices for the maps generated by the seven methods in
all 22 experiments. TSCA and TSCA&GLM showed the highest
average adjusted SI (−0.43± 0.21 and 0.09± 0.27 for TSCA and
TSCA&GLM, respectively) and the lowest adjusted DBI (0.7±
0.19 and 0.61± 0.12 for TSCA and TSCA&GLM, respectively),
highlighting their superior performance in separating the
response clusters, and thus enabling the generation of the most
precise retinotopic maps. The cluster separation metrics of these
two methods are better than all other methods; this difference
is statistically significant compared with AOF, Tmax, and MPT
(multiple comparison t-test with Tukey-HSD, p < 0.05).

Finally, we compared the clustering separation metrics (SI
and DBI) obtained for the maps induced by the four types of
stimuli with increasing spatial resolution (and therefore more
challenging to generate retinotopic maps) as follows: 3-bars,
4-grid, 8-grid, and 9-bars. Figure 9 shows that the clustering
performance for the 3-bars, 4-grid stimuli, and 8-grid stimuli
shows statistically significant (t-test p < 0.05) better cluster
separation (average adjusted DBI = 0.46, 0.55, and 0.75, average
adjusted SI = −0.09, −0.19, and −0.38 of 3 moving bars, 4-grid
and 8-grid, respectively), compared with the more challenging
9-bars stimuli (average adjusted DBI = 1.59, average adjusted
SI = −1.27), as expected. Similarly to the results obtained for
the simulation data (Figure 4), these experimental results further
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FIGURE 6 | Retinotopic maps generated by the seven methods following a VSDI recording of cortical responses to 8-location grid retinal stimuli. Only pixels with
score values above the 90th percentile of all the pixels’ maximum scores are presented. The scale bar shown in the top left panel is 1 mm. The cortical orientations
are seen in the bottom right figure, along with the expected cortical response (A, anterior; P, posterior, and M, medial; L, lateral). Each color (hue) represents the
cortical response location of the matched retinal stimuli.

FIGURE 7 | Retinotopic maps generated by the seven methods following a VSDI recording of cortical responses to high-resolution retinal stimuli of a 9-location
moving (A, horizontal, B, vertical) bar. Only pixels with score values above the 90th percentile of all the pixels’ maximum scores are presented. The scale bar shown
in the top left panel is 1 mm. The cortical orientations are seen in the bottom right figure, along with the expected cortical response (A, anterior; P, posterior; M,
medial, and L, lateral). Each color (hue) represents the cortical response location of the matched retinal stimuli.
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FIGURE 8 | Cluster metrics evaluation of the analysis methods. (A) A Median Silhouette Index of the entire map. ∗ Significantly different compared with TSCA and
TSCA & GLM (multiple comparison t-test with Tukey-HSD, p < 0.05). (B) A Davies-Bouldin Index of the entire map. ∗ Significantly Different than the TSCA and TSCA
& GLM methods. ∗∗ Significantly different than the TSCA and GLM methods (multiple comparison t-test with Tukey-HSD, p < 0.05).

FIGURE 9 | Comparison of the clustering separation metrics in the 3, 4 and 8-location grid and the more challenging 9-moving bars. Retinotopic maps in this
comparison were performed by the combined GLM and TSCA analysis method. (A) The median Silhouette Index of the maps (B) The Davies-Bouldin Index of the
maps. ∗ Significantly different than the 3 moving bars, 4 grid, and 8 grid stimulations (p < 0.05).

support the validity of our method developed for the cluster
analysis of retinotopic mapping.

Characteristic Retinotopic maps generated for three vertical
bar stimulations and four location stimulations are shown in
Supplementary Figure 6.

