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Abstract: One new diterpenoid, diaporpenoid A (1), two new sesquiterpenoids, diaporpenoids B–C
(2,3) and three new α-pyrone derivatives, diaporpyrones A–C (4–6) were isolated from an MeOH
extract obtained from cultures of the mangrove endophytic fungus Diaporthe sp. QYM12. Their
structures were elucidated by extensive analysis of spectroscopic data. The absolute configurations
were determined by electronic circular dichroism (ECD) calculations and a comparison of the specific
rotation. Compound 1 had an unusual 5/10/5-fused tricyclic ring system. Compounds 1 and 4
showed potent anti-inflammatory activities by inhibiting the production of nitric oxide (NO) in
lipopolysaccharide (LPS)-induced RAW264.7 cells with IC50 values of 21.5 and 12.5 µM, respectively.

Keywords: mangrove endophytic fungus; Diaporthe sp.; anti-inflammatory activity

1. Introduction

Mangrove endophytic fungi are the second largest ecological group of the marine
fungi [1]. The particular environmental conditions of mangroves allow the activation
of unique metabolic pathways in endophytic fungi, enabling the production of novel
chemical backbones with diverse biological activities, making them a promising source
of drug leads [2–5]. Diaporthe is a ubiquitous fungus commonly isolated from most plant
hosts [6]. It is known to produce diverse compounds with antibacterial [7], antifungal [6],
cytotoxic [8], antitubercular [9], antiparasitic [10] and anticancer [11] activities. With the
aim of seeking new bioactive natural products from marine microorganisms, a mangrove
endophytic fungus Diaporthe sp. QYM12, which was isolated from Kandelia candel collected
from the South China Sea, was cultured in solid rice medium. As a result, six new metabo-
lites including diaporpenoids A–C (1–3) and diaporpyrones A–C (4–6) together with one
known analogue, 4-O-methylgermicidin L (7) [12], were isolated (Figure 1). Herein, the
isolation, structure elucidation and anti-inflammatory activity of all isolated compounds
are described.
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Figure 1. The structures of 1–7. 

2. Results 
Compound 1 has a molecular formula of C20H32O6 based on the (+)-HRESIMS (m/z: 

391.20900 [M + Na]+), requiring five indices of hydrogen deficiency. The 1H NMR data 
(Table 1) showed six methyl signals at δH 1.20 (s, H3-11), 1.33 (d, J = 7.6 Hz, H3-14), 0.97 (d, 
J = 7.3 Hz, H3-15), 1.22 (s, H3-16), 1.31 (d, J = 7.3 Hz, H3-19) and 0.99 (d, J = 7.2 Hz, H3-20). 
Twenty carbon resonances in the 13C NMR data showed six methyls, two sp3 methylenes, 
eight sp3 methines and four quaternary carbons (two carbonyl carbons). These data sug-
gested that 1 may be a tricyclic diterpenoid. The 1H-1H COSY spectrum revealed two spin 
systems: H2-2/H-3/H-4(/H-5)/H-13/H3-14 and H2-7/H-8/H-9(/H-10)/H-18/H3-19. The 
HMBC correlations (Figure 2) from H3-11 to C-1, C-2 and C-10, and from H3-16 to C-5, C-
6 and C-7 implied the existence of a ten-membered ring core structure. Moreover, the cor-
relations from H-3 to C-12, from H3-14 to C-4 and C-12, from H3-19 to C-9 and C-17, and 
from H-8 to C-17 were consistent with the existence of two five-membered lactones. The 
NOESY correlations (Figure 3) from H3-11/ H-3, H3-11/ H-9, H-9/H3-20, H-9/H3-19, H-4/ 
H3-16, H-4/ H3-15, H-4/ H3-14 and H3-16/H-8 suggested that these protons were cofacial. 
Thus, the relative configuration of 1 has two possible enantiomers: 1a (1R, 3S, 4S, 5R, 6R, 
8S, 9S, 10R, 13S, 18S) and 1b (1S, 3R, 4R, 5S, 6S, 8R, 9R, 10S, 13R, 18R). Comparing the 
experimental and calculated ECD spectra (Figure 4) between 1 and 1b at the level of 
B3LYP/DGDZVP determined the absolution configuration of 1 as 1S, 3R, 4R, 5S, 6S, 8R, 
9R, 10S, 13R, 18R. 

