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Abstract
Background: Initial evidence from China suggests that most vulnerable subjects 
to COVID-19 infection suffer from pre-existing illness, including metabolic abnor-
malities. The pandemic characteristics and high-lethality rate of COVID-19 infection 
have raised concerns about interactions between virus pathobiology and components 
of the metabolic syndrome.
Methods: We harmonized the information from the recent existing literature on 
COVID-19 acute pandemic and mechanisms of damage in non-alcoholic fatty 
liver disease (NAFLD), as an example of chronic (non-communicable) metabolic 
pandemic.
Results: COVID-19-infected patients are more fragile with underlying metabolic 
illness, including hypertension, cardiovascular disease, type 2 diabetes, chronic lung 
diseases (e.g. asthma, chronic obstructive pulmonary disease and emphysema) and 
metabolic syndrome. During metabolic abnormalities, expansion of metabolically 
active fat ('overfat condition') parallels chronic inflammatory changes, development 
of insulin resistance and accumulation of fat in configuring NAFLD. The deleteri-
ous interplay of inflammatory pathways chronically active in NAFLD and acutely in 
COVID-19-infected patients, can explain liver damage in a subgroup of patients and 
might condition a worse outcome in metabolically compromised NAFLD patients. 
In a subgroup of patients with NAFLD, the underlying liver fibrosis might represent 
an additional and independent risk factor for severe COVID-19 illness, irrespective 
of metabolic comorbidities.
Conclusions: NAFLD can play a role in the outcome of COVID-19 illness due to 
frequent association with comorbidities. Initial evidences suggest that increased liver 
fibrosis in NAFLD might affect COVID-19 outcome. In addition, long-term moni-
toring of post-COVID-19 NAFLD patients is advisable, to document further deterio-
ration of liver damage. Further studies are required in this field.
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1  |   INTRODUCTION

The global acute pandemic of severe acute respiratory syn-
drome (SARS) caused by the coronavirus SARS-CoV-2 
(COVID-19, Sarbecovirus subgenus, Betacoronavirus genus, 
Coronaviridae family) has suddenly become a major threat to 
public health.1,2 Since late 2019, more than 3.6 million con-
firmed cases, more than 250,000 deaths in 213 countries at a 
world level (at May 5, 2020), and a huge burden of care have 
been recorded.3

Although many subjects remain asymptomatic,4 the most 
frequent and critical clinical presentation of COVID-19 is 
the respiratory involvement, ranging from mild respiratory 
symptoms to severe pneumonia. However, the infection by 
SARS-CoV-2 virus represents a systemic disease,5 which can 
lead to myocardial injury,6,7 heart failure,6 vascular inflam-
mation, myocarditis, cardiac arrhythmias,7 hypoxic encepha-
lopathy,8 multi-organ failure and ultimately death.9

In the first phase of the COVID-19 disease, the patho-
genic properties depend on binding of spike viral proteins 
to angiotensin I converting enzyme 2 (ACE2) receptors,10-12 
which allow the virus to enter the target cells.13 Receptors are 
expressed in the epithelia of the upper respiratory tract (naso-
pharynx) as major site of replication and, in the human lung, 
in alveolar epithelial cells (type II) and ciliated cells.11,14,15 
ACE2 receptor expression also occur in vascular endothe-
lium, in the brush border of intestinal enterocytes11,16 and in 
cholangiocytes.11,17 Thus, the symptomatic involvement of 
the gastrointestinal tract is possible with COVID-19.18-21 A 
recent USA report describes a clinically evident gastrointes-
tinal involvement in 61% of COVID-19-positive subjects.22 
The presence of ACE2 receptors in the glandular cells of 
gastric, duodenal and distal enterocytes may result in mal-
absorption, unbalanced intestinal secretion and activation 
of the enteric nervous system, leading to gastrointestinal 
symptoms.23,24