DISCUSSION

Functional mapping in the brain requires an accurate estimation
of the cortical activity from a noisy biological signal. Similarly,

the ability to accurately localize the discrete areas of activation
in the visual cortex following visual stimulation at different
locations is vital for successful high-resolution retinotopy. In this
study, we present a thorough comparison of seven methods (six
individual methods and one combined method) for extracting
cortical responses from experimental VSDI recordings from
rats’ visual cortex in response to various visual stimuli. As
a preliminary step, we computer-simulated responses from
the visual cortex. Following the extraction of the cortical
responses, we generated retinotopic maps at high resolution
by assigning each pixel to a specific visual stimulus. The
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retinotopic maps’ accuracy and resolution were then evaluated
using six statistical metrics (for the simulation data) and two
additional cluster separation metrics (for both the simulation and
experimental data).

Our study clearly shows that TSCA and the combined
TSCA&GLM analysis localized the cortical response areas most
precisely, both in the simulation and experimental data. This was
shown both qualitatively by examining the extracted retinotopic
maps in the simulation (Figure 3A) and experimental data
(Figures 6, 7), and quantitatively using statistical and cluster
separation metrics (Figures 3B,C,4,8).

The superior performance of the TSCA analysis probably
arises from two main properties of the algorithm: a good
separation of the signal from the noise, as shown in
Omer et al. (2013), and robustness to errors in the (assumed)
temporal structure of the data and transformations to the data
(e.g., adding DC) (Blumenfeld, 2010).

Linear Model Decomposition has been shown to be efficient
in denoising images (Zheng et al., 2001) and VSDI signals
(Chemla and Chavane, 2010; Reynaud et al., 2011; Chemla
et al., 2017). In our study, GLM applied separately performed
moderately in localizing the cortical response area, leading
to the generation of lower resolution retinotopic maps.
However, as a denoising step prior to performing TSCA
(in the combined GLM&TSCA method), it slightly reduced
the maps noise with some improvement (not statistically
significant) in the cluster analysis measures. Quantitatively,
both TSCA and the combined TSCA&GLM method showed
statistically better cluster separation (Figure 8) than all
other methods.

Indeed, because TSCA approach is less sensitive to changes in
the characteristics of the physiological response and experimental
noise, our results clearly show the superiority of this method over
others across all experiments.

Tmax, which was previously reported for generating
retinotopic maps (Polack and Contreras, 2012), seems to
perform the worst of all the analysis methods used here,
showing a bias toward strong responses and therefore failing
to localize the weaker ones. Since Tmax is based on cross
correlating the VSDI signal with a theoretical response curve,
in low SNR conditions, random delays may produce higher
(random and incorrect) correlations. Hence, correlating each
pixel with a pre-defined, delayed response curve better locates
the responses (and at a lower computation time). Indeed,
our evaluation showed that the Corr analysis method, which
is proposed here as an alternative to Tmax, benefits from
the temporal priors of the signal and therefore performs
better than Tmax. However, since it does not attempt to
denoise the signal simultaneously, its estimation of cortical
activity is still not as accurate as the combined GLM
and TSCA methods.

As is well known, averaging signals, both temporally and
spatially, improves the SNR; similarly, averaging frames (AOF)
around the peak of the cortical response is a standard method
for enhancing images and improving SNR. However, it has
a clear disadvantage; since the response propagates in the
cortex as a point-spread function (Hubel and Wiesel, 1959;

Grinvald et al., 1994), averaging more frames would hamper
localizing the response and consequently, it would decrease the
quality of the retinotopic maps.

Lastly, although MPT was reported by our group as a method
for generating high-resolution retinotopy (Gross et al., 2019), it
has the largest number of free parameters that can be chosen;
therefore, it is very sensitive to changes in these parameters.
MPT is mainly sensitive to changes in absolute parameters
(i.e., ones that are not calculated from the signal) and to
linear transformations to the data (e.g., a higher gain in the
fluorescence caused by a strong stimulus) causing the generated
retinotopic map to be less accurate. This can be clearly seen
in Supplementary Figure 5. In addition, the need for tweaking
its (many) parameters iteratively makes it difficult to correctly
compare the results across different experiments and even in
different trials.