 
Figure 2. Key HMBC (red arrows) and COSY (blue bold lines) correlations of 1–3. 
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Figure 1. The structures of 1–7.

2. Results

Compound 1 has a molecular formula of C20H32O6 based on the (+)-HRESIMS (m/z:
391.20900 [M + Na]+), requiring five indices of hydrogen deficiency. The 1H NMR data
(Table 1) showed six methyl signals at δH 1.20 (s, H3-11), 1.33 (d, J = 7.6 Hz, H3-14), 0.97 (d,
J = 7.3 Hz, H3-15), 1.22 (s, H3-16), 1.31 (d, J = 7.3 Hz, H3-19) and 0.99 (d, J = 7.2 Hz, H3-20).
Twenty carbon resonances in the 13C NMR data showed six methyls, two sp3 methylenes,
eight sp3 methines and four quaternary carbons (two carbonyl carbons). These data
suggested that 1 may be a tricyclic diterpenoid. The 1H-1H COSY spectrum revealed two
spin systems: H2-2/H-3/H-4(/H-5)/H-13/H3-14 and H2-7/H-8/H-9(/H-10)/H-18/H3-19.
The HMBC correlations (Figure 2) from H3-11 to C-1, C-2 and C-10, and from H3-16 to C-5,
C-6 and C-7 implied the existence of a ten-membered ring core structure. Moreover, the
correlations from H-3 to C-12, from H3-14 to C-4 and C-12, from H3-19 to C-9 and C-17,
and from H-8 to C-17 were consistent with the existence of two five-membered lactones.
The NOESY correlations (Figure 3) from H3-11/ H-3, H3-11/ H-9, H-9/H3-20, H-9/H3-19,
H-4/ H3-16, H-4/ H3-15, H-4/ H3-14 and H3-16/H-8 suggested that these protons were
cofacial. Thus, the relative configuration of 1 has two possible enantiomers: 1a (1R, 3S, 4S,
5R, 6R, 8S, 9S, 10R, 13S, 18S) and 1b (1S, 3R, 4R, 5S, 6S, 8R, 9R, 10S, 13R, 18R). Comparing
the experimental and calculated ECD spectra (Figure 4) between 1 and 1b at the level of
B3LYP/DGDZVP determined the absolution configuration of 1 as 1S, 3R, 4R, 5S, 6S, 8R,
9R, 10S, 13R, 18R.
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Table 1. 1H and 13C NMR data for Compounds 1 and 2 in CDCl3.

No.
1 2

δC, Type δH (J in Hz) δC, Type δH (J in Hz)

1 80.9, C 137.8, C
2 46.4, CH2 2.16, m 108.9, CH 6.26, d (2.2)
3 81.5, CH 4.95, td (2.5, 7.3) 154.4, C
4 54.1, CH 2.16, m 101.4, CH 6.18, d (2.3)
4a 154.5, C
5 50.6, CH 1.96, dt (6.8, 13.2) 79.4, C

6α 81.2, C 42.8, CH2 2.51, d (14.5)
6β 2.22, m
7 46.0, CH2 2.21, m 121.3, CH 5.14, m

2.05, m
8 81.0, CH 4.86, td (2.5, 6.8) 141.4, CH 5.15, d (2.2)
9 49.6, CH 2.56, dt (7.2, 10.0) 38.5, C
10 44.0, CH 2.05, m 40.6, CH2 2.23, m

1.77, m
11 23.7, CH3 1.20, s 123.5, CH 5.17, m
12 181.1, C 138.6, C
13 42.6, CH 2.72, qd (3.1, 7.6) 78.2, CH 3.99, d (9.6)

