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Abstract

Age-period-cohort analysis of incidence and/or mortality data has received much attention

in the literature. To circumvent the non-identifiability problem inherent in the age-period-

cohort model, additional constraints are necessary on the parameters estimates. We pro-

pose setting the constraint to reflect the different nature of the three temporal variables: age,

period, and birth cohort. There are two assumptions in our method. Recognizing age effects

to be deterministic (first assumption), we do not explicitly incorporate the age parameters

into constraint. For the stochastic period and cohort effects, we set a constant-relative-varia-

tion constraint on their trends (second assumption). The constant-relative-variation con-

straint dictates that between two stochastic effects, one with a larger curvature gets a larger

(absolute) slope, and one with zero curvature gets no slope. We conducted Monte-Carlo

simulations to examine the statistical properties of the proposed method and analyzed the

data of prostate cancer incidence for whites from 1973–2012 to illustrate the methodology.

A driver for the period and/or cohort effect may be lacking in some populations. In that case,

the CRV method automatically produces an unbiased age effect and no period and/or cohort

effect, thereby addressing the situation properly. However, the method proposed in this

paper is not a general purpose model and will produce biased results in many other real-life

data scenarios. It is only useful in situations when the age effects are deterministic and dom-

inant, and the period and cohort effects are stochastic and minor.

Introduction

Age-period-cohort (APC) analysis of disease incidence and mortality rates can provide useful

and important information for understanding disease etiology, for evaluating the intervention

effect of health policy and medical technology, and for assessing the level of danger of public

hazard events [1–6]. The analysis hinges on three temporal variables: age (a person’s age at

disease diagnosis, death, or the occurrence of a certain event), period (the calendar year when

he/she was diagnosed, died, or when that event occurred), and cohort (his/her year of birth).

The literature abounds with APC analyses of various diseases and health conditions.
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Because of the exact linear dependency among the three temporal variables, i.e., cohort =

period − age, a model with age, period and cohort as the covariates (an APC model) will suffer

from the non-identifiability problem; that is, an infinite set of parameter estimates will fit the

data equally well, and one cannot single out any one of them from the others. This means that

separating age, period and cohort effects is impossible [7–11]. One may attempt to impose

additional constraints or assumptions on the APC model in order to obtain a particular set of

parameter estimates. However, different sets of constraints often lead to drastically different or

even contradictory results. There is no consensus in the APC literature as to which set of con-

straints is the best and is to be used.

Many researchers urged that the assumptions made by the APC model be justified by the-

ory and stated explicitly [7, 12–14]. In this paper, we acknowledge the different nature of

the age, period and cohort effects. Our theory is that age is the internal, biological timing

mechanism of an organism, and thereby a person’s disease or mortality rate is a deterministic

function of his/her age. For many diseases, we observe that age is also the most important

determinant of disease occurrence or death, with the incidence or mortality rate varying hun-

dreds of fold, or more, across the human lifespan. On the other hand, we theorize that period

and cohort effects are the manifestations of external, environmental factors. Two examples of

drivers of period effects are the implementation of a mass screening program during a specific

time period [1, 6, 15] and the gradual improvement of medical care over time [6]. Two exam-

ples of drivers of cohort effects are the implementation of a mass hepatitis B vaccination pro-

gram for newborns born after a certain year, which affects their hepatocellular carcinoma

mortality rates in later life [16, 17]; and the exposure to diethylstilbestrol of pregnant women

during 1940–1971, which affects clear cell adenocarcinoma and vaginal cancer incidence rates

in children born of these pregnancies [18, 19]. (Improvement of medical care may also be a

driver of cohort effect if the improvement includes early life care that people carry with it

through the life course.) Such outside stimuli can be considered to occur stochastically in time

and to perturb the disease rates in a stochastic manner, producing a “stochastic trend” with

notable up-and-down variation. (By contrast, a “deterministic trend” should be smoother

without too much variation.) We also note that as compared to the deterministic aging pro-

cess, external factors often exert much weaker effects on incidence/mortality rates. It may even

be that an external driver for period and/or cohorts is lacking in some populations. In that

case, a plot of disease rate against the calendar year and/or birth year would reveal a flatline—a

line without slope and variation.

Recognizing age effects to be deterministic, in this paper we do not explicitly incorporate

the age parameters into constraint. For the stochastic period and cohort effects, we set a con-

straint of constant relative variation (CRV) on the period and cohort slopes. We conduct

Monte-Carlo simulations to examine the statistical properties of the proposed method. We

analyze data of prostate cancer incidence for whites in the United States to illustrate the meth-

odology. We caution that this is not an APC model for general use. Rather, it has a very specific

range of applicability defined by the assumptions imposed on the model. It is only useful in sit-

uations when the age effects are deterministic and dominant, and the period and cohort effects

are stochastic and minor.