The liver can also become a target of COVID-19 infec-
tion, although major liver damage is uncommon.25-28 SARS-
Cov-2 might affect the liver by direct (i.e. viral translocation 
from the gut to the liver) or indirect mechanisms (ie systemic 
inflammation, liver ischaemia and hypoxia, effects on pre-ex-
isting liver diseases, drug-related liver injury) and represents 
a new challenge for hepatologists.28 Notably, non-alcoholic 
fatty liver disease (NAFLD) is a chronic dysmetabolic pan-
demic which has become the most common liver disease in 
the world, with a prevalence rate of 30% in the Western popu-
lation.29,30 Moreover, NAFLD does not stands on its own but 
it is usually associated as 'fellow traveller' with a constellation 
of risk factors, metabolic syndrome and illness (Figure 1).31 
Along with this view, the acronym NAFLD has been recently 
re-visited by coining the acronym MAFLD ('metabolic dys-
function-associated fatty liver disease').32 NAFLD/MAFLD 
can therefore affect the final outcome in COVID-19-infected 

patients.33-36 In addition, the liver itself has increased suscep-
tibility to drugs in conditions of chronic injury.37-39 In this 
context, the presence of inflammatory pathways (in partic-
ular those involving cytokines) present either in NAFLD40-

42 and COVID-19-infected patients 43-46 could increase liver 
inflammation or be a marker of metabolic risk factors further 
aggravating the clinical outcome.

Because of the pandemic characteristics and high-lethal-
ity rate of SARS-CoV-2 infection, precise knowledge of the 
virus behaviour and of risk factors predisposing to COVID-
19 onset and progression has a key role in the near future 
to anticipate virus-related events worldwide. In the analy-
sis of Wang et al, hypertension, diabetes, chronic obstruc-
tive pulmonary disease (COPD), cardiovascular disease and 
cerebrovascular disease (OR 2.29-5.97) were independent 
risk factors associated with COVID-19-infected patients.47 
Furthermore, a recent analysis of 1999 hospitalised COVID-
19-infected patients in New York showed that BMI > 40 kg/
m2 is one of the strongest predictor of hospitalisation (OR 
6.2) and is exceeded only by age ≥ 75 years (OR 66.8) and 
age 65-74 years (OR 10.9).48 Finally, a study on 202 consec-
utive patients with confirmed COVID-19 identified NAFLD 
as independently associated with COVID-19 progression.49

We discuss here the ongoing interaction of two different 
pandemic conditions: the recent, acute COVID-19 outbreak 
and the chronic NAFLD as part of an even wider set of met-
abolic disorders. During COVID-19 infection, the underly-
ing NAFLD could pave the way to more severe hepatic and 
metabolically associated complications and become another 
prognostic marker of viral disease.

2  |   COVID-19 AND NAFLD

In the liver, ACE2 receptors are mainly expressed in cholan-
giocytes (60% of cells) and in endothelial cells, rather than in 
hepatocytes (only 3% of cells) or Kupffer cells (where ACE2 
receptors are absent).17,50,51 Major factors involved in SARS-
CoV-2 infection and liver damage are depicted in Figure 2.

In Chinese patients, the prevalence of acute liver injury 
during COVID-19 disease was 15.4%.52 However, an in-
volvement of the liver has been reported in about 60% of 
cases,53 and the risk of liver dysfunction seems to increase 
in older age.54

Ji et al49 reported on 202 COVID-19-infected patients and 
NAFLD status. Liver abnormalities were 50% on admission 
and 75% during hospitalization, manifesting as hepatocellu-
lar pattern (only 3% with ductular or mixed pattern); 33% of 
the patients had persistent abnormal liver function from ad-
mission to last follow-up. COVID-19 progression was asso-
ciated with male sex, age > 60 years, higher BMI, underlying 
comorbidity and NAFLD. In this study, univariate and mul-
tivariate logistic regression analyses indicated NAFLD as an 
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independent risk factor for COVID-19 progression (OR 6.4; 
95% CI 1.5-31.2). NAFLD was also associated with higher 
likelihood of abnormal liver function from admission to dis-
charge, and longer viral shedding time.

The risk of severe COVID-19 presentation increases by 
the coexistence of obesity and NAFLD,55 pointing to a spe-
cific and additional role for pathogenic mechanisms involved 
in NAFLD onset and progression.