14α 18.3, CH3 1.33, d (7.6) 39.7, CH2 1.76, m
14β 1.11, dd (9.3, 13.5)
14a 34.2, CH 1.69, m
15α 15.9, CH3 0.97, d (7.3) 27.3, CH2 2.88, dd (5.6, 16.4)
15β 2.24, m
15a 112.7, C
16 23.8, CH3 1.22, s 19.3, CH3 2.19, s
17 180.5, C 19.8, CH3 1.06, s
18 38.3, CH 2.90, dq (7.3, 9.9) 24.1, CH3 1.01, s
19 11.6, CH3 1.31, d (7.3) 30.4, CH3 1.06, s
20 15.8, CH3 0.99, d (7.2) 10.6, CH3 1.65, sMar. Drugs 2021, 19, x FOR PEER REVIEW 3 of 10 
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Compound 2 was isolated as a colorless oil and had a molecular formula of C23H32O3
via HRESIMS. The NMR data of 2 were similar to those of pughiinin A [13]. It was
confirmed that 2 had the same planar structure as pughiinin A by analyzing the COSY
and HMBC correlations (Figure 2). The main difference was the 11E-configuration of the
double bond between C-11 and C-12, which was confirmed by the NOESY correlation
(Figure 3) from Hα-10/H3-20. The chemical shift at C-20 (δC 10.6) in 2 further supported
the 11E-configuration [14]. The relative configuration of 2 was elucidated by the NOESY
correlations from H-13/H3-20, H3-20/H3-17, H3-17/H-6β, H-6α/H-15α and H-15α/H-14a.
Thus, the structure of 2 was defined as shown in Figure 1.
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Figure 4. Comparison of the experimental and calculated ECD spectra of 1.

The HRESIMS data of 3 suggested a molecular formula of C15H22O4. The 13C NMR
data (Table 2) showed 15 carbon resonances, including three methyls, three sp3 methylenes,
five methines (two oxygen-bearing and three olefinic) and four quaternary carbons (one
olefinic and one carbonyl). The COSY correlations (Figure 2) revealed the presence of three
spin systems from H-1/H-2/H2-3, H-5/H2-6/H-7 and H-9/H2-10. The HMBC correlations
from H3-12 to C-3, C-4 and C-5, H3-13 to C-7, C-8 and C-9, H3-14 to C-10, C-11 and C-15,
and H-1 to C-11 and C-15 established the 11-membered ring core structure. The presence
of a 4,5-oxirane ring was determined by the chemical shift values of C-4 (δC 64.6) and C-5
(δC 60.7). The NOESY correlations (Figure 3) from Ha-3/H-5, Hb-3/H3-12, H3-12/H-7,
H-7/H-9 and H-9/H3-14 indicated the relative configuration as 4R*, 5R*, 7R*, 11R*. The
limited quantity did not allow one to define the absolute configuration of 3 through the
modified Mosher’s method.

Table 2. 1H and 13C NMR data for 3 and 4 in MeOH-d4.

No.
3 4

δC, Type δH (J in Hz) No. δC, Type δH (J in Hz)

1 138.8, CH 5.50, d (15.8) 2 167.7, C
2 124.6, CH 5.45, ddd (4.7, 10.6, 15.8) 3 97.8, C

3α 44.1, CH2 2.60, dd (4.7, 11.9) 4 166.4, C
3β 1.57, dd (10.6, 11.9) 5 101.7, CH 6.06, s
4 64.6, C 6 160.0, C
5 60.7, CH 2.45, dd (5.2, 9.7) 7 41.4, CH2 2.65, m

6α 34.4, CH2 2.19, ddd (5.1, 10.0, 13.3) 8 69.8, CH 4.47, d (6.5)
6β 1.61, m 9 127.7, CH 5.58, dd (6.8, 15.6)
7 76.4, CH 4.10, dd (6.6, 10.1) 10 135.8, CH 6.25, d (15.6)
8 137.3, C 11 131.6, C
9 126.5, CH 5.16, brd (11.4) 12 139.6, CH 5.23, d (10.0)

10α 36.4, CH2 2.71, dd (12.2, 13.3) 13 34.2, CH 2.40, m
10β 2.08, brd (12.2) 14α 30.1, CH2 1.38, m
11 49.1, C 14β 1.24, m
12 17.0, CH3 1.34, s 15 10.9, CH3 0.83, t (7.4)
13 10.8, CH3 1.64, s 16 19.6, CH3 0.94, d (6.6)
14 19.7, CH3 1.39, s 17 11.5, CH3 1.74, s
15 181.5, C 18 6.8, CH3 1.85, s