Materials and methods

Notations and definitions

Let yij denote the occurrence of disease or death cross-classified by age i and period j (i = 1,

2, . . ., I and j = 1, 2, . . ., J). We assume the yij follow a Poisson distribution with an expectation

of nij × rij, where nij and rij denote the person-year and mortality rate, respectively, for the ith
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age group and the jth period group. The APC model is represented by

logðrijÞ ¼ mþ ai þ bj þ gk; ð1Þ

where μ is the intercept term, αi, βj, and γk are respectively, the age, period, and cohort

effects, and k (k = 1, 2, . . ., K) is the index for the cohort group and is related to i and j through

k = j − i + I (the birth year of an individual being equal to his/her year of death minus age at

death). Here, the sum-to-zero constraints are used: Si αi = Sj βj = Sk γk = 0, or, using matrix

notation, αt 1 = βt 1 = γt 1 = 0, where α (I × 1), β (J × 1), and γ (K × 1, K = I + J − 1) are column

vectors, with the ith, jth, and kth elements being αi, βj, and γk, respectively, and the 1’s are sum-

ming vectors of the appropriate dimension with all elements equal to 1.

The age, period, and cohort effects can each be partitioned into a linear slope and a “curva-

ture” component (a term coined by Holford [20] to represent the departures from the linear

trend, i.e., the detrended fluctuations). Let the linear slopes for age, period, and cohort effects

be denoted by αL, βL, and γL, respectively (three scalars), and the curvature components,

be denoted by αC, βC, and γC, respectively (three column vectors); that is, α ¼ aL�ℓa þ αC,

β ¼ bL � ℓb þ βC, and γ ¼ gL�ℓg þ γC, respectively, where ℓa, ℓb, and ℓg are column

vectors with the ith, jth, and kth elements being i − (I + 1)/2, j − (J + 1)/2, and k − (K + 1)/2,

respectively.

Representations for the infinite set of parameter estimates of the APC

model

Due to the exact linear relationship between age, period, and cohort, the APC model is non-

identifiable, meaning that a maximum likelihood estimation (MLE) determines not one, but

an infinite set of parameter estimates with the equal goodness of fit. Let α̂� (slope: â�L; curva-

ture: α̂�C,), β̂� (slope: b̂�L; curvature: β̂�C,), and γ̂� (slope: ĝ�L; curvature: γ̂�C,) denote one particular

set of parameter estimates. The infinite set of MLEs for the APC model can be represented by

α̂ðuÞ ¼ ðâ�L þ uÞ�ℓa þ α̂�C; ð2Þ

β̂ðuÞ ¼ ðb̂�L � uÞ�ℓb þ β̂�C; ð3Þ

and

γ̂ðuÞ ¼ ðĝ�L þ uÞ�ℓg þ γ̂�C; ð4Þ

where u is an arbitrary value. Note that the infinite set of MLEs shares the same curvature com-

ponents (α̂�C, β̂�C and γ̂�C). The slopes vary (â
ðuÞ
L ¼ â

�
L þ u, b̂

ðuÞ
L ¼ b̂

�
L � u, and ĝ

ðuÞ
L ¼ ĝ

�
L þ u),

but two sums (age slope + period slope, SAP, and period slope + cohort slope, SPC) are con-

served, that is, â
ðuÞ
L þ b̂

ðuÞ
L ¼ â

�
L þ b̂

�
L ¼ SAP and b̂

ðuÞ
L þ ĝ

ðuÞ
L ¼ b̂

�
L þ ĝ

�
L ¼ SPC.

The infinite set of MLEs for the APC model can alternatively be represented by

α̂ðvÞ ¼ ðSAP � v � SPCÞ�ℓa þ α̂�C; ð5Þ

β̂ðvÞ ¼ ðv � SPCÞ � ℓb þ β̂�C; ð6Þ

and

γ̂ðvÞ ¼ ½ð1 � vÞ � SPC��ℓg þ γ̂�C; ð7Þ

where v is again an arbitrary value. We will use this latter representation throughout this
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paper, which involves one arbitrary constant, two conserved slope sums and three identifiable

curvature vectors. The reason that we prefer the v parameterization in Eqs (5)–(7) over the u
parameterization in Eqs (2)–(4) is that v is interpretable if its value is between zero and one;

from Eqs (6) and (7), it is clearly the proportion of the slope sum SPC that is allocated to the

period effects.

Additional constraints for identification

To uniquely identify the parameters of the APC model, one needs to impose one additional

constraint/assumption to the usual sum-to-zero constraints. Let L(μ, α, β, γ|yij) denote the

likelihood function of the APC model. Fu [21], and Knight and Fu [22] considered a penalized

log-likelihood of the form

logðLðm;α; β; γjyijÞÞ � l� ðα
tαþ βtβþ γtγÞ; ð8Þ

with a tuning parameter λ> 0. The penalty term in the parentheses after λ in the likelihood is

the sum of the “squared amplitudes” of the age effects (αt α), period effects (βt β) and cohort

effects (γt γ). Intuitively, an introduction of such a term penalizes a model with large age,

period and cohort effects. A maximization of the above objective function leads to the so called

intrinsic estimators (IEs):