The quality of the generated retinotopic maps was evaluated
by the ability of each analysis method to create a localized
area of cortical activity for each specific visual stimulus, i.e.,
that can be clearly distinguished from cortical areas activated
by other stimuli. To this end, we used, for the first time, to
the best of our knowledge, cluster separation metrics (DBI and
SI) for evaluating the retinotopic maps. Both metrics showed
a decline in performance when the signal-to-noise ratio is
reduced in the simulated data (Figure 4). Furthermore, the
performance analysis agreed with the quantitative evaluation
and was further supported in experimental data where better
performance was found for good retinotopy (the lower resolution
retinal stimuli, Figure 2A2) compared with poor retinotopy (the
9-location moving bar with higher retinal stimulation resolution,
Figure 2B2). The use of thresholding with these metrics can be
employed to indicate whether a true separation between two areas
of cortical activity exists in the visual cortex.

In a broader perspective, retinotopic mapping is just an
example of cortical functional categorization task. Thus, the
cluster analysis presented here can facilitate future studies seeking
to evaluate the performance of categorizing brain areas or it can
be used as a quantitative separation measure of functional brain
areas other than V1.

Additionally, the analysis methods implemented and
compared here have already been used in other imaging
techniques (Reynaud et al., 2011) and for different analysis
tasks (Polack and Contreras, 2012; Omer et al., 2013); therefore,
they are suitable for extracting cortical responses or denoising
signals for various techniques (such as fMRI, EEG, or MEG) and
experimental paradigms. In the current study we suggest that
the combined TSCA and GLM analysis can successfully denoise
functional brain activity and can be used in the future for other
functional recordings.

In conclusion, we extensively evaluated the performance
of seven analysis methods for extracting cortical activity
elicited by visual stimuli to generate retinotopic maps. Using
cluster separation metrics, we found that TSCA and TSCA
combined with GLM, exhibited the most superior performance
in generating retinotopic maps from low signal-to-noise
cortical activity obtained in response to high-resolution retinal
stimulation. These combined methods can be further used to
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analyze many other cortical activities recorded in neuroscience
research. Furthermore, the cluster separation analysis used for
evaluating the map quality can be used in similar studies.

All the software code was written in MATLAB R2019b and
is publicly available in “github”: https://github.com/oricarmi/
VSDI_MATLAB_COMPARISON.git.

STUDY LIMITATIONS

One potential limitation of the current research is the use of
non-awake animals with variation in the anesthesia level greatly
affecting brain activity. In addition, the generation of high
resolution retinotopic maps can be limited by scatter arising from
the retinal tissue.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article
will be made available by the authors, without undue
reservation.

ETHICS STATEMENT

The animal study was reviewed and approved by Bar-Ilan
University Ethics Committee for animal research.

AUTHOR CONTRIBUTIONS

OC and YM: conceptualization. OC, AG, NI, NF, and YM:
methodology. AG, NI, OC, and LF: conducted experiments (data
collection). OC and YM: writing—original draft. YM, NF, and
ZZ: writing—review and editing. OC and NF: visualization. YM
and ZZ: supervision and funding. All authors contributed to the
article and approved the submitted version.

FUNDING

This project was supported by the Israeli Science Foundation
(ISF), ERC starter grant 755748, Israeli Ministry of Defense, and
Israeli Ministry of Science and Technology.

ACKNOWLEDGMENTS

We would like to acknowledge Barak Blumenfeld for insightful
discussions and recommendations.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fncel.
2021.713538/full#supplementary-material

REFERENCES
Blumenfeld, B. (2010). An algorithm for the analysis of temporally structured

multidimensional measurements. Front. Comput. Neurosci. 3:28. doi: 10.3389/
neuro.10.028.2009

Bollimunta, A., Chen, Y., Schroeder, C. E., and Ding, M. (2008). Neuronal
mechanisms of cortical alpha oscillations in awake-behaving macaques.
J. Neurosci. 28, 9976–9988. doi: 10.1523/jneurosci.2699-08.2008