Compound 4 was assigned the molecular formula C17H24O4 by the HRESIMS (m/z:
291.16021 [M − H]−). The 1H NMR data (Table 2) exhibited the presence of four methyl
signals at δH 0.83 (t, J = 7.4 Hz, 3H), 0.94 (d J = 6.6 Hz, 3H), 1.74 (s, 3H) and 1.85 (s, 3H),
and four olefinic proton signals at δH 6.06 (s, 1H), 5.58 (dd, J = 6.8, 15.6 Hz, 1H), 6.25
(d, J = 15.6 Hz, 1H) and 5.23 (d, J = 10.0 Hz, 1H). The 13C NMR data revealed 17 carbon
resonances including four methyls, two methylenes, six methines (four olefinic carbons)
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and five other carbons (one carbonyl carbon and two olefinic carbons). Similar NMR
data suggested that the structure of 4 was similar to that of proasperfuranone B [15]. The
main difference was that the ketone carbonyl group in proasperfuranone B was reduced
to a hydroxyl group in 4. The deduction was confirmed by the HMBC correlations from
H-8 to C-6, C-7 and C-9 (Figure 5). Thus, the planar structure of 4 was established. The
calculated ECD spectrum fit the experimental spectrum perfectly well (Figure 6) at the
BVP86/LANL2MB level in methanol; the absolute configuration of C-8 was determined
as 8R.
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Compound 5, isolated as a colorless oil, gave a molecular formula of C11H16O4 by
HRESIMS data. The 1H NMR data (Table 3) exhibited the presence of three methyl signals
at δH 0.92 (t, J = 7.4 Hz, 3H), 1.91 (s, 3H) and 3.90 (s, 3H), and one olefinic proton at δH
6.10 (s, 1H). The 13C NMR data showed 11 carbon resonances assigned to two methyls
(δC 8.5, 11.7), one methoxy (δC 56.2), two methylenes (δC 63.6, 22.1), two methines (δC
96.2, 49.4) and four nonprotonated carbons (δC 165.6, 101.3, 163.9 and 165.5). The HMBC
correlations from H3-11 to C-2, C-3 and C4, and H-5 to C-4 and C-6 revealed the presence of
the α-pyrone moiety. The correlations from H-7 and H-8 to C-6, as well as the 1H-1H COSY
cross-peaks of H2-8/H-7/H2-9/H3-10 (Figure 5) indicated the side chain attached to C-6.
Thus, the planar structure of 5 was established. By comparing the specific rotation value of
5 ([α]25

D −32, c 0.28, MeOH) with 4-deoxyphomapyrone C ([α]25
D −40, c 0.37, MeOH) [16]

and germicidin C ([α]25
D +21, c 0.36, MeOH) [17], the absolute configuration of 5 was

assigned as 7R.
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Table 3. 1H and 13C NMR data for 5–7 in CDCl3.

No.
5 6

δC, Type δH (J in Hz) δC, Type δH (J in Hz)

2 165.6, C 166.2, C
3 101.3, C 101.2, C
4 163.9, C 166.2, C
5 96.2, CH 6.10, s 93.8, CH 6.25, s
6 165.5, C 167.6, C
7 49.4, CH 2.56, m 35.5, CH 2.82, dq (6.8, 13.7)
8 63.6, CH2 3.88, m 37.4, CH2 1.93, m

1.75, dt (6.1, 13.6)
9 22.1, CH2 1.65, m 60.3, CH2 3.63, m
10 11.7, CH3 0.92, t (7.4) 18.7, CH3 1.25, d (6.9)
11 8.5, CH3 1.91, s 8.5, CH3 1.87, s
12 56.2, CH3 3.90, s 56.4, CH3 3.86, s

Compound 6 was obtained as a colorless oil and had a molecular formula of C11H16O4
by HRESIMS. The 1H and 13C NMR data (Table 3) of 6 were similar to those of 5, revealing
an α-pyrone derivative. Moreover, the planar structure of 6 was established by the spin
system of H3-10/H-7/H2-8/H2-9 from 1H-1H COSY spectra together with the HMBC
correlations (Figure 5) from H-7 and H2-8 to C-6. Meanwhile, the planar structure of 6 was
identified as being the same as phomopyronol [18]. Finally, the calculated ECD spectrum
and the experimental data (Figure 7) were well matched, indicating the 7R configuration
of 6.
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Compound 7 was identified as 4-O-methylgermicidin L (7) [12] by a comparison of
the spectroscopic data with the literature.