NAFLD has also been previously linked with increased 
risk of recurrent bacterial infections,56 and with increased 30-
day all-cause mortality in patients with community-acquired 
pneumonia.57

A meta-analysis examined 313 severe group cases and 
1167 non-severe group cases with respect to liver disease in 
patients with COVID-19. Patients with previous liver disease 
were not at increased risk of disease progression (OR: 0.67, 

F I G U R E  1   Sequences of pathophysiological mechanisms predisposing to metabolic illness and liver steatosis. Rationale to explain 
multi-organ and liver damage during COVID-19 infection. (A) Initial role of wrong lifestyles (hypercaloric, unbalanced, fructose- and refined 
carbohydrate-enriched diet, sedentary behaviour), on a genetic/racial, ethnical and environmental background. Changes in intestinal microbiota can 
also govern additional metabolic changes due to biotransformation of foods, local inflammatory changes, increased intestinal permeability112 to 
bacterial products (ie lypopolisaccharides). (B) Expansion of visceral fat may occur in different phenotypes, independently of simple body weight 
(encompassing the term 'adiposity' or 'overfat'). The three subtypes at risk include normal weight but metabolically obese subjects (characterized 
by high visceral adiposity, ie about % overfat, normal lean mass, propensity to develop metabolic abnormalities),87,113 overweight individuals and 
obese sarcopaenic subjects (high visceral adiposity, decreased lean mass, likely several metabolic abnormalities). The subtype «normal weight 
obese» has increased (>30%) fat mass (not necessarily visceral adiposity), a normal lean mass, without metabolic abnormalities. Overfat conditions 
(in red) are predisposing to chronic metabolic inflammation, compromised immunity, increased risk of chronic disease and infections (including 
viral infections). Underweight, underfat individuals also share the same risk for chronic inflammation, compromised immunity, increased risk of 
chronic disease and infections. (C) The metabolically active vicious circle originates from the excess visceral fat with production of inflammatory 
molecules. In lean individuals or metabolically healthy subjects, anti-inflammatory cytokines (transforming growth factor beta (TGF-β), interleukin 
10 (IL-10), IL-4, IL-13, nitric oxide (NO)) activate M2 macrophage- and inhibit neutrophil-mediated inflammation. T lymphocytes, neutrophils, 
B1 and B2 cells, NK cells and innate lymphoid cells also populate the fat tissue.95 Hypertrophic or apoptotic adipocytes (in grey) in obese 
individuals can secrete pro-inflammatory molecules (leptin, resistin, IL-6 and tumour necrosis factor-α) that activate a pro-inflammatory M1 
macrophage.114 The pro-inflammatory metabolic status is a factor promoting insulin resistance, as well as defective immune response (poor T cell 
and macrophage function). (D) Further progression of the chronic pro-inflammatory status and insulin resistance paves the way to several metabolic 
risk factors contributing to the metabolic syndrome. (E) Chronic illness can follow with established risk factors. (F) Non-alcoholic fatty liver 
disease (NAFLD) and the spectrum of liver abnormalities are the consequence of the accumulated metabolic abnormalities. Excess lipolysis during 
insulin resistance will increase the influx of free fatty acids (FFA), synthesis of triglycerides, enrichment of FFA pool with lipotoxic products 
(lysophosphatidylcholine (LPC); diacylglycerol (DAG); ceramides). Products mediate endoplasmic reticulum (ER) stress, oxidant stress and 
activation of the inflammasome (multiprotein cytoplasmic complex that responds to damage-associated molecular patterns (DAMPs), as part of the 
innate immunity response).38,39,90,115 Abbreviations: BMI, body mass index



4 of 10  |      PORTINCASA et al.

95% CI: 0.30-1.49, P =  .326).47 Limitations in this survey, 
however, include the poor number of available cases, dif-
ferent severity definitions, underlying coexisting illness and 
unspecified liver diseases. On the other hand, in a series of 
310 patients with COVID-19 and NAFLD, the presence of 
intermediate or high FIB-4 scores greatly and independently 
increased the risk of a severe progression of the COVID-19 
disease.58 Patients with NAFLD show a different risk since 
they are exposed to a significant metabolic risk. Several 
mechanisms of damage could link COVID-19 to liver and 
require attention (Figure 2).

