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Abstract

Background: The novel coronavirus SARS-CoV-2 (coronavirus disease 2019, COVID-19) has caused serious
consequences on many aspects of social life throughout the world since the first case of pneumonia with unknown
etiology was identified in Wuhan, Hubei province in China in December 2019. Note that the incubation period
distribution is key to the prevention and control efforts of COVID-19. This study aimed to investigate the conditional
distribution of the incubation period of COVID-19 given the age of infected cases and estimate its corresponding
quantiles from the information of 2172 confirmed cases from 29 provinces outside Hubei in China.

Methods: We collected data on the infection dates, onset dates, and ages of the confirmed cases through February
16th, 2020. All the data were downloaded from the official websites of the health commission. As the epidemic was
still ongoing at the time we collected data, the observations subject to biased sampling. To address this issue, we
developed a new maximum likelihood method, which enables us to comprehensively study the effect of age on the
incubation period.

Results: Based on the collected data, we found that the conditional quantiles of the incubation period distribution of
COVID-19 vary by age. In detail, the high conditional quantiles of people in the middle age group are shorter than
those of others while the low quantiles did not show the same differences. We estimated that the 0.95-th quantile
related to people in the age group 23∼55 is less than 15 days.

Conclusions: Observing that the conditional quantiles vary across age, we may take more precise measures for
people of different ages. For example, we may consider carrying out an age-dependent quarantine duration in
practice, rather than a uniform 14-days quarantine period. Remarkably, we may need to extend the current quarantine
duration for people aged 0∼22 and over 55 because the related 0.95-th quantiles are much greater than 14 days.
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Background
In December 2019, some cases of pneumonia with
unknown etiology were identified in Wuhan, Hubei
province in China. After being investigated by the
National Coronavirus Research Group, this pneumonia
was identified as caused by a new coronavirus (2019-
nCoV). The World Health Organization (WHO) has
named this disease COVID-19, standing for “2019 coron-
avirus disease” [1].
It turns out that the novel coronavirus, like SARS-

COV, is the seventh member of the Nidovirales family
of coronaviruses [2], but COVID-19 has a shorter serial
interval than that of SARS [3] and higher transmissibility
than MERS in the Middle East countries [4]. It is highly
infectious [5] and even contagious during the incubation
period [6]. It can cause severe symptoms or even death [7].
The novel coronavirus not only threatens cities in China
[8], but also seems to have exploded worldwide. Hence,
it is important to take necessary measures to prevent and
control it as quickly as possible.
In prevention and control efforts, it is well known that

the incubation period distribution plays an important role.
Knowledge of this distribution can help mathematically
model the size of the epidemic [8], predict the time at
which the disease will outbreak, and determine the effi-
cacy of the medical intervention [9], etc. The pioneering
work on deriving the incubation period distribution was
conducted by Philip Sartwell in 1950 [10]. After that,
the lognormal distribution was widely used to model
the incubation period distribution for infectious diseases.
Many authors studied the incubation period distributions
of various other diseases. Some other distributions, e.g.,
Gamma distribution and Weibull distribution, were also
suggested to fit the observed incubation periods; see for
example [9, 11–13].
In the literature, Li et al. [14] first studied the incubation

period distribution of COVID-19 based on the early 10
observations in Hubei province in China. Relying on their
estimation, Li et al. [14] suggested a 14-day medical obser-
vation period or quarantine for exposed persons. Guan
et al. [15] reported the median incubation period, i.e., 3.0
days (range 0 to 24.0 days), of 1099 patients from 552 hos-
pitals in 31 provinces/provincial municipalities through
January 29th, 2020. Recently, Backer et al. [16] updated
this distribution based on the reported travel histories
and symptom onset dates of 88 travelers from Wuhan
with confirmed 2019-nCoV infection in the early outbreak
phase. Backer et al. [16] estimated that the 97.5 percentile
of the incubation period distribution of COVID-19 is
11.1 days. Linton et al. [17] further considered the biased
sampling issue and obtained that the estimated 95%-th
quantile is greater than 14 days.
However, no existing literature above investigates the