Nitric oxide (NO) is a key biological signaling molecule regulating the variety of
physiological functions [19]. The excessive production of NO could induce tissue damage,
and it is essential to find new effective NO inhibitors to treat inflammatory diseases
and related disorders. Thus, the anti-inflammatory activity of isolated compounds was
evaluated against nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated
mouse macrophage RAW 264.7 cells. The results (Table 4 and Table S1) showed that 4
exhibited a potent inhibitory activity with an IC50 value of 12.5 µM. Compounds 1–2
showed a moderate activity with IC50 values of 21.5 and 36.8 µM, respectively, when
compared to the positive control (L-NMMA, IC50: 15.0 µM). All the tested compounds
were nontoxic at the tested concentration.
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Table 4. The anti-inflammatory activities of compounds 1–8.

Compound 1 2 3 4 5 6 7 L-NMMA a

IC50 (µM) 21.5 36.8 50.0 12.5 - - 50.0 15.0
- not tested. a positive control.

3. Experimental Section
3.1. General Experimental Procedures

Specific rotations were taken on a MCP 300 (Anton Paar) polarimeter at 28 ◦C. UV
spectra were recorded in MeOH using a PERSEE TU-1900 spectrophotometer, and ECD data
were measured on a Chirascan CD spectrometer (Applied Photophysics). IR spectra were
obtained on a Nicolet Nexus 670 spectrophotometer, in KBr discs. All NMR experiments
were performed on a Bruker Avance 500 spectrometer at room temperature. HRESIMS
spectra were obtained on a Thermo Fisher Scientific Q-TOF mass spectrometer. Column
chromatography (CC) was conducted using silica gel (200–300 mesh, Qingdao Marine
Chemical Factory) and Sephadex LH-20 (Amersham Pharmacia). Semipreparative HPLC
was carried out using a C18 column (ODS, 250 × 10 mm, 5 µm). Thin-layer chromatography
(TLC) was performed on silica gel plates (Qingdao Huang Hai Chemical Group Co., G60,
F-254).

3.2. Fungal Material, Fermentation and Isolation

The strain QYM12 was isolated from the healthy leaves of Kandelia candel, which
were collected in June 2017 from the South China Sea, Dongzhai Harbor Mangrove Na-
ture Reserve Area, Hainan Province, China. Fungal identification was achieved using a
molecular biological protocol by DNA amplification and ITS sequence [20]. The sequence
was the most similar (99%) to the sequence of Diaporthe sp. (GU066666.1) via BLAST
research. The sequence data of the strain has been deposited at GenBank with the accession
number MW332459. The fungus was preserved at Sun Yat-Sen University, China. The
strain was cultured on PDA medium for four days. Then, the seed culture was prepared
by the mycelia of the fungus being inoculated into 500 mL of PDB medium for five days.
Thereafter, the seed culture was transferred into solid rice medium (800 × 1000 Erlenmeyer
flasks each containing 80 g of raw rice and 70 mL of 0.3% seawater) at 28 ◦C for 30 days.

Thereafter, the fermented material was extracted with MeOH three times, and organic
phases were combined and evaporated under reduced pressure to yield an extract of 25.0 g.
Then, the residue was fractionated by silica gel column chromatography with a gradient
of petroleum ether/EtOAc from 10:0 to 0:10 to give eight fractions (Fr.1-Fr.8, per 10 mL).
Fr.3 (380.0 mg) was subjected to Sephadex LH-20 CC (CH2Cl2/MeOH v/v, 1:1) to yield
three fractions (3.1–3.3). Fr.3.1 (10.0 mg) was purified by silica gel CC (CH2Cl2/MeOH
v/v, 75:1) to yield compound 1 (3.5 mg). Fr.4 (565.0 mg) was subjected to Sephadex LH-20
CC (CH2Cl2/MeOH v/v, 1:1) to yield two fractions (4.1 and 4.2). Fr.4.1 (36.5 mg) was
purified by semipreparative reversed-phase HPLC (MeOH-H2O, 50:1) to yield compound 7
(3.1 mg). Fr.4.2 (46.2 mg) was subjected to silica gel CC (CH2Cl2/MeOH v/v, 95:5) to yield
compounds 2 (2.0 mg) and 5 (5.6 mg). Fr.5 (522.0 mg) was purified by Sephadex LH-20 CC
(CH2Cl2/MeOH v/v, 1:1) to afford three fractions (5.1–5.3). Fr.5.1 (7.6 mg) was subjected to
silica gel CC (CH2Cl2/MeOH v/v, 25:1) to give compound 3 (2.0 mg). Fr.6 (650.0 mg) was
subjected to Sephadex LH-20 CC (CH2Cl2/MeOH v/v, 1:1) to give four fractions (6.1–6.4).
Fr.6.1 (38.0 mg) was purified by silica gel CC (CH2Cl2/MeOH v/v, 10:1) to yield compound
6 (6.8 mg). Fr.6.2 (15.0 mg) was subjected to silica gel CC (CH2Cl2/MeOH v/v, 17:3) to
yield compound 4 (3.3 mg).