a.	 A direct cytopathic viral damage is a possibility. SARS-
CoV-2 in gut lumen could translocate to the liver via 
portal flow and induce a direct damage due to active 
viral replication in hepatic cells through ACE2 recep-
tors.59 This effect is not necessarily linked to increased 
liver SARS-CoV-2 uptake, since NAFLD/MAFLD is not 
associated with changes in expression of liver genes im-
plicated in SARS-CoV-2 infection. A study did not find 
significant differences in human liver biopsies comparing 
gene expression of four proteins: angiotensin-converting 
enzyme 2, cellular protease Transmembrane Protease 
Serine 2, phosphatidylinositol 3-phosphate 5-kinase, and 
cathepsin L protein (genes ACE2, TMPRSS2, PIKfyve 
and CTSL, respectively).60 Thus, a role for the hepatic 
innate immunity populations in increasing the likelihood 
of symptomatic COVID-19 infections (see below) is 
possible.61

b.	 Hepatocellular hypoxia in chronic liver diseases in 
COVID-19-infected patients might lead to increased ex-
pression of ACE2 receptors,51 and hypoxia-inducible fac-
tors (HIFs), a family of transcription factors activated by 
hypoxia. Such changes might further aggravate metabolic 
diseases such as NAFLD,62 aggravating NAFLD progres-
sion.54,63 From a clinical point of view, specific abnormal-
ities of bile duct chemistry are rare in COVID-19-infected 
patients9 and, thus, the ACE2-mediated liver injury could 
be mainly secondary to the localization of these recep-
tors in the endothelial cells17 and NAFLD progression 
might include exaggerated production of ROS and NO 
derivatives,64 inflammatory pathways leading to cellular 
crosstalk with Kupffer cells65 and HIF-2α upregulation,66 
through suppression of fatty acid β-oxidation and induc-
tion of lipogenesis in the liver via PPARα.63 This hypoth-
esis is partly supported by liver histology from patients 
deceased due to severe COVID-19, reporting moderate 
microvesicular steatosis and mild lobular and portal activ-
ity, possibly due to a direct effect of SARS-CoV-2 infec-
tion or to drug-induced liver injury (DILI).67

c.	 Dysregulated systemic and hepatic innate immunity.44,68 
ACE2 receptors in enterocytes 69 would predispose to 
viral translocation to the liver with potentials for viral 
circulation via the reticular system.70 The innate immune 
cellular cluster in the liver would be activated with inflam-
matory and changes due to cytokine production (Figure 3). 
Patients with severe COVID-19 infection display elevation 
of inflammatory biomarkers such as C-reactive protein 

F I G U R E  2   Major factors involved in COVID-19 infection and liver damage. Factors include lung involvement leading to hypoxia and venous 
congestion with liver stasis, role of immune cells and cytokines, drug-induced liver damage and addition of coagulation disorders and cytokine 
storm. A prior liver disease might exaggerate the damage from ongoing COVID-19 infection. Non-alcoholic fatty liver disease might represent per 
se a condition of intrinsic frailty (due to ongoing lipotoxicity, chronic inflammatory status, insulin resistance, oxidant stress, immune response), or 
be a marker of additional coexisting metabolic disorders which will aggravate the clinical course of COVID-19
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(CRP), serum ferritin, LDH, D-dimer and interleukin (IL-
6, IL-2).71 IL-6, in particular, appears as a key factor in 
the onset and progression of the 'cytokine storm' described 
in COVID-19-infected patients,54 and increased IL-6 lev-
els have been reported in subjects with NAFLD.40,72 IL-6 
plays an important role in the 'cytokine storm' of COVID-
19-infected patients.54 Increased IL-6 levels occur in 
NAFLD40,72 and could represent a marker or mediator of 
related atherosclerosis72 and comorbidities often found 
in COVID-19-infected patients. The cytokine MCP-1 is 

often increased in COVID-19-infected patients45 and acts 
as a further hit for steatohepatitis.73

d.	 Drug-induced liver injury (DILI): initial clinical guide-
lines recommended antiviral agents for COVID-19, with 
some of them, including lopinavir/ritonavir, remdesivir, 
chloroquine, tocilizumab, and uminefovir, Chinese tradi-
tional medicine, being potentially hepatotoxic in some pa-
tients (and a few have subsequently already been proven 
to be ineffective). The presence of underlying metabolic 
abnormalities and NAFLD might facilitate DILI.49,74

