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Integration of a single‑step genome‑wide 
association study with a multi‑tissue 
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Abstract 

Background:  Genetic improvement of wool and growth traits is a major goal in the sheep industry, but their 
underlying genetic architecture remains elusive. To improve our understanding of these mechanisms, we conducted 
a weighted single-step genome-wide association study (WssGWAS) and then integrated the results with large-scale 
transcriptome data for five wool traits and one growth trait in Merino sheep: mean fibre diameter (MFD), coefficient of 
variation of the fibre diameter (CVFD), crimp number (CN), mean staple length (MSL), greasy fleece weight (GFW), and 
live weight (LW).

Results:  Our dataset comprised 7135 individuals with phenotype data, among which 1217 had high-density (HD) 
genotype data (n = 372,534). The genotypes of 707 of these animals were imputed from the Illumina Ovine single 
nucleotide polymorphism (SNP) 54 BeadChip to the HD Array. The heritability of these traits ranged from 0.05 (CVFD) 
to 0.36 (MFD), and between-trait genetic correlations ranged from − 0.44 (CN vs. LW) to 0.77 (GFW vs. LW). By inte-
grating the GWAS signals with RNA-seq data from 500 samples (representing 87 tissue types from 16 animals), we 
detected tissues that were relevant to each of the six traits, e.g. liver, muscle and the gastrointestinal (GI) tract were 
the most relevant tissues for LW, and leukocytes and macrophages were the most relevant cells for CN. For the six 
traits, 54 quantitative trait loci (QTL) were identified covering 81 candidate genes on 21 ovine autosomes. Multiple 
candidate genes showed strong tissue-specific expression, e.g. BNC1 (associated with MFD) and CHRNB1 (LW) were 
specifically expressed in skin and muscle, respectively. By conducting phenome-wide association studies (PheWAS) 
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Background
Chinese Merino is a dual-purpose sheep breed that is 
widespread in Northwest China and renowned for its 
environmental adaptability and high-quality wool and 
mutton [1]. The genetic improvement of complex traits 
that are relevant to wool and mutton production is essen-
tial in the sheep industry [2]. Although the genetic vari-
ation of such economic traits has been explored [3–5], 
the genetic architecture underlying the control of wool 
and growth traits is not fully elucidated, which hinders 
genetic improvement programmes.

Genome-wide association studies (GWAS) have 
become an efficient approach to identify single nucle-
otide polymorphisms (SNPs) that are associated with 
complex traits in humans and livestock [6–8]. Sev-
eral single-marker GWAS of wool and growth traits 
in sheep have been conducted [9–11]. For instance, 
Wang et  al. [9] reported 12 candidate genes for wool 
traits in Merino sheep (n = 765). Ebrahimi et  al. [10] 
found three significant SNPs associated with greasy 
fleece weight in a population of 96 Baluchi sheep, and 
Bolormaa et  al. [11] studied 22 traits, including wool 
and breech conformation traits, in a population of 5726 
Merino and crossbred sheep. In addition to GWAS, 
the analysis of selection signatures is also commonly 
used to detect genetic associations with wool traits in 
sheep [3, 5]. For instance, Megdiche et al. [5] found that 
genomic regions under positive selection in Merino 
and other Merino-derived breeds were significantly 
associated with wool traits. However, these analy-
ses were limited by the number of animals for which 
both genotypes and phenotypes were available. The 
weighted single-step genome-wide association study 
(WssGWAS) approach was derived from the single-
step genomic best linear unbiased prediction (ssGB-
LUP) method [12, 13]. Compared with the classical 
single-marker GWAS, WssGWAS allows the simulta-
neous use of all data, including those from individuals 
with phenotype but without genotype data, by using a 
scaled and properly augmented relationship matrix ( H 
matrix). This efficient approach for identifying genes 
or quantitative trait loci (QTL) that underlie complex 
traits in animals has recently emerged [14–16]. In addi-
tion, WssGWAS enables SNPs to be weighted differ-
ently and multiple markers to be tested jointly via a 

sliding window strategy [17]. Based on these proper-
ties, WssGWAS might be able to provide more accu-
rate estimates of genetic parameters than the classical 
GWAS, thereby leading to an increased power of QTL 
detection [18–20].