distributed characteristic of the incubation period of

COVID-19 over people of different ages. Based on 2172
confirmed cases collected outside Hubei provinces in
China, a simple ANOVA indicates that the age of con-
firmed cases has a significant effect on the incubation
period of COVID-19 [18]. This motivates us to estimate
the conditional incubation period distribution on ages.
Note that the collected data subject to biased sampling
because COVID-19 is still ongoing throughout Febru-
ary 16th, 2020 in China. The current study differs itself
from [19–21], and [22], which investigated the relation-
ship between the age and the incubation period of AIDS,
but did not touch the biased sampling issue.
In this study, we developed the conditional quantiles

model of the incubation period of COVID-19 on the age
of infected cases and provided the estimating method in
detail. The main results were calculated based on the col-
lected data, and the conclusion was presented accordingly.

Methods
In this section, we provide a summary on the collected
data, and introduce the estimating method according to
the major characters of the collected data.
The data set is taken from the websites of the health

commission, or the daily public reports on COVID-19 in
29 provinces outside Hubei province through February
16th, 2020. It consists of 2172 confirmed cases, including
four indexes, i.e., gender, age, onset time, and infection
time. The incubation period value here is calculated by
using the formula “Incubation Period = Onset date −
Infection date + 1”. Note that the default count unit is
supposed to be ‘day’ throughout this paper. Among these
2172 cases, there are more cases from Zhejiang, Henan
and Anhui than from the other provinces because of the
large population of confirmed cases in these provinces. An
additional file shows the details in the data (see Additional
file 1). Figure 1 reports the scatter plot of the incubation
period of COVID-19 v.s. the age of confirmed cases.
We conduct a preliminary one-way ANOVA study on

the incubation period of COVID-19 over four age groups,
i.e., 0∼17, 18∼40, 41∼65, and over 65, and find that the
age of confirmed cases has a significant effect on the
incubation period. Hence, we further investigate the incu-
bation period distribution of COVID-19 conditional on
age as follows.
Note that the Weibull distribution fits well the data

set, and the mean incubation period varies over people
of different ages. We propose to model the relationship
between the true incubation period, sayT, and the age, i.e.,
X, through the conditional distribution G(t|λ(X), η) on X.
The related density function is specified as follows.

g(t|λ(X), η) = η

λ(X)

(
t

λ(X)

)η−1

exp
(

−
(

t
λ(X)

)η)
I(t ≥ 0),
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Fig. 1 Scatter plot of the incubation period of COVID-19 versus the ages of confirmed cases. Note that many data points are overlapped

where I(·) denotes the indicator function, and η > 0 and
λ(X) := λ3(X) = X�β > 0, where X = (1,X,X2,X3)�,
β = (β0,β1,β2,β3)�.
The reasons for using this kind of conditional distribu-

tion form are as follows: (i) The conditional mean of T
takes the form E(T |X) = λ(X)�(1 + 1/η), which implies
that the age X has an obvious effect on E(T |X) through
λ(X); (ii) λ3(x) is flexible enough to characterize the trend
of the change of E(T |X) over X. Note that λ3(x) includes
β0, β0 + β1x, and β0 + β1x + β2x2 as special cases. Here
�(·) denotes the gamma function.
Furthermore, information from the empirical result

shown in Fig. 2 indicates that one may model the distribu-
tion of the age X by normal distribution. Write its density
as φ(x;μ, σ 2). Then, a natural idea is through maximizing
the likelihood function

LT (β , η,μ, σ 2) =
m∏
j=1

{
g(Tj|λ(Xj), η)φ

(
Xj;μ, σ 2)}1/m (1)

to estimate the conditional distribution based on
{Tj,Xj}mj=1.
Unfortunately, the incubation period of some infected

cases cannot be fully observed when the COVID-19 is still

ongoing. The observed incubation period of COVID-19,
say Y, subjects to biased sampling. That is, Y observed at
some fixed time t∗ is not the same as the true incubation
periodT. This is because, for some case infected at time tS,
we only can observe such incubation period Y with Y = T
at time t∗ ifT ∈ (0,�], where� = t∗−tS. This implies that
the distribution of Y is in fact the conditional distribution
depending on the random event {T ∈ (0,�] }. That is, we
have

F(y|X) = P(Y ≤ y|X) (2)
= P(Y ≤ y|T ∈ (0,�] ,X)

= P(T ≤ y, 0 < T ≤ �|X)

P(T ∈ (0,�] |X)

=

⎧⎪⎨
⎪⎩

0, if y ≤ 0
G(y|λ(X),η)
G(�|λ(X),η)

, if 0 < y < �

1, if y ≥ �.