F I G U R E  3   Population of innate immune cells playing a role in progression of NAFLD. Immune cells include mast cells (MC), Kupffer 
cells (KC), neutrophils, dendritic cells (DC), liver sinusoidal endothelial cells (LSEC), resident innate-like lymphocytes (ILC) and hepatocytes. 
Kupffer cells, neutrophils, dendritic cells, liver sinusoidal endothelial cells and hepatocytes detect the presence of gut-derived P/MAMPs (microbe-
associated molecular pattern molecules), endogenous DAMPs (damage-associated molecular pattern Molecules), PAMPs (pathogen-associated 
molecular pattern molecules) and excessive metabolites via PRRs (pattern recognition receptor), leading to the increased release of pro-
inflammatory cytokines and chemokines. In liver sinusoidal endothelial cells, stressor-induced upregulation of expression of adhesion molecules 
plus chemokines, stimulate recruitment of neutrophils and monocytes to the liver. Activated neutrophils initiate liver damage mainly by releasing 
enzymes and ROS (reactive oxygen species). Activated dendritic cells also present antigens to T cells with initiation of adaptive responses. Kupffer 
cells and hepatocytes regulate release and endocytosis of APPs (acute-phase protein), thus extending their innate immune function to extrahepatic 
organs. Kupffer cells, mast cells and hepatocytes increase expression of other factors MMPs (matrix metalloprotease), Ang II (angiotensin II), TGF 
(transforming growth factor) and HGF (hepatic growth factor) to stimulate HSC (hepatic stellate cell) activation and liver fibrosis. Innate immune 
signals also mediate metabolic changes (e.g. lipogenesis and insulin resistance) and cell apoptosis, pyroptosis or necrosis in hepatocytes. KCs 
and LESCs express high levels of SR (scavenger receptor), which clears circulating molecules and organisms. SR plays a key role in the innate 
immune response. Innate-like lymphocytes, including NKs (natural killer cell), ILCs (innate lymphoid cell), iNKTs (invariant natural killer T cell) 
and MAITs (mucosal-associated invariant T cell), also generate multiple cytokines and influence their local microenvironment of the liver. ILC 
are fundamental cell that transit from an immune-tolerant state (a condition in which they produce interleukin (IL-10), transforming growth factor 
(TGF-β), etc) to an immune-active phenotype (producing IL-1s, TNF-α, etc). ILC form the first line of defence against invading organisms and 
environmental challenges through pattern recognition receptor (PRR) ligation and activation of complement receptors (CRs) or scavenger receptors 
(SRs). Together, these events result in liver steatosis, inflammation and fibrosis and lead to NASH and advanced complications. Abbreviations: 
CCL2, C-C motif chemokine 2; TF, transcriptional factor; Th1, T helper 1 (Adapted from Cai et al68,116 and Jenne & Kubes117)
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e.	 Reactivation of pre-existing liver disease: patients with 
pre-existing chronic liver disease may be more susceptible 
to liver damage from SARS-CoV-2.75 Biological drugs 
like tocilizumab and baricitinib might also cause HBV re-
activation and thus lead to liver function deterioration. On 
the other hand, it is still unknown whether SARS-CoV-2 
infection exacerbates cholestasis in those with underlying 
cholestatic liver diseases. Such pathways might aggravate 
NAFLD.

f.	 Hepatic lipid metabolism. Lipid production and lipid 
breakdown in the liver provide lipid species which nega-
tively regulate the underlying status of chronic metabolic 
inflammation. Basic and clinical research suggest that the 
complex network of factors acting within the liver can 
drive innate immune activation. This pathway directly 
triggers and amplifies hepatic inflammation and affects 
the development of hepatic fibrosis in NAFLD/NASH.76

Although there is no direct evidence that, in the acute 
phase of the disease, a major liver damage occurs more fre-
quently in COVID-19-infected patients with pre-existing 
NAFLD, the common pathogenic mechanisms involved in 
COVID-19 and NAFLD could generate, in COVID-19-
infected patients, an increased risk of NAFLD progression 
to steatohepatitis in the long term.77 Thus, in these patients, a 
close follow-up aimed at explore the long-term outcomes of 
liver injury is needed.