Although the GWAS approach has been useful for 
discovering trait-associated genomic variants, the 
causal tissues and cell types that are affected by such 
variants are largely unknown [21]. The discovery of tis-
sues and cell types that are relevant to complex traits 
is critical for understanding the genetic regulatory 
mechanisms that underlie the control of such traits 
[22]. The integration of a GWAS with a multi-tissue 
transcriptome analysis offers the potential to dissect 
causal tissues and cell types for complex traits [21, 23]. 
For instance, by integrating multiple-tissue eQTL, the 
GTEx Consortium [24] highlighted the tissues that are 
genetically responsible for complex traits in humans, 
such as the brain for schizophrenia and age of puberty 
onset. By combining the transcriptome of 91 tissues 
with the GWAS results of 45 complex traits in cattle, 
Fang et  al. [21] revealed candidate tissues and genes 
for several traits, such as the blood/immune tissues for 
male fertility traits. More recently, phenome-wide asso-
ciation analysis (PheWAS), which is a complementary 
approach to GWAS, has been used to associate certain 
genetic variants with many phenotypes to study their 
pleiotropy and causality among big data [25]. Ortholo-
gous genes often show similar functions across species. 
Therefore, the use of rich GWAS data from humans to 
conduct a PheWAS might contribute to improve the 
characterization of the pleiotropic effects of candidate 
genes and elucidate the genetic architecture of complex 
traits in the target species [26].

The objectives of our study were: (1) to estimate the 
genetic parameters (e.g., heritability and genetic corre-
lation) for five wool traits (mean fibre diameter, MFD; 
coefficient of variation of the fibre diameter, CVFD; 
crimp number, CN; mean staple length, MSL; and 
greasy fleece weight, GFW); and one growth trait (live 
weight, LW) in a dual-purpose Merino sheep popula-
tion (n = 7135); (2) to identify tissues and genes that are 
associated with these traits by integrating the results of 
a WssGWAS with data from 500 RNA-seq samples of 
87 tissues; and (3) to explore whether the results from 

in humans, we found that orthologues of several of these candidate genes were significantly (FDR < 0.05) associated 
with similar traits in humans, e.g. BNC1 was significantly associated with MFD in sheep and with hair colour in humans, 
and CHRNB1 was significantly associated with LW in sheep and with body mass index in humans.

Conclusions:  Our findings provide novel insights into the biological and genetic mechanisms underlying wool and 
growth traits, and thus will contribute to the genetic improvement and gene mapping of complex traits in sheep.
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human studies can help validate and explain the find-
ings in this sheep study via a PheWAS.

Methods
Phenotype and pedigree data
The Merino sheep included in this study were maintained 
at the Xinjiang Fine Wool Sheep Breeding Farm (Xinji-
ang, China). Farm management of all the animals was 
previously described in [27]. In total, 7135 animals from 
50 flocks with phenotypic records on six traits, includ-
ing four wool quality traits, one wool production trait 
and one growth trait, were available. All phenotypes were 
measured once on 15-month-old females from 2012 to 
2019. A detailed summary of the phenotypic records for 
each trait is in Table 1. Records that were more than three 
standard deviations (SD) from the mean were removed.

Each wool quality trait was measured according to 
the standardized method established by the China Fibre 
Inspection Bureau (CFIB) and the International Wool 
Textile Organization (IWTO) [28]. Briefly, a wool sam-
ple (approximately 70 to 80  g) was collected from the 
right mid-side of each animal prior to shearing. The sam-
ples were sent to a commercial laboratory for measure-
ment of a range of wool traits. Approximately 20 staples 
from each mid-side sample were randomly sub-sampled 
to measure the staple length (SL) and mean fibre crimp 
number (CN, per 2.5  cm). The rest of each sample was 
washed with detergent in hot water, rinsed twice with 
cold water, spun and oven-dried at 105 °C. Prior to con-
ditioning at 20  °C and a relative humidity of 65% for 
24 h, 2-mm snippets were taken from each dried sample 
via mini-coring to measure MFD and CVFD using an 
OFDA2000 instrument (BSC Electronics). At shearing, 
GFW, including the unskirted fleece and belly wool, of 
each animal was weighed. Following yearling shearing, 
the LW of each animal was measured.