α̂IE ¼ ðSAP � vIE�SPCÞ � ℓa þ α̂�C; ð9Þ

β̂IE ¼ ðvIE � SPCÞ � ℓb þ β̂�C; ð10Þ

and

γ̂IE ¼ ½ð1 � vIEÞ � SPC��ℓg þ γ̂�C; ð11Þ

where vIE ¼
SAP�ðℓatℓaÞþSPC�ðℓg tℓgÞ

SPC�½ðℓa tℓaÞþðℓb tℓbÞþðℓg tℓgÞ�
. The slopes of the intrinsic estimators satisfy the following

constraint:

âIE
L � ðℓa

tℓaÞ � b̂
IE
L � ðℓb

tℓbÞ þ ĝ
IE
L � ðℓg

tℓgÞ ¼ 0: ð12Þ

Lee and Lin [23] proposed a trend surface (TS) method, with a simpler slope constraint of

âTS
L � b̂

TS
L þ ĝ

TS
L ¼ 0; ð13Þ

and therefore vTS ¼ SAPþSPC
3�SPC . It can be shown that this TS constraint corresponds to a maximiza-

tion of the following penalized log-likelihood:

logðLðm;α; β; γjyijÞÞ � l�
αtα
ℓa

tℓa
þ

βtβ
ℓb

tℓb
þ

γtγ
ℓg

tℓg

 !

; ð14Þ

again with a tuning parameter λ> 0. It can be seen that the penalty term now becomes the

sum of the “standardized” squared amplitudes of the three temporal effects, standardizing

with respect to the squared amplitudes of the temporal factors per se (ℓa
tℓa, ℓb

tℓb and ℓg
tℓg,

respectively).

Tu et al [24, 25] applied the partial least squares (PLS) method for APC analysis. Unfortu-

nately, the results depend on the coding schemes used for the three temporal variables. The

PLS method produces the same result as the IE method when the indicator variable (one

for true, zero for false) is used for coding whether a data point is in a particular category of a

Age-period-cohort analysis with a constant-relative-variation constraint
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temporal variable, and it produces the same result as the TS method when orthogonal polyno-

mials (the above ℓa, ℓb, and ℓg being the first-order polynomials) are used for coding. It has

also been pointed out that the separation of age, period and cohort effects by the IE method by

itself depends on the number of age, period and cohort categories [10, 12]. IE method also has

a non-uniqueness property that its results show a high variability on different types of dummy

parameterization [26].

Osmond and Gardner’s (OG) method [27] hinges on all two-factor models being identifi-

able. Let α̂AP and β̂AP denote, respectively, the age and period effects of an AP model, i.e., a

model with only age and period parameters, or equivalently, an APC model with all the cohort

parameters forced to be zero: γ̂AP ¼ 0. Similarly, let α̂AC, β̂AC ¼ 0, and γ̂AC denote the effects

for the AC model, and α̂PC ¼ 0, β̂PC, and γ̂PC, the effects for the PC model. The OG method

calls for minimizing the weighted sum of the Euclidean distances (in a parameter space with

I + J + K dimensions) between the AP, AC, and PC models, respectively, and the full-fledged

APC model (parameterized by v, to be consistent in this paper):

vOG ¼ argmin
DAPðvÞ
MRSSAP

þ
DACðvÞ
MRSSAC

þ
DPCðvÞ
MRSSPC

� �

; ð15Þ

where DAPðvÞ; DACðvÞ and DPCðvÞ are the distances to the APC model, and MRSSAP, MRSSAC

and MRSSPC are the mean residual sums of squares, for the AP, AC and PC models, respec-

tively. Eq (15) above can be viewed as the additional constraint imposed in the OG method.

Alternatively, one can derive the OG estimate from a penalized maximum likelihood estima-

tion, with the following penalized log-likelihood:

logðLðm;α; β; γjyijÞÞ � l�
DAPðvÞ
MRSSAP

þ
DACðvÞ
MRSSAC

þ
DPCðvÞ
MRSSPC

� �

; ð16Þ

with a tuning parameter λ> 0.

Lee and Lin [28] proposed an autoregressive APC model with the cohort effects modeled as

a first-order autoregressive process (hereafter referred to as the AR method). The following

conditional log-likelihood is to be maximized:

logðLðm;α; β; γjyijÞÞ þ logðLð�;s2jγÞÞ; ð17Þ

where L(ϕ, σ2|γ) is the likelihood of the autoregressive process (ϕ: the autocorrelation, σ2: the

variance, of the stochastic cohort effects). The second term in Eq (17) can be viewed as a con-

straint for the cohort effects, which will exact a penalty to the overall likelihood if the cohort

parameters deviate from the assumed autoregressive process. With such a constraint imposed,

the autoregressive APC model is identifiable. The results, though, do not belong to the above

solution set parameterized by v.

Clayton and Schifflers [29, 30] (hereafter referred to as the CS method) introduced the age-

drift model, which is a model with the age parameters plus a period or a cohort slope. (The fits

of the age-plus-period-slope and the age-plus-cohort-slope models to a given dataset are the

same, hence the generic term “drift” is used here.) They established a hierarchy of models: (i)

the age model (a model with only the age parameters), (ii) the age-drift model, (iii) the AP and

AC models, and (iv) the APC model (age + drift + period curvature + cohort curvature), and

suggested a logical order (see Fig 2 in reference 30) with sequential statistical tests to find a

model with an adequate fit. It has been shown that models with the drift parameter are identifi-

able even without an additional constraint. However, the question still remains as to how to

further partition the somewhat elusive drift into the more tangible, period and cohort slopes,

Age-period-cohort analysis with a constant-relative-variation constraint
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respectively. Chauvel et al [31] proposed the APC-detrended (APCD) and the APC-hysteresis

(APCH) models. These models focus specifically on the detrended fluctuations (curvature

components) of the cohorts effects and make no attempt to separate the period and cohort

slopes.