3  |   NAFLD, VIRUS AND 
METABOLIC ALTERATIONS

Studies from China confirm that most vulnerable subjects 
to COVID-19 infection suffer from pre-existing illness 
that includes hypertension, cardiovascular disease, diabe-
tes, chronic lung disease (e.g. asthma, chronic obstructive 
pulmonary disease, and emphysema), cancer and chronic 
inflammation.9,34,78,79

Several of such conditions, alone or in combination, pre-
dispose or are associated with metabolic changes of the liver, 
namely NAFLD. Although there is a hope for more specific 
therapies in COVID-19 infection, including vaccines,80 a 
rational approach against future outbreaks must include pre-
ventive measures such as lifestyle changes to decrease the 
burden of chronic metabolic disorders, adiposity and asso-
ciated pro-inflammatory status while preserving an healthy 
immune response.81,82

This conclusion is supported by emerging relationships 
between COVID-19 outcomes and frequent metabolic abnor-
malities which coexist with NAFLD.

Diabetes mellitus has been described as an additional risk 
to the progression of COVID-19,34,47 probably also due to 

the presence of an 'overfat' condition (see below), low-grade 
chronic inflammation, insulin resistance, obesity38,83-85 and a 
dysregulation of ACE2.61 Of note, the ACE2 is also expressed 
in the endocrine pancreas. Thereby, COVID-19 might facilitate 
a status of insulin resistance and impaired insulin secretion.86

Independently from diabetes, the presence of an 'overfat' 
condition (i.e., excess body fat that impairs health87) has de-
veloped as a pandemic worldwide and can occur in obesity, 
overweight and even normal weight subjects with excess fat 
involving the liver as well in terms of steatosis (Figure 1). 
Several abnormalities can cluster together with overfat, that 
is overweight, obesity, chronic 'metabolic' inflammation and 
insulin resistance, eventually configuring the metabolic syn-
drome (MetS).9,88,89

Excess body fat can impair immunity, as confirmed by the 
higher incidence of both autoimmune and immune diseases.90 
A defective immune response (mainly of T lymphocytes and 
macrophages) with underlying adiposity will compromise the 
immune system to increase the risk of infections, and chronic 
respiratory diseases.91,92 Notably, the overfat condition ap-
pears to be a risk factor in infectious viral diseases.93,94 In 
particular, overfat might negatively affect immune function 
and host defence mechanisms,95 while the response to viral 
and bacterial hits becomes defective in overfat hosts.93,95-97

Lastly, illness, such as asthma, chronic obstructive pul-
monary disease, emphysema and cancer, can be further as-
sociated with the overfat condition 9,78,79). Thus, whether 
the overfat condition represents an additional negative factor 
during COVID-19 infection requires attention.

MetS, on the other hand, is a frequent and important 
underlying condition in patients developing infections, and 
MetS components (combined with liver steatosis) might fur-
ther deteriorate with infections.9,34,78,79 Major contributing 
risk factors for MetS include overweight and obesity.98-109 In 
this case, individuals have increased morbidity in response to 
COVID-19 infection.110,111

4  |   CONCLUSIONS AND FUTURE 
PERSPECTIVES

The pandemic characteristics and high-lethality rate 
of SARS-CoV-2 infection have raised concerns about 
mechanisms of injury in patients at risk. Initial evidence 
from China indicated that the subjects most vulnerable to 
COVID-19 suffer from pre-existing illness. COVID-19 
acute pandemic often develops in patients with major met-
abolic abnormalities, including fatty liver disease, which 
is part of a chronic pandemic together with body fat accu-
mulation. During metabolic abnormalities, the expansion 
of metabolically active fat ('overfat condition') parallels 
chronic inflammatory changes,9,34,78,79 the development of 
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insulin resistance and, in the liver, the accumulation of fat 
and, possibly, an underlying fibrosis. In this context, the 
deleterious interplay of the complex inflammatory path-
ways chronically present in NAFLD can be acutely boosted 
in the setting of COVID-19, magnifying liver injury and 
deteriorating outcome in metabolically compromised pop-
ulations. Thus, NAFLD should be considered as prognostic 
indicator during COVID-19 and, on the other hand, close 
long-term monitoring of patients with NAFLD who experi-
enced COVID-19 might be needed.

Finally, a further challenge in the diagnosis and treatment 
of patients with NAFLD is to reduce the vulnerability from 
non-communicable diseases, increasing the individual resil-
ience to future outbreaks.
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