Bringuier, V., Chavane, F., Glaeser, L., and Frégnac, Y. (1999). Horizontal
propagation of visual activity in the synaptic integration field of area 17 neurons.
Science 283, 695–699. doi: 10.1126/science.283.5402.695

Cannestra, A. F., Blood, A. J., Black, K. L., and Toga, A. W. (1996). The evolution
of optical signals in human and rodent cortex. Neuroimage 3, 202–208. doi:
10.1006/nimg.1996.0022

Chakraborty, S., Sandberg, A., and Greenfield, S. A. (2007). Differential dynamics
of transient neuronal assemblies in visual compared to auditory cortex. Exp.
Brain Res. 182, 491–498. doi: 10.1007/s00221-007-1008-y

Chemla, S., and Chavane, F. (2010). Voltage-sensitive dye imaging: technique
review and models. J. Physiol. Paris 104, 40–50. doi: 10.1016/j.jphysparis.2009.
11.009

Chemla, S., Muller, L., Reynaud, A., Takerkart, S., Destexhe, A., and Chavane,
F. (2017). Improving voltage-sensitive dye imaging: with a little help from
computational approaches. Neurophotonics 4:031215. doi: 10.1117/1.nph.4.3.
031215

Davies, D. L., and Bouldin, D. W. (1979). A cluster separation measure. IEEE Trans.
Pattern Anal. Mach. Intell. PAMI-1, 224–227. doi: 10.1109/tpami.1979.47
66909

Deneux, T., and Grinvald, A. (2017). Milliseconds of sensory input abruptly
modulate the dynamics of cortical states for seconds. Cereb. Cortex 27, 4549–
4563.

Gao, X., Xu, W., Wang, Z., Takagaki, K., Li, B., and Wu, J. Y. (2012). Interactions
between two propagating waves in rat visual cortex. Neuroscience 216, 57–69.
doi: 10.1016/j.neuroscience.2012.04.062

Gias, C., Hewson-Stoate, N., Jones, M., Johnston, D., Mayhew, J. E., and
Coffey, P. J. (2005). Retinotopy within rat primary visual cortex using
optical imaging. Neuroimage 24, 200–206. doi: 10.1016/j.neuroimage.2004.
08.015

Grinvald, A., Lieke, E. E., Frostig, R. D., and Hildesheim, R. (1994). Cortical point-
spread function and long-range lateral interactions revealed by real-time optical
imaging of macaque monkey primary visual cortex. J. Neurosci. 14(5 Pt 1),
2545–2568. doi: 10.1523/jneurosci.14-05-02545.1994

Gross, A., Ivzan, N. H., Farah, N., and Mandel, Y. (2019). High-resolution VSDI
retinotopic mapping via a DLP-based projection system. Biomed. Opt. Express
10, 5117–5129. doi: 10.1364/boe.10.005117

Hubel, D. H., and Wiesel, T. N. (1959). Receptive fields of single neurones in
the cat’s striate cortex. J. Physiol. 48, 574–591. doi: 10.1113/jphysiol.1959.sp
006308

Lippert, M. T., Takagaki, K., Xu, W., Huang, X., and Wu, J. Y. (2007). Methods for
voltage-sensitive dye imaging of rat cortical activity with high signal-to-noise
ratio. J. Neurophysiol. 98, 502–512. doi: 10.1152/jn.01169.2006

Lorach, H., Goetz, G., Smith, R., Lei, X., Mandel, Y., Kamins, T., et al. (2015).
Photovoltaic restoration of sight with high visual acuity. Nat. Med. 21, 476–482.
doi: 10.1038/nm.3851

Maeda, S., Inagaki, S., Kawaguchi, H., and Song, W. J. (2001). Separation of signal
and noise from in vivo optical recording in Guinea pigs using independent
component analysis. Neurosci. Lett. 302, 137–140. doi: 10.1016/s0304-3940(01)
01678-0

Mandel, Y., Goetz, G., Lavinsky, D., Huie, P., Mathieson, K., Wang, L., et al.
(2013). Cortical responses elicited by photovoltaic subretinal prostheses exhibit
similarities to visually evoked potentials. Nat. Commun. 4:1980.

Michel, M. M., Chen, Y., Seidemann, E., and Geisler, W. S. (2018). Nonlinear
lateral interactions in V1 population responses explained by a contrast gain
control model. J. Neurosci. 38, 10069–10079. doi: 10.1523/jneurosci.0246-
18.2018

Omer, D. B., Hildesheim, R., and Grinvald, A. (2013). Temporally-structured
acquisition of multidimensional optical imaging data facilitates visualization

Frontiers in Cellular Neuroscience | www.frontiersin.org 14 September 2021 | Volume 15 | Article 713538

https://github.com/oricarmi/VSDI_MATLAB_COMPARISON.git
https://github.com/oricarmi/VSDI_MATLAB_COMPARISON.git
https://www.frontiersin.org/articles/10.3389/fncel.2021.713538/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fncel.2021.713538/full#supplementary-material
https://doi.org/10.3389/neuro.10.028.2009
https://doi.org/10.3389/neuro.10.028.2009
https://doi.org/10.1523/jneurosci.2699-08.2008
https://doi.org/10.1126/science.283.5402.695
https://doi.org/10.1006/nimg.1996.0022
https://doi.org/10.1006/nimg.1996.0022
https://doi.org/10.1007/s00221-007-1008-y
https://doi.org/10.1016/j.jphysparis.2009.11.009
https://doi.org/10.1016/j.jphysparis.2009.11.009
https://doi.org/10.1117/1.nph.4.3.031215
https://doi.org/10.1117/1.nph.4.3.031215
https://doi.org/10.1109/tpami.1979.4766909
https://doi.org/10.1109/tpami.1979.4766909
https://doi.org/10.1016/j.neuroscience.2012.04.062
https://doi.org/10.1016/j.neuroimage.2004.08.015
https://doi.org/10.1016/j.neuroimage.2004.08.015
https://doi.org/10.1523/jneurosci.14-05-02545.1994
https://doi.org/10.1364/boe.10.005117
https://doi.org/10.1113/jphysiol.1959.sp006308
https://doi.org/10.1113/jphysiol.1959.sp006308
https://doi.org/10.1152/jn.01169.2006
https://doi.org/10.1038/nm.3851
https://doi.org/10.1016/s0304-3940(01)01678-0
https://doi.org/10.1016/s0304-3940(01)01678-0
https://doi.org/10.1523/jneurosci.0246-18.2018
https://doi.org/10.1523/jneurosci.0246-18.2018
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-neuroscience#articles


fncel-15-713538 September 15, 2021 Time: 17:7 # 15

Carmi et al. Evaluation of Retinotopy Methods

of elusive cortical representations in the behaving monkey. Neuroimage 82,
237–251. doi: 10.1016/j.neuroimage.2013.05.045

Polack, P. O., and Contreras, D. (2012). Long-range parallel processing and local
recurrent activity in the visual cortex of the mouse. J. Neurosci. 32, 11120–
11131. doi: 10.1523/jneurosci.6304-11.2012

Prusky, G. T., West, P. W. R., and Douglas, R. M. (2000). Behavioral assessment of
visual acuity in mice and rats. Vision Res. 40, 2201–2209. doi: 10.1016/s0042-
6989(00)00081-x

Reidl, J., Starke, J., Omer, D. B., Grinvald, A., and Spors, H. (2007). Independent
component analysis of high-resolution imaging data identifies distinct
functional domains. Neuroimage 34, 94–108. doi: 10.1016/j.neuroimage.2006.
08.031

Reynaud, A., Takerkart, S., Masson, G. S., and Chavane, F. (2011). Linear model
decomposition for voltage-sensitive dye imaging signals: application in awake
behaving monkey.Neuroimage 54, 1196–1210. doi: 10.1016/j.neuroimage.2010.
08.041

Roland, P. E., Hanazawa, A., Undeman, C., Eriksson, D., Tompa, T., Nakamura, H.,
et al. (2006). Cortical feedback depolarization waves: a mechanism of top-down
influence on early visual areas. Proc. Natl. Acad. Sci. U.S.A. 103, 12586–12591.
doi: 10.1073/pnas.0604925103

Rousseeuw, P. J. (1987). Silhouettes: a graphical aid to the interpretation and
validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65. doi: 10.1016/
0377-0427(87)90125-7

Salinas, H. M., and Fernández, D. C. (2007). Comparison of PDE-based
nonlinear diffusion approaches for image enhancement and denoising in optical
coherence tomography. IEEE Trans. Med. Imaging 26, 761–771. doi: 10.1109/
tmi.2006.887375

Shoham, D., Glaser, D. E., Arieli, A., Kenet, T., Wijnbergen, C., Toledo, Y., et al.
(1999). Imaging cortical dynamics at high spatial and temporal resolution with

novel blue voltage-sensitive dyes. Neuron 24, 791–802. doi: 10.1016/s0896-
6273(00)81027-2

Sornborger, A., Sailstad, C., Kaplan, E., and Sirovich, L. (2003). Spatiotemporal
analysis of optical imaging data. Neuroimage 18, 610–621. doi: 10.1016/s1053-
8119(02)00045-9

Wang, Z., Bovik, A. C., Sheikh, H. R., and Simoncelli, E. P. (2004). Image quality
assessment: from error visibility to structural similarity. IEEE Trans. Image
Process. 13, 600–612. doi: 10.1109/tip.2003.819861

Zheng, Y., Johnston, D., Berwick, J., and Mayhew, J. (2001). Signal source
separation in the analysis of neural activity in brain. Neuroimage 13, 447–458.
doi: 10.1006/nimg.2000.0705

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Carmi, Gross, Ivzan, Franca, Farah, Zalevsky and Mandel. This
is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums
is permitted, provided the original author(s) and the copyright owner(s) are credited
and that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does not
comply with these terms.

Frontiers in Cellular Neuroscience | www.frontiersin.org 15 September 2021 | Volume 15 | Article 713538

https://doi.org/10.1016/j.neuroimage.2013.05.045
https://doi.org/10.1523/jneurosci.6304-11.2012
https://doi.org/10.1016/s0042-6989(00)00081-x
https://doi.org/10.1016/s0042-6989(00)00081-x
https://doi.org/10.1016/j.neuroimage.2006.08.031
https://doi.org/10.1016/j.neuroimage.2006.08.031
https://doi.org/10.1016/j.neuroimage.2010.08.041
https://doi.org/10.1016/j.neuroimage.2010.08.041
https://doi.org/10.1073/pnas.0604925103
https://doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/10.1109/tmi.2006.887375
https://doi.org/10.1109/tmi.2006.887375
https://doi.org/10.1016/s0896-6273(00)81027-2
https://doi.org/10.1016/s0896-6273(00)81027-2
https://doi.org/10.1016/s1053-8119(02)00045-9
https://doi.org/10.1016/s1053-8119(02)00045-9
https://doi.org/10.1109/tip.2003.819861
https://doi.org/10.1006/nimg.2000.0705
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-neuroscience#articles

	Evaluation and Optimization of Methods for Generating High-Resolution Retinotopic Maps Using Visual Cortex Voltage-Sensitive Dye Imaging
	Introduction
	Materials and Methods
	General Approach
	Simulated Data
	VSDI Cortical Recordings
	Animal Preparation
	Visual Stimulation
	Image Acquisition

	Data Processing and Analysis
	Six Methods of Localizing Cortical Responses
	Combining Methods
	Retinotopic Map Generation
	Retinotopic Mapping Evaluation Metrics
	Statistical Evaluation Metrics of Retinotopic Maps (Simulation Only)
	Cluster Analysis of Retinotopic Maps (Simulation and Experimental Data)



	Results
	Simulation Study
	Experimental Data

	Discussion
	Study Limitations
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