The proposed method

Define the “root mean square curvature” (RMSC) for the period effects as

dRMSCb ¼

ffiffiffiffiffiffiffiffiffiffiffiffi

β̂�C
t
β̂�C
J

s

: ð18Þ

This is a measure of deviation from linearity for the period effects. With dRMSCb ¼ 0(per-

fect linearity), the slope (change in effects per one unit period) as measured from any two peri-

ods is a constant value. While with dRMSCb > 0, the slope no longer remains constant but will

vary to a more degree as the index gets larger. Meanwhile, the b̂�L as introduced earlier can be

viewed as an estimate of the expected values of the period slopes, measured from two randomly

chosen periods. Therefore, we may calculate the “relative variation” (RV) in period slopes as

cRVb ¼
dRMSCb

b̂�L

; ð19Þ

a scale-free measure which quantifies the variation of period slopes in relative terms. Similarly,

the RMSC and RV for the cohort effects are

dRMSCg ¼

ffiffiffiffiffiffiffiffiffiffiffi
γ̂�C

tγ̂�C
K

r

ð20Þ

and

cRVg ¼
dRMSCg

ĝ�L
; ð21Þ

respectively.

As pointed out earlier, first, we assume age effects to be deterministic and period and cohort

effects to be stochastic. Therefore, we do not explicitly incoporate the age parameters into con-

straint. Second, we assume constant relative variation for the period and cohort slopes. Our

constraint is, therefore:

cRVb ¼
cRVg: ð22Þ

With this CRV constraint imposed, the APC model is identifiable with the v parameter being

(see S1 Appendix)

vCRV ¼
dRMSCb

dRMSCb þ
dRMSCg

: ð23Þ

The CRV estimates can be found using the vCRV:

α̂CRV ¼ ðSAP � vCRV�SPCÞ � ℓa þ α̂�C; ð24Þ

β̂CRV ¼ ðvCRV � SPCÞ � ℓb þ β̂�C; ð25Þ

Age-period-cohort analysis with a constant-relative-variation constraint
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and

γ̂CRV ¼ ½ð1 � vCRVÞ � SPC��ℓg þ γ̂�C: ð26Þ

Here we see that a simple CRV constraint for the period and cohort slopes [Eq (22)] will

affect the estimates for all three temporal effects in Eqs (24), (25) and (26), through vCRV in

Eq (23).

Because dRMSCb � 0 and dRMSCg � 0, vCRV in Eq (23) is guaranteed to be between zero and

one (we let vCRV ¼ 0:5, if dRMSCb ¼
dRMSCg ¼ 0). Therefore, vCRV is readily recognized to be

the proportion of the total period and cohort slopes (SPC) allocated to the period effects, and

ð1 � vCRVÞ, that allocated to the cohort effects. From Eq (23), we also see that the apportion-

ment by the CRV method is determined according to the magnitudes of the slope variation

(as measured by the root mean square curvatures), of the period and the cohort effects, respec-

tively. The CRV constraint dictates that between the two stochastic effects, one with a larger

variation gets a larger (absolute) slope, and one with zero variation gets no slope. The latter

property should prove useful in that if any effect is zero, i.e. a flatline without variation, the

CRV constraint will guarantee that its slope is zero.

The CRV constraint can also be derived from a maximization of the following penalized

log-likelihood:

logðLðm;α; β; γjyijÞÞ � l�
βtβ

RMSCb � ðℓb
tℓbÞ
þ

γtγ
RMSCg � ðℓg

tℓgÞ

 !

; ð27Þ

with a tuning parameter λ> 0 (in S2 Appendix). It is of interest to compare the penalty term

of the CRV method in Eqation (27) with those of the IE and TS methods in Eqs (8) and (14),

respectively. First, we see that unlike the IE and TS methods, the CRV penalty does not involve

the αt α term (the age effects are still affected by this CRV penalty as previously mentioned).

Second, we see that the penalties imposed on the period and cohort parameters are propor-

tional to the standardized squared amplitudes ( βtβ
ℓb tℓb

and γtγ
ℓg tℓg

, respectively) (as in the TS

method), and additionally, inversely proportional to the mean square curvatures (RMSCβ and

RMSCγ, respectively) just introduced.

To find the CRV estimate, one begins with an arbitrary APC estimate: α̂�, β̂� and γ̂�. (These

can be obtained by setting any arbitrary constraint: say, β1 = β2). For this estimate, one extracts

the slopes (â�L; b̂
�
L; ĝ

�
L) and curvatures (α̂�C; β̂

�
C; γ̂

�
C), using the simple formulas presented in S3

Appendix. One then uses Eqs (18) and (20) to calculate dRMSCb and dRMSCg, and Eq (23) to

calculate vCRV. Finally, one uses Eqs (24)–(26) to calculate the CRV estimate.

Eq (23) is the key to apportion period and cohort slopes in the proposed CRV method.

To check the robustness of the apportionment, one can re-compute a vCRV based on the root

mean square curvatures of the older periods and cohorts, and one based on those of the recent

periods and cohorts, and compare the results with the original vCRV. If the three vCRVs differ

too much, the CRV method should not be used.

Simulation setups

We simulate a population with age-period cross-classified mortality data containing a total

of nine age groups: 40–44, 45–49, . . ., 80–84, and a total of eight period groups: 1976–1980,

1981–1985, . . ., 2011–2015. We set up a population of one million with the same age distribu-

tion as the year 2000 World Health Organization standard population. The population size

and the age distribution are set up to be stable over time. Because all APC methods (including

Age-period-cohort analysis with a constant-relative-variation constraint
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IE, TS, OG, AR and CRV) were estimated using the aggregated-level data, the sample size for

each simulation data is 72 (the total number of cell from the age-period table).

We set up an APC model [Eq (1)] for the mortality rates and let the death counts follow a

Poisson distribution. The intercept of the APC model is set up to be μ = −5, which corresponds

to�674 deaths per 100 000 person-year. The age effects (αi, for i = 1, 2, . . ., 9) are set up to be

α1 = −2.35, α2 = −1.45, α3 = −0.93, α4 = −0.35, α5 = −0.04, α6 = −0.32, α7 = −0.98, α8 = −1.48,

α9 = −2.26, respectively (denoted as A in the simulation study). The rate ratio between 80–84

and 40–44 year-old people is exp(α9 − α1)� 100, representing a typical age effect for cancer

mortality.

The period and cohort effects are by contrast assumed to be stochastic, and therefore, their

assumed values can be different in different rounds of the simulation. We design two mecha-

nisms (PI and PII) to generate the stochastic period effects and another two mechanisms (CI

and CII) to generate the stochastic cohort effects (PI and CI simulate pulse impacts and PII

and CII simulate wave impacts, each with a random amplitude and a random starting time, as

detailed in S4 Appendix). We also consider the situations when the period effects and/or the

cohort effects are absolutely zero (Pzero and Czero, respectively). We generate data for all nine

combinations of mechanisms in turn: A×(Pzero, PI, PII)×(Czero, CI, CII).

In addition, we designed seven scenarios specifically to challenge the proposed CRV

method: (i) all three temporal effects are absolutely zero (Azero×Pzero×Czero), (ii) all three tem-

poral effects are stochastic, (iii) all three temporal effects are deterministic: the setup A for the

age effects, a flat but highly variable period effect, and a monotonic linear cohort effect, (iv)

all three temporal effects are deterministic: the setup A for the age effects, a monotonic and

decreasing linear period effect, and a monotonic and increasing linear cohort effect, (v) all

three temporal effects are deterministic: an age effect with a less than 10-fold change in rate

between the oldest and the youngest age groups, plus J-shape period and cohort effects, (vi)

stochastic period and cohort effects but the CRV assumption fails: RVβ is far greater than RVγ,

and (vii) stochastic period and cohort effects but the CRV assumption fails: RVβ is far lower

than RVγ (details of these additional simulations are described in S5 Appendix).

We use the proposed CRV method to analyze the data. For comparison, we also present the

results of the IE, TS, OG, AR, and CS methods. (We did not perform the PLS method, as the

results would be the same as those of the IE or TS method depending on the coding used, as

explained earlier.) We perform a total of 100 000 simulations for each scenario. The biases of

the age, period and cohort effects were calculated as the mean differences between the esti-

mated values and the corresponding true values in the simulation (mean of â i � ai, b̂ j � bj

and ĝk � gk, respectively, for age, period and cohort effects for each simulated scenario). The

Monte-Carlo standard errors were also calculated and were presented in supporting informa-

tion (from S1 to S5 Tables).

Prostate cancer incidence rates in the United States from 1973–2012

As an example, we analyze the data of prostate cancer incidence for whites in the United States

from 1973–2012. Data came from the Surveillance, Epidemiology, and End Results (SEER)

Program Research Data [32], which includes cancer incidence cases and population in the

United States associated by age, sex, race (white, black, American Indian, Asian, Hispanic,

non-Hispanic white, etc), years of diagnosis, and geographic areas (following the SEER-9 regis-

try and county). We selected all prostate cancer in white and formed an age-period cross-clas-

sified table with 9 age groups (40–44, 45–49, . . ., 80–84) and 8 period groups (1973–1977,

1978–1982,. . ., 2008–2012), spanning a total of 16 birth-cohort groups (mid-cohort years:

Age-period-cohort analysis with a constant-relative-variation constraint

PLOS ONE | https://doi.org/10.1371/journal.pone.0226678 December 19, 2019 8 / 21

https://doi.org/10.1371/journal.pone.0226678


1893,1898, . . ., 1968). The sample size (number of cells from 5-year age and period table) is 72.

The age and calendar year of population were similarly categorized.