The complete pedigree (13,528 animals) was used to 
construct the relationship matrix, which included 413 
sires, 6476 dams and 483 yearling females.

Genotype data
Genomic DNA was extracted from the blood samples of 
1217 randomly selected female phenotypic sheep using 
the phenol–chloroform method. Among these, 707, 257 
and 253 individuals were genotyped using the Illumina 
Ovine SNP54 BeadChip (Illumina Inc., San Diego, CA, 
USA), the Illumina Ovine SNP600 BeadChip (Illumina 
Inc., San Diego, CA, USA), and the Sheep 600 K Geno-
typing Array (Affymetrix Inc., Santa Clara, CA, USA), 
respectively. The reference population for genotype 
imputation included 510 individuals genotyped with the 
600  K arrays (n = 459,467 SNPs). The target population 
included 707 individuals genotyped with the Illumina 
Ovine SNP54 BeadChip (n = 34,715 SNPs). The physi-
cal positions of SNPs were based on the sheep reference 
genome assembly Oar_v3.1 [29]. Genotype imputa-
tion was performed using the software BEAGLE version 
5.1 [30]. Quality control of the SNPs was performed 
with the PLINK software [31]: a SNP was removed if its 
call rate was lower than 90%, its minor allele frequency 
(MAF) lower than 1%, if it significantly deviated from 
the Hardy–Weinberg equilibrium (P < 10−6) [32], if its 
genomic position was unknown, or if it was located on 
a sex chromosome. Individuals with an average call rate 
lower than 90% were also removed. Finally, 372,534 SNPs 
for 1217 individuals remained for further analyses.

Estimation of genetic parameters
A multi-trait animal model was used to estimate (co)vari-
ance components using the average information REML 
procedure in the DMU package [33]:

where y is the vector of phenotypes for MFD, CVFD, 
CN, MSL, GFW and LW; β is the vector of fixed effects, 
including flocks (50 levels), years of birth (8 levels: 2011–
2018) and seasons (2 levels: spring and winter); a is the 
vector of random additive genetic effects of animals, 
where a ∼ N(0,Aσ2a) , A representing the pedigree-based 
relationship matrix and σ2a the additive genetic variance; 

y = Xβ+ Za + e,

Table 1  Estimates of variance components and heritabilities for wool traits and live weight in Merino sheep

SD, standard deviation; σ 2
a  , additive variance; σ2e , residual variance; h2, heritability; SE, standard error. MFD, mean fibre diameter; CVFD, coefficient of variation of the 

fibre diameter; CN, crimp number; MSL, mean staple length; GFW, greasy fleece weight; LW, live weight

Trait (unit) Number Mean SD σ
2
a σ

2
e h

2 (SE)

MFD (µm) 5436 18.24 2.07 1.04 1.87 0.36 (0.04)

CVFD (%) 5414 21.98 2.80 0.32 6.44 0.05 (0.02)

CN (/2.5 cm) 5208 12.71 2.45 0.37 4.91 0.07 (0.03)

MSL (cm) 7135 10.26 0.98 0.22 0.58 0.27 (0.03)

GFW (kg) 6727 3.95 0.62 0.08 0.22 0.28 (0.03)

LW (kg) 6871 36.56 4.99 6.07 12.23 0.33 (0.03)
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e is a vector of random residuals where e ∼ N
(
0, Iσ2e

)
 , 

I representing the identity matrix and σ2e the residual 
variance; and X and Z are the corresponding incidence 
matrices.