Diaporpenoid A (1): colorless oil; [α]25
D −32 (с 0.46, MeOH); UV (MeOH) λmax (log ε):

215 (2.52) nm; IR (KBr) νmax: 3376, 2910, 2896, 1685, 1413, 1352, 1206, 1026 cm−1; 1H and
13C NMR (500 MHz, CDCl3) data, Table 1; HRESIMS m/z 391.20900 [M + Na]+ (calcd for
C20H32O6Na, 391.20911).
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Diaporpenoid B (2): colorless oil; [α]25
D +28 (с 0.06, CDCl3); UV (MeOH) λmax (log ε): 209

(1.86), 281 (3.02) nm; IR (KBr) νmax: 3422, 3268, 2798, 1632, 1590, 1330, 1215, 1063 cm−1;
1H and 13C NMR (500 MHz, CDCl3) data, see Table 1; HRESIMS m/z 357.24244 [M + H]+

(calcd for C20H32O6, 357.24242).

Diaporpenoid C (3): colorless oil; [α]25
D +18 (с 0.04, MeOH); UV (MeOH) λmax (log ε): 220

(2.52) nm; IR (KBr) νmax: 3320, 1762, 1525, 1376, 1356, 1132, 1010 cm−1; 1H and 13C NMR
(500 MHz, MeOH-d4) data, see Table 2; HRESIMS m/z 265.14401 [M − H]− (calcd for
C15H22O4, 265.14453).

Diaporpyrane A (4): colorless oil; [α]25
D +12 (с 0.07, MeOH); UV (MeOH) λmax (log ε): 212

(3.22), 240 (3.53) nm; IR (KBr) νmax: 3420, 2986, 2855, 1762, 1727, 1612, 1344, 1235, 1086
cm−1; 1H and 13C NMR (500 MHz, MeOH-d4) data, see Table 2; HRESIMS m/z 291.16021
[M − H]− (calcd for C17H24O4, 291.16018).

Diaporpyrane B (5): colorless oil; [α]25
D −32, (с 0.28, MeOH); UV (MeOH) λmax (log ε): 212

(3.45), 283 (3.62) nm; IR (KBr) νmax: 3176, 2965, 1647, 1580, 1421 cm−1; 1H and 13C NMR
(500 MHz, CDCl3) data, see Table 3; HRESIMS m/z 213.11221 [M + H]+ (calcd for 213.11214,
C11H17O4).

Diaporpyrane C (6): colorless oil; [α]25
D −65 (с 0.85, MeOH); UV (MeOH) λmax (log ε):

205(3.32), 300 (3.67) nm; IR (KBr) νmax: 3445, 2962, 1735, 1675, 1363, 1256, 1218 cm−1; 1H
and 13C NMR (500 MHz, CDCl3) data, see Table 3; HRESIMS m/z 213.1116 [M + H]+ (calcd
for C11H17O4, 213.1117).

3.3. ECD Calculation Methods

The calculation was accomplished according to the method described previously [21].
The conformers of compounds 1, 4 and 6 were first optimized by DFT methods at the
B3LYP/6-31G (d) level in the Gaussian 05 program. Then, the theoretical calculation was
performed using the time-dependent density functional theory (TD-DFT) at the level of
B3LYP/DGDZVP, BVP86/LANL2MB and B3LYP/DGTZVP, respectively.

3.4. Anti-Inflammatory Assay

The RAW264.7 cells were purchased from Macrophage Resource Center, Shanghai
Institute of Life Sciences, Chinese Academy of Sciences (Shanghai, China). The method
for the assay of the anti-inflammatory activity was conducted according to a previously
published paper [20]. The detailed process is described in the Supplementary Materials.