Denote the collected samples as {Yi,�i,Xi}ni=1, where
Yi’s denote the observed incubation periods, Xi’s the ages,
and�i = t∗ − tS,i the difference between the infected time
of the i-case and the observing time t∗, i.e. February 16th,
2020.
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Fig. 2 Histogram of the ages of confirmed cases. The line stands for the fitted density function of normal distribution

Since the number of infected cases does not grow expo-
nentially throughout February 16th, 2020 (see Fig. 3), it is
unreasonable to use the likelihood function developed in
[17] again in this paper. Fortunately, note that there are
cases infected almost every day throughout the data col-
lecting time. Hence, it is reasonable to assume that �i’s
are non-random. Furthermore, note that Yi,Xi are inde-
pendent of the number of infected cases in each day tS,i.
Then, after obtaining F(y|X) in (2), we propose to use the
following likelihood function:

	Y (β , η,μ, σ 2) (3)

=
n∏

i=1

{ [
g(Yi|λ(Xi), η)I(Yi ∈ (0,�i] )

]G(�i)
n ×

exp
(
1
n

∫ +∞

�i
g(s|λ(Xi), η) log(g(s|λ(Xi), η))ds

)

×φ(Xj;μ, σ 2)
1
n

}
.

Note that E
(
log(LT (β , η,μ, σ 2))

)=E
(
log(	Y (β , η,μ, σ 2))

)
when all samples involved are independent, which is mild
because all observations in this paper are collected nation-
wide. It is easy to check that the maximum likelihood
estimator based on (3) is asymptotically the same as that
based on (1), which is consistent and satisfies the asymp-
totic normality under some general conditions.

However, 	Y (β , η,μ, σ 2) contains some integral values{∫ +∞

�i
g(s|λ(Xi), η) log(g(s|λ(Xi), η))ds

}n

i=1
,

which are computationally difficult. Fortunately, it holds
that

1
n

n∑
i=1

∫ +∞

�i
g(s|λ(Xi), η) log(g(s|λ(Xi), η))ds

= 1
n

n∑
i=1

(
log(η) − η log(λ(Xi))

)
(1 − G(�i|λ(Xi), η))

−1
n

n∑
i=1

{[(
�i

λ(Xi)

)η

+ 1
]
exp

(
−

(
�i

λ(Xi)

)η)}

+(η − 1)
1
n

n∑
i=1

∫ +∞

�i
log(s)dG(s|λ(Xi), η).

Noting that the estimation of μ, σ 2 is trivial based on
{Xi}ni=1, we focus on how to estimate β , η in the sequel.
To handle the integral values, we propose to use the EM
algorithm as follows. Here suppose that we have obtained
some initial estimators β̂

(0)
, η̂(0), which may be easily

computed by pretending Yi’s having no bias.

E-step. Set β(k) = β̂
(0)
, η(k) = η̂(0). Generate

m = 1000 independent random numbers
{
uj

}m
j=1,

which is uniformly distributed over [ pmin, 1), where
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Fig. 3 Scatter plot of the number of infected cases versus the infected time. The line stands for the fitted line through the least squares method

pmin = min
{
pi

}
with pi = G(�i|X�

i β(k), η(k)). Put

Ł̃kY (β , η) := 1
n

n∑
i=1

G(�i|X�
i β , η)

log
{
g(Yi|X�

i β , η)
}

I(Yi ∈ (0,�i] )

+1
n

n∑
i=1

(
log(η) − η log(X�

i β)
)

(
1 − G(�i|X�

i β , η)
)

−1
n

n∑
i=1

{[(
�i

X�
i β

)η

+ 1
]

exp
(

−
(

�i

X�
i β

)η)}

+(η − 1)
1
n

n∑
i=1

⎧⎨
⎩(1 − pi)