Heritability was defined as h2 = σ2a
σ2p

 , σ2p = σ2a+σ2e . The 
square of the standard error (SE) for the estimates of her-
itability, the genetic correlation coefficient and the square 
of the SE for the genetic correlation coefficient were cal-
culated as previously described [34].

WssGWAS
We performed an association study using the single-step 
genomic BLUP (ssGBLUP) approach [19]. Genomic esti-
mated breeding values (GEBV) of all the animals were 
estimated and transformed into SNP effects using the 
BLUPF90 family software [35]. The variance compo-
nents were estimated using the AIREMLF90 module. 
Then, the GEBV and SNP effects were obtained using the 
postGSf90 module.

The single-trait animal model for ssGBLUP was as 
follows:

where y is the vector of phenotypic observations; β is 
the vector of the same fixed effects as mentioned above; 
a is the vector of additive genetic effects and assumes 
that a ∼ N(0,Hσ2a) , where H is the matrix of pedigree 
and genomic information and σ2a is the additive genetic 
variance; e is the vector of random residuals and assumes 
that e ∼ N

(
0, Iσ2e

)
 , where I is the identity matrix and σ2e 

is the residual variance; and X and Z are the incidence 
matrices of β and a, respectively.

To solve the mixed model equations, the inverse of the 
H matrix (H−1) was defined as follows [36]:

where A is the numerator relationship matrix applied 
for all pedigreed animals; A22 is the numerator relation-
ship matrix applied for genotyped animals; and Gw is the 
genomic relationship matrix, which assumes the allele 
frequency of the current population and adjusts for com-
patibility with A22 [37].

The G matrix was calculated as follows:

where Z is the marker matrix ( aa = 0 ; Aa = 1 , and 
AA = 2) ; D is the diagonal matrix of weights for SNP 
variances (initially D = I), and q is the weighting factor. In 
this study, the weighting factor was derived by ensuring 

y = Xβ+ Za + e,

H−1
= A−1

+

[
0 0

0 G−1
w − A−1

22

]
,

G = ZDZ−1q,

that the average diagonal in G was close to that of A22 
[38].

Estimates of the SNP effects and weights for the Wss-
GWAS were obtained by performing the following steps 
[12]:

1.	 In the first iteration (t = 1), D = I ; G(t) = ZD(t)Z
′
� , 

where � is a normalization constant or a variance 
ratio, � =

σ2u
σ2a

 =  1∑M
i−12pi(1−pi)

;
2.	 The GEBV is calculated for the entire data set using 

ssGBLUP;
3.	 The SNP effects ( ̂u ) are calculated according to the 

GEBV: û(t) = �D(t)Z
′G−1

(t) âg , where âg is the GEBV of 
animals that were also genotyped;

4.	 The weight of each SNP is calculated: 
di(t+1) = û2i(t)2pi(1− pi) , where i is the i-th SNP;

5.	 The SNP weights are normalized to keep the total 
genetic variance constant: D(t+1) =

tr(D(1))
tr(D(t+1))

D(t+1);
6.	 The weighted matrix G is calculated: 

G(t+1) = ZD(t+1)Z
′
� ; and

7.	 Loop back to step 2.

Iterations increased the weights of SNPs with large 
effects while it decreased those with small effects [13]. 
Thus, the procedure was run for one iteration based on 
the accuracies of the GEBV in the study. The percentage 
of genetic variance explained by the i-th set of consecu-
tive SNPs ( i-th SNP window including 20 consecutive 
SNPs) was calculated as follows [13]:

where ai is the genetic value of the i-th SNP window; σ2a 
is the total additive genetic variance; zj is the vector of 
the genotypes of the j-th SNP for all individuals; and ûj 
is the genetic effect of the j-th SNP within the i-th SNP 
window.

Detection of top SNP windows and functional annotations 
of candidate genes
For the detection of candidate genes, we arbitrarily 
selected the top 10 ranked windows in terms of their 
explained genomic variance as QTL regions for each 
trait. For the GO functional enrichment analysis, we 
used genes that were within the top 1% of the ranked 
windows for each trait. Previously reported sheep QTL 
were obtained from the Sheep QTLdb [39]. The extent of 
LD between SNPs was estimated using PLINK [31], and 
haplotype blocks were identified in the adjacent windows 
using Haploview 4.1 and its default parameters [40]. We 
used the R package ‘BiomaRt’ in Ensembl [41] to obtain 

var(ai)

σ2a
× 100% =

var
(∑n

j=1 zjûj

)

σ2a
× 100%,
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information regarding the gene annotations of the ovine 
reference genome Oar_v3.1. Functional enrichment anal-
ysis of the gene lists for each trait was conducted using 
the R package clusterProfiler [42].

Integrative analysis of GWAS and the sheep expression 
atlas
We collected transcriptome data from 500 ovine samples 
reported by Clark et  al. [43], which represented 87 tis-
sues and cell types. Briefly, these 500 samples were col-
lected from 16 individuals at three developmental stages, 
including three male and three female adult sheep, two 
male and two female lambs, and three male and three 
female embryos. According to the available knowledge 
on tissue biology [43], these 87 tissues and cell types were 
classified into 13 organ systems. The details of the RNA-
seq sample classification are in Additional file 1: Table S1.

The expression levels were normalized by transcripts 
per kb of exon model per million mapped reads (TPM). 
To detect genes that have a high expression in specific 
tissues, we used the following approach for each gene in 
each tissue [21, 22]:

where y is the scaled log2 TPM; µ is the intercept; X is the 
dummy variable for the tissue, where the samples of the 
tissue tested (e.g., immune) are denoted as ‘1’ and sam-
ples outside the organ system (e.g., nonimmune tissues 
and cell types) are denoted as ‘−1’; β is the corresponding 
tissue effect; Z is the matrix of covariables, including age 
and sex (see Additional file  1: Table  S1); a is the corre-
sponding effect; and e is the vector of residual effects.

We fitted this model for each gene in each tissue using 
the least squares approach with R [44] and then ranked 
all of the genes based on their t-statistics (i.e., β/SE ). We 
defined the top 10% of genes as tissue-specific. We con-
ducted the functional enrichment analysis of tissue-spe-
cific genes using the R package clusterProfiler [42].

PheWAS of candidate genes in humans
To explore whether the orthologues of candidate genes 
detected for wool and growth traits in sheep were asso-
ciated with complex traits in humans, we conducted 
a PheWAS for each of these genes based on the human 
GWAS data in the GWASATLAS database [45, 46]. 
Briefly, we explored the GWAS summary statistics of 
1299 complex phenotypes from 277 human GWAS (sam-
ple size > 5000). We considered genes with corrected 
P-values (FDR) less than 0.05 as significant. For visu-
alization, we classified these complex traits into 12 trait 
domains based on the available knowledge on tissue biol-
ogy [47].

y = µ+ Xβ+ Za+ e,

GWAS signal enrichment analysis
We applied the sum-based marker-set test approach 
below using the R package QGG [21, 48] to determine 
whether the GWAS signals were enriched in tissue-spe-
cific genes. We extended 20-kb windows around gene 
regions to include regulatory variants.

where mg is the number of genomic markers within a list 
of tissue-specific genes and b is the marker effect from 
the GWAS. We controlled the marker-set sizes and LD 
patterns among markers by applying a genotype cyclical 
permutation strategy as described previously [49, 50]. 
To obtain an empirical P-value for a list of tissue-specific 
genes, we repeated the permutation procedure 10,000 
times and applied a one-tailed test of the proportion of 
random summary statistics greater than that observed 
[21, 48]. We corrected the P-values for multiple testing 
by the FDR method.

Results
Estimation of genetic parameters for wool and live weight 
traits
The number of animals included in the estimation of 
genetic parameters ranged from 5208 to 7135 depend-
ing on the trait analyzed, among which 4713 animals 
had phenotypic records for all six traits and 1217 ani-
mals had genotypes. To