4. Conclusions

In summary, the strain Diaporthe sp. QYM12, which was isolated from Kandelia candel,
Dongzhai Harbor Mangrove Nature Reserve Area, was cultured in solid rice medium,
leading to the identification of six new metabolite diaporpenoids A-C (1–3) and diaporpy-
rones A-C (4–6). Compound 1 was a macrocyclic diterpenoid featuring a rare 5/10/5-fused
tricyclic ring system, and compounds 2,3 were macrocyclic sesquiterpenoids possessing a
hendecane core. Macrocyclic sesquiterpenoids and diterpenoids are a functionally diverse
group of natural products with versatile bioactivities [22]. For instance, junceellolide C
showed an anti-HBV activity [23], flaccidenol A displayed a cytotoxic activity [24], an-
tipacid B exhibited an anti-inflammatory activity [25], and euphorbesulins A revealed an
antimalarial activity [26]. The anti-inflammatory assay suggested that compound 1 showed
a moderate activity with an IC50 value of 21.5 µM. Compound 4 exhibited a potent in-
hibitory activity with an IC50 value of 12.5 µM. Proinflammatory enzymes, including nitric
oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), were reported to play key roles in
inflammatory processes [27]. Thus, further research is required to clarify the underlying
mechanisms of the active compounds. This study has suggested that these macrocyclic
sesquiterpenoids and α-pyrone derivatives have the potential to develop lead compounds
for anti-inflammatory agents.
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Supplementary Materials: The following are available online at https://www.mdpi.com/1660-3
397/19/2/56/s1. Figure S1: 1H NMR spectrum of compound 1 (500 MHz, CDCl3). Figure S2:
13C NMR spectrum of compound 1 (125 MHz, CDCl3). Figure S3: HSQC spectrum of compound
1. Figure S4: 1H-1H COSY spectrum of compound 1. Figure S5: HMBC spectrum of compound
1. Figure S6: HRESIMS spectrum of compound 1. Figure S7: NOESY spectrum of compound 1.
Figure S8: 1H NMR spectrum of compound 2 (500 MHz, CDCl3). Figure S9: 13C NMR spectrum of
compound 2 (125 MHz, CDCl3). Figure S10: HSQC spectrum of compound 2. Figure S11: 1H-1H
COSY spectrum of compound 2. Figure S12: HMBC spectrum of compound 2. Figure S13: NOESY
spectrum of compound 2. Figure S14: HRESIMS spectrum of compound 2. Figure S15: 1H NMR
spectrum of compound 3 (500 MHz, MeOH-d4). Figure S16: 13C NMR spectrum of compound
3 (125 MHz, MeOH-d4). Figure S17: HSQC spectrum of compound 3. Figure S18: 1H-1H COSY
spectrum of compound 3. Figure S19: HMBC spectrum of compound 3. Figure S20: NOESY spectrum
of compound 3. Figure S21: HRESIMS spectrum of compound 3. Figure S22: 1H NMR spectrum
of compound 4 (500 MHz, MeOH-d4). Figure S23: 13C NMR spectrum of compound 4 (125 MHz,
MeOH-d4). Figure S24: HSQC spectrum of compound 4. Figure S25: 1H-1H COSY spectrum of
compound 4. Figure S26: HMBC spectrum of compound 4. Figure S27: HRESIMS spectrum of
compound 4. Figure S28: 1H NMR spectrum of compound 5 (500 MHz, CDCl3). Figure S29: 13C
NMR spectrum of compound 5 (125 MHz, CDCl3). Figure S30: HSQC spectrum of compound 5.
Figure S31: 1H-1H COSY spectrum of compound 5. Figure S32: HMBC spectrum of compound 5.
Figure S33: HRESIMS spectrum of compound 5. Figure S34: 1H NMR spectrum of compound 6
(500 MHz, CDCl3). Figure S35: 13C NMR spectrum of compound 6 (125 MHz, CDCl3). Figure S36:
HSQC spectrum of compound 6. Figure S37: 1H-1H COSY spectrum of compound 6. Figure S38:
HMBC spectrum of compound 6. Figure S39: HRESIMS spectrum of compound 6.
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