1
mi

∑
uj≥pi

log
(
G−1(uj|X�

i β(k), η(k))
)}

,

where X�
i = (1,Xi,X2

i ,X3
i ), G−1(·) denotes the

inverse function of G(·), andmi is the cardinal
number of the set

{
j : uj ≥ pi, j = 1, 2, · · ·,m}

.
M-step. Maximize Ł̃kY (β , η) with respect to (β , η)

and obtain the new estimators, namely, β̂
(k+1)

,
η̂(k+1). Check whether

3∑
i=0

|β̂(k+1)
i − β̂

(k)
i | + |η̂(k+1) − η̂(k)| <

1
nδ

,

for some δ > 0.5.

If it is true, return
β̂ =

(
β̂

(k+1)
0 , β̂(k+1)

1 , β̂(k+1)
2 , β̂(k+1)

3

)�
and

η̂ = η̂(k+1); otherwise, repeat the E-step andM-step
until convergence achieves.

We have coded this algorithm by R program relying on
the optimization function constrOptim(). The implemen-
tation runs quite fast. An additional file shows the codes
in detail (See Additional file 2). Usually, convergence can
achieve by several iterations.
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Table 1 The results of parameter estimation

Density Parameter Estimate

φ(x;μ, σ 2) μ̂ 43.15

σ̂ 2 230.49

g(y|λ(x), η)) η̂ 1.81

β̂ (10.24, − 0.13, 2.0 × 10−3, − 1.1 × 10−6)

Results
Based on the information of 2172 confirmed cases, we
computed the estimated parameters by using the imple-
mentation of the EM algorithm mentioned above; see
Table 1. It is worth mentioning that β̂3 = −1.1 × 10−6

is very small, which implies that the cubic form λ3(x) =
β0 + β1x + β2x2 + β3x3 is flexible enough to characterize
the trend of the conditional mean E(T |X) on X. We do not
need to assume a higher-order polynomial for λ(x).
Using results in Table 1, we obtained the conditional

0.05, 0.25, 0.5, 0.75, 0.9, and 0.95-th quantiles of the
incubation period distribution of COVID-19 on ages; see
Fig. 4 for details.

Figure 4 indicates that quantiles corresponding to peo-
ple of the middle ages seem to be less than those of the
others. Especially, the estimated 0.95-th conditional quan-
tile of the children and the elderly is greater obviously than
that of the middle-aged. To be more detailed, we specify
the 0.95-th conditional quantiles of the incubation period
distribution of COVID-19 on different ages in Table 2.
Table 2 indicates that the 0.95-th conditional quantiles
of people in the age group 23∼55 lie between 14 and 15
days, shorter than those of the other groups. We also list
the numbers of cases in each group and the correspond-
ing proportions. It turns out the infected cases of age
23∼55 account for more than 70% of the total collected
cases. Further, note that we collected 136 cases whose
incubation periods are greater than 14 days. We provide
the distribution of these cases over all age groups. It is
shown that the age group 23∼55 accounts for the smallest
proportion, only 5.11%, and the proportion of other age
groups far exceeds 5%.
Furthermore, in order to further verify the results above,

we divide the observed incubation periods into three
groups by age: 0 to 25 years old, 26 to 60 years old,
and over 60 years old, according to World Population

Fig. 4 The estimated conditional quantiles of the incubation period distribution of COVID-19. 15.05 is the estimated 0.95-th quantile of the
unconditional incubation periods
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Table 2 Summary on the age groups divided according to the estimated 0.95-th quantile of the incubation period distribution of
COVID-19, where ñj denotes the number of infected cases in each age group, and m̃j the number of those cases with incubation
period over 14 days in each age group

Item
Incubation period interval

14-15 15-16 16-17 17-18 18-19 19-20 20-21 21-22

Age group(s) 23∼55
15∼22 9∼14 4∼8 0 ∼3

80∼83 84∼86 ≥ 88
56∼63 64∼69 70∼74 75∼79

Number ñj in each group 1545
93 24 24 18

6 6 1
232 156 45 22

(total number ni) (1545) (325) (180) (69) (40) (6) (6) (1)