Results

Simulation results

Fig 1 presents the simulation results when only the deterministic age effect is present

(A×Pzero×Czero). The CRV and the AR methods are approximately unbiased. By contrast,

the IE, OG, and TS methods are seriously biased. For the age effect, the three biased meth-

ods overestimate the age effect for the young and underestimate it for the elderly. For the

period and cohort effects that are actually zero, these methods produce positive period

slopes of 0.03 (OG), 0.07 (IE), and 0.17 (TS) per five calendar years, and negative cohort

slopes of -0.03 (OG), -0.07 (IE), and -0.17 (TS) per five birth-cohort years. The biases are

a simple linear function of age, period, and cohort variables, that is, the three methods are

biased in estimating the slopes but not the curvature components. This is because as men-

tioned previously, methods that admit an u or v parameterization share the same curvature

components (which are asymptotically unbiased, a property of MLEs), but produce different

slope estimates.

Fig 2 presents the simulation results when in addition to the deterministic age effect, the

stochastic cohort effect is also present (upper panel: A×Pzero×CI; lower panel: A×Pzero×CII).

The CRV method is again approximately unbiased, but the AR method is now biased; it erro-

neously reports a positive slope of 0.06 and a negative slope of -0.12 for the period effect per

five calendar years for the A×Pzero×CI and A×Pzero×CII data, respectively. The other three

methods are also biased; they report period slopes of 0.06 (OG), 0.12 (IE), and 0.20 (TS) per

five calendar years for the A×Pzero×CI data, and -0.02 (IE), 0.04 (OG), and 0.14 (TS) per five

calendar years for the A×Pzero×CII data. Fig 3 presents the simulation results when the deter-

ministic age effect and the stochastic period effect are both present (upper panel: A×PI×Czero;

lower panel: A×PII×Czero). Now, the CRV and AR methods are approximately unbiased, but

the IE, OG, and TS methods are severely biased.

Fig 1. Simulation results when only the deterministic age effect is present (A×Pzero×Czero).

https://doi.org/10.1371/journal.pone.0226678.g001
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Fig 4 presents the simulation results when all three temporal effects are present (1st panel:

A×PI×CI; second panel: A×PI×CII; third panel: A×PII×CI; fourth panel: A×PII×CII). For the

A×PI×CI data, the CRV method is approximately unbiased and the other four methods are

severely biased (AR, IE, TS, and OG, in ascending order of the magnitude of bias). For the

Fig 2. Simulation results when the deterministic age effect and the stochastic cohort effect are present (upper

panel: A×Pzero×CI; lower panel: A×Pzero×CII).

https://doi.org/10.1371/journal.pone.0226678.g002

Fig 3. Simulation results when the deterministic age effect and the stochastic period effect are present (upper

panel: A×PI×Czero; lower panel: A×PII×Czero).

https://doi.org/10.1371/journal.pone.0226678.g003
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A×PI×CII data, the CRV and IE methods are slightly biased and the other three methods are

seriously biased. For the A×PII×CI data, all methods are biased to some extent, but among

them, the CRV and AR methods are the least biased. For the A×PII×CII data, the CRV method

is again approximately unbiased. The other four methods are biased to various degrees: IE

(slightly biased), AR (moderately biased), TS and OG (severely biased).

Results for the additional simulations (i, ii, . . ., vii) are presented in Figs 5, 6 and 7, respec-

tively. When all three temporal effects are absolutely zero (i), all five methods are unbiased

Fig 4. Simulation results when the deterministic age effect, and the stochastic period and cohort effects, are

present (1st panel: A×PI×CI; 2nd panel: A×PI×CII; 3rd panel: A×PII×CI; 4th panel: A×PII×CII).

https://doi.org/10.1371/journal.pone.0226678.g004
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(Fig 5, 1st panel). When all three temporal effects are stochastic (ii), all five methods are no

more than slightly biased (Fig 5, 2nd panel). When all three temporal effects are deterministic

(iii, iv, v), all five methods are biased (Fig 6); all methods overestimate the age effect for the

young and underestimate it for the elderly, underestimate the period effect for the earlier

periods and overestimate it for the later ones, and overestimate the cohort effect for the older

cohorts and underestimate it for the recent ones. When the CRV assumption fails, all five

methods are biased (Fig 7). The directions of the biases are consistent with the results in Fig 6,

except for the AR method.

Example results

A simple graphical depiction of the prostate cancer data is presented in Fig 8. The prostate

cancer incidence rate of the oldest age group of 80–84 is�1200 times that of the youngest age

group of 40–44 (Fig 8A). The prostate cancer incidence shows inconsistent long-term period

trends in different age groups (Fig 8B). Incidence rates increase steeply for the younger age

groups but increase gently and then level off for the older age groups. And for the oldest age

group of 80–84, an outright decreasing long-term trend is noted instead. Superimposed in

these disparate long-term trends are two short-term trends that are more or less consistent

across age groups: a brief increase in the early periods, and a brief decrease in the later ones,

respectively. By contrast, the birth-cohort trends are more consistent across age groups (Fig

8C). For the earliest few birth cohorts, the trends are to slightly decrease and then to level off.

For the later birth cohorts, the trends are an initial slight increase followed by a drastic increase

for the most recent ones. S6 Table presents the prostate cancer incidence rates (per 100,000) in

whites by age and period groups.

The results of APC modeling are presented in Table 1 and Fig 9. Even without an additional

constraint, two slope sums can be estimated, and these are 0.92 (the sum of the age and period

Fig 5. Additional simulation results when all three temporal effects are zero (1st panel: Scenario (i)) and when all

three temporal effects are stochastic (2nd panel: Scenario (ii)).

https://doi.org/10.1371/journal.pone.0226678.g005
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slopes) and 0.20 (the sum of the period and cohort slopes), respectively (Table 1). The CRV

method allocates approximately one-third (vCRV ¼ 0:37) of the latter sum (0.20) to be the

period slope (0.08), and the remaining two-thirds, the cohort slope (0.13). This then leaves

0.84 for the age slope. The apportionment of the slopes is insensitive to the calculation of the

root mean square curvature using different data ranges: vCRV ¼ 0:37 when using older periods

(1973–1992) and cohorts (1893–1948) and vCRV ¼ 0:39 when using recent periods (1993–

2012) and cohorts (1913–1968).

In Fig 9, we see that the CRV method reports a�1000-fold increase in incidence rate from

the youngest age group to the oldest, a mild 3.3-fold increase/2.2-fold decrease in the incidence

rate in the early/late periods, and a mild 3-fold decrease in incidence rate from 1893 to 1918

birth cohorts, followed by a conspicuous 18-fold increase in the rate all the way to the most

recent 1968 birth cohort. These results are largely in line with the previous graphical analysis

(Fig 8). The CRV estimates and the corresponding bootstrapped standard errors were pre-

sented in S7 Table.

Fig 6. Additional simulation results when all three temporal effects are deterministic (1st panel: Scenario (iii);

2nd panel: Scenario (iv); 3rd panel: Scenario(v)).

https://doi.org/10.1371/journal.pone.0226678.g006

Age-period-cohort analysis with a constant-relative-variation constraint

PLOS ONE | https://doi.org/10.1371/journal.pone.0226678 December 19, 2019 13 / 21

https://doi.org/10.1371/journal.pone.0226678.g006
https://doi.org/10.1371/journal.pone.0226678


Prostate cancer is predominantly a cancer of the elderly, having the steepest age curve

among all major cancers in men [33–35]. Cancer registries in many countries/regions around

the globe observe the same tremendous increase of a thousand fold in prostate cancer inci-

dence from ages 40–44 to ages 80–84 as we did in this study [33, 36, 37]. The period effect

derived from our CRV method for prostate cancer incidence in the United States is consistent

with previous studies [38–41], that is, an increasing trend since 1973, a peak at 1992, and a

Fig 7. Additional simulation results when the CRV assumption fails (1st panel: Scenario (vi): RVβ is far greater

than RVγ; 2nd panel: Scenario (vii): RVβ is far lower than RVγ).

https://doi.org/10.1371/journal.pone.0226678.g007

Fig 8. Prostate cancer incidence for whites in the United States from 1973–2012 (A: Age curves for different birth cohorts; B: Secular trends for

different ages; C: Birth-cohort trends for different ages).

https://doi.org/10.1371/journal.pone.0226678.g008
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declining trend thereafter. The researchers of previous studies have attributed such a period

effect to the practices of prostate cancer screening in the United States. Specifically, the initial

segment of rising incidence may be due to the increased detection of tumors resulting from

increased prostate-specific antigen (PSA) screening since the mid-1980s [40]. However, the

trend in the rate of first-time PSA procedures started to decline after 1992 [38], leading to

the decline of prostate cancer incidence [41]. As for the birth-cohort effect, we note that men

born between 1908 and 1928 have the lowest prostate cancer risks. These are the people who

experienced World War I (1917–1918), the Great Depression (1929–1939), or World War II

(1941–1945) in their early childhoods. Prostate cancer is an affluent type of cancer [42]. Higher

intakes of red meat, saturated fat and dairy products are associated with higher prostate cancer

risks [43]. This may help explain why the risk of prostate cancer increases dramatically for

men born well after those lean years.

The results of the four other APC methods are also presented in the same table/fig for com-

parison. They yield exactly the same (or nearly so as in the case of AR) slope sums as the CRV

Table 1. Parameter estimates and bootstrap standard errors of age-period-cohort analysis for the prostate cancer data using various methods.

CRV IE TS OG AR

Estimate SE Estimate SE Estimate SE Estimate SE Estimate SE

Age slope 0.8398 0.0022 0.6347 0.0021 0.5428 0.0016 0.6795 0.0022 0.7202 0.0038

Period slope 0.0768 0.0005 0.2819 0.0017 0.3738 0.0015 0.2371 0.0015 0.1959 0.0043

Cohort slope 0.1279 0.0016 -0.0772 0.0003 -0.1691 0.0009 -0.0324 0.0010 0.0083 0.0027

Sum of the age and period slopes 0.9166 0.9166 0.9166 0.9166 0.9161

Sum of the period and cohort slopes 0.2047 0.2047 0.2047 0.2047 0.2042

CRV: the proposed method of constant relative variation; IE: method of intrinsic estimators; TS: trend surface method; OG: Osmond and Gardner’s method; AR:

autoregressive model.

https://doi.org/10.1371/journal.pone.0226678.t001

Fig 9. Results of age-period-cohort analysis for the prostate cancer data using various methods (CRV: The

proposed method of constant relative variation; IE: Method of intrinsic estimators; TS: Trend surface method;

OG: Osmond and Gardner’s method; AR: Autoregressive model).

https://doi.org/10.1371/journal.pone.0226678.g009
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method (Table 1). However, they disagree on how these slope sums should be further divided

into the three temporal factors. In Fig 9, we see that for the age effect, they report much smaller

increases in rate, 360-fold (AR), 270-fold (OG), 190-fold (IE) and 90-fold (TS), respectively,

from the youngest age group to the oldest. For the period effect, they all report a long-term

increasing trend, 3.6-fold (AR), 4.5-fold (OG), 6.1-fold (IE) and 12-fold (TS) increases in rate,

respectively, from 1973–1977 to 2008–2012. For the cohort effect, they report a major decrease

in incidence rate (AR: 6.8-fold; OG: 8.4-fold; IE: 12-fold; TS: 25-fold) from the 1893 to the

1933 birth-cohort followed by a minor increase in rate (AR: 5.7-fold; OG: 4.6-fold; IE: 3.3-fold;

TS: 1.8-fold) to the 1968 birth-cohort. As for the CS method, it determines a full-fledged APC

model, but the non-identifiability problem remains.

For the purpose of comparison, we also conducted APC analysis for prostate cancer inci-

dence in Taiwan from 1979–2013 (S6 Appendix, S8 Table, S1 and S2 Figs). The sample size

(number of cells in S8 Table) is 63. The age effects of prostate cancer in Taiwan using the CRV

method were similar to those in the United States. The period effects and cohort trends in Tai-

wan, however, were both continuously increasing (PSA tesing rate remains very low in Taiwan

as compared to the United States). The results of the four other APC methods (in the same S2

Fig) in Taiwan reported smaller age effects and larger period effects. The cohort effects in TS,

IE and AR methods reported a decreasing or flat trend which is contrary to that found in the

graphical analysis (S1 Fig).

Discussion

The proposed CRV method is based on setting a constraint of constant relative variation on the

period and cohort slopes [Eq (22)]. The CRV constraint can also be derived from a maximiza-

tion of a penalized log-likelihood function [Eq (27)], with the parameter governing the penaliza-

tion approaching zero. So in the limit, there is no or a very minimal constraint imposed by the

method. The CRV result also belongs to the class of so-called “perpendicular solutions” [44],

being perpendicular to the following null vector: 0t; �
ℓb t

dRMSCb�ðℓb tℓbÞ
;

ℓg t

dRMSCg�ðℓg tℓgÞ

� �

. A recent

study analyzed the statistical properties of the IE method [45]. By comparison, the proposed

CRV method is rather naïve, and its statistical properties need to be further investigated using

the same mathematical rigor.

A driver for the period and/or cohort effect may be lacking in some populations. In that

case, the CRV method automatically produces an unbiased age effect and no period and/or

cohort effect, thereby addressing the situation properly (see Figs 1, 2 and 3). None of the other

methods, IE, TS, OG or AR, shares this desirable property. The method of Carstensen [46]

can partly achieve this. If for example, the period effect is known a priori to be non-existent or

to play only a minor role, as per Carstensen’s method, one can run an age-cohort model first

and then use the residual terms to fit a period model. The result is indeed period effects with a

small slope or no slope at all. However, to use Carstensen’s method, one needs to know before-

hand which effect is lacking. By comparison, one simply lets the data speak for themselves in

the CRV method.

There are two assumptions in our proposed method. We assume deterministic age effects

and stochastic period and cohort effects. For conditions other than diseases and mortalities,

age may not necessarily be the most important determinant for temporal trends and, therefore,

to qualify for a special do-not-constrain status as in our method. For example, a number of

studies have indicated that human social behavior is heavily influenced by the external and

social environment [47, 48]. By contrast, age effects are less remarkable; less than a 10-fold

change in rates were observed between the oldest and the youngest age groups in studies
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regarding drinking behavior, religious service and activity, social capital and trust, marijuana

consumption, and social inequality, among others [49–54]. Our method will certainly fail in

this situation (Scenario (v) in Fig 6). It is also possible that period and/or cohort effects by

themselves are also deterministic, such as monotonic/near-linear period and/or cohort trend

as a result of medical process, or they may be stochastic but do not satisfy constant relative var-

iation (our second assumption), such as a smooth but conspicuous linear trend in one and a

flat but highly variable trend in the other. Our method will fail again in these scenarios (Sce-

narios (iii) and (iv) in Fig 6; Scenarios (vi) and (vii) in Fig 7).

In conclusion, the method proposed in this paper is not an APC model for general use. It is

only useful in situations when the age effects are deterministic and dominant, and the period

and cohort effects are stochastic and minor.
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