Proportion ñj/n 71.13%
4.28% 1.1% 1.1% 0.83%

0.28% 0.28% 0.05%
10.68% 7.18% 2.07% 1.01%

(total proportion ni/n) (71.13%) (14.96%) (8.28%) (3.17%) (1.84%) (0.28%) (0.28%) (0.05%)

Number m̃j in each group 79
3 3 1 3

1 1 0
19 16 8 2

(total numbermi) (79) (22) (19) (9) (5) (1) (1) (0)

Proportion m̃j/ni 5.11%
3.23% 12.5% 4.17% 16.67%

16.67% 16.67% 0%
8.19% 10.26% 17.78% 9.09%

(total proportionmi/ni) (5.11%) (11.42%) (22.76%) (21.95%) (25.76%) (16.67%) (16.67%) (0%)

Prospects: the 2019 Revision1. Then we fit the Weibull
distribution in each group by setting λ(x) = β0.
Figure 5 shows that people under the age of 0 to 25

years old or over 60 years old have a higher probability
that would emerge longer incubation period than people
under the age of 26 to 60 years old. Moreover, the right
figure is the fitted Weibull distribution function of the
incubation period of COVID-19 in three age groups. It is
obvious that the 0.95 quantile of people under 26 and over
60 is greater than that of people aged from 26 to 60. This
roughly coincides with the results reported in Fig. 4, and
hence indicates that the conditional distribution consid-
ered above can characterize the relationship of age and
real incubation period of COVID-19.

Discussion
Our estimation of the conditional quantiles indicates that
the incubation period of COVID-19 varies depending on
the age of the infected cases. Precisely, the incubation
period of the young and the old tends to be longer than
that of the middle-aged people.
It seems that we can find some supports from the

immune theory in medical science. Note that human
immunity refers to the sensitivity of the immune system in
response to infection. During the incubation period, since
the host’s immune system has not yet been activated, and
1https://population.un.org/wpp/

the body has not begun to show symptoms, the virus can
use this period to make a lot of replications. In many sit-
uations, to the infection, the more responsive the host’s
immune system is, the shorter the incubation period tends
to be. By further noting that the human immunity is weak
at the beginning, improves with age, and will decline in
the old period [23, 24], it hencemaybe not surprised to see
that the incubation period of the young and the old cases
are longer than that of the middle-aged cases.
Currently, the quarantine duration is fixed to 14 days.

It does not consider any other facts, e.g., age. Hence,
our results may be helpful for disease control and pre-
vention efforts, because it enables us to take some more
precise measures. For example, personalized quarantine
duration can be taken for individuals of different ages.
Especially, people between the ages of 23∼55 play impor-
tant roles in real life and are a significant part of the labor
force. Besides, they account for the largest proportion of
the population. A relatively short quarantine duration for
them not only can reduce the burden of the medical staff
but also is conducive to social-economic development. On
the contrary, the conditional quantiles on ages 0∼22 and
over 55 are much greater than 14 days. We may need to
extend the quarantine duration for people of these ages.
Such extension may help the prevention but have limit
impacts on social-economic development.
It is worth mentioning there exist some other ways in

statistics to characterize the conditional quantile of the

https://population.un.org/wpp/
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Fig. 5 The fitted density and distribution functions of the incubation period for three age groups. The age groups are 0∼25, 26∼60, and over 60.
The left indicates fitted density functions. The right indicates fitted distribution functions

incubation period over age. That is, first model the rela-
tionship between T and X by the following linear model:

T = β0 + β1X + β2X2 + β3X3 + ε,

and then use the technique of quantile regression to
estimate the unknown parameters βi, i = 0, 1, 2, 3. How-
ever, note that the true incubation period T cannot be

Fig. 6 The estimated regression quantiles. The quantiles are 0.05, 0.25, 0.5, 0.75, 0.9, 0.95 from the bottom to top
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fully observed, and the observed incubation period Y is
randomly smaller than T. The estimated quantiles may
suffer from some problem, e.g., underestimation.
In fact, we also report in Fig. 6 the result of the ordi-

nary quantile regression mentioned above. Figure 6 shows
that the regression quantiles follow a similar fashion to the
conditional quantiles reported in Fig. 4. Nevertheless, we
also note that the 0.25-th quantile and the 0.05-th quantile
intersect with each other when the age is greater than 80.
It seems difficult to have a reasonable explanation for this
phenomenon. This strange result may be caused by the
biased sampling issue. Hence, we did not take the regres-
sion quantiles to analyze the current data, although it
provides some similar results as the conditional quantiles.

Conclusion

In this paper, a model of the age effect on quantiles of
the incubation period distribution of COVID-19 was pro-
posed to explore the influence of age on the incubation
period for COVID-19. Based on the collected data, our
model showed that the incubation period of COVID-19
varies depending on the age of the infected cases. Specifi-
cally, the incubation period of the young and the old tends
to be longer than that of middle-aged people. These find-
ings enable us to take some more precise measures rather
than fixed ones and thusmay be helpful for disease control
and prevention efforts. For example, personalized quaran-
tine duration, namely shorter for middle-aged people and
longer for the young and the old, can be taken for individ-
uals of different ages, instead of fixed 14 days. People aged
23∼55 are a major part of the labor force and account for
the largest proportion of the population, therefore, such
methods may help the prevention but have limit impacts
on social-economic development.
There are two major contributions in the papers. First,

a relatively comprehensive description of the age effect on
the incubation period of COVID-19 is provided. By mod-
eling the conditional quantiles of the incubation period
distribution given the age, we can learn about any quan-
tiles of the incubation period of COVID-19 for people of
certain ages. In contrast to methods that divide people
into different age groups, it offers more information for
selecting a more adequate quarantine period. Second, a
reasonable likelihood function (3) was proposed to tackle
the biased sampling problem when modeling the condi-
tional distribution of the incubation period given age. The
proposed likelihood function can almost eliminate the
undesirable consequences and lead to a better estimation
of the incubation period distribution of COVID-19.
It is worthmentioning that we are aware that some other

researchers have also discussed the relationship between
the age and the incubation period of COVID-19 during
our submission. Some of them indicate that the age has

no significant effect on the incubation period of COVID-
19 [25, 26], or the length of the incubation period and age
are positively correlated [27], while some others report
that the age does have an effect [28–30]. However, most
existing studies on the effect issue of age are summary,
depending on a few discrete age subgroups. Besides, few
of them touched on the biased sampling issue. Note that
our current study takes age into account as a covariate.
Hence, it can serve a purpose beyond the summary study.
Furthermore, although 2172 confirmed cases were

included in the study, the data only covered confirmed
cases through February 16th, 2020 in 29 provinces out-
side Hubei province in China. Since COVID-19 has spread
worldwide, the effect pattern of age on the incubation
period in different countries and regions needs further
verification. How about the effect of some other factors,
e.g., climatic conditions and air pollution status, on the
incubation period of COVID-19 is also of great interest
and worthy of further studies. However, it is beyond the
scope of the current paper. We will pursue it in the future.
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Additional file 1: Data. The data was included in the file “Additional file
1.xls”.
1. Variables description
Age: age of the confirmed case
InDate: infection date
OutDate: onset date
InPeriod: incubation Period
2. Values of variables
Age: the original age of the confirmed case
InDate and OutDate: for convenience, the values of InDate and OutDate
were represented as the number of days departing from December 31,
2019, on which WHO announced the disease COVID-19 have become a
public health incident. For example, the date January 1, 2020 takes the
value 1.
Incubation Period: Onset date - Infection date + 1

Additional file 2: Code. The code was included in the file “Additional file
2.R”.
1. Data file path
To ensure that the program runs successfully, the data file “Additional file
1.xls” should be placed in the current working directory of R, which can be
shown by running the code “getwd()” in R.
An alternative way is adding the file path in Line 18 of the code.
2. R packages needed
R packages including “readxl” “splines” “ggplot2” “quantreg” and “SparseM”
should be successfully installed before running the program. All the
packages can be installed by running “install.packages()”, such as
“install.packages(“readxl”)” for package “readxl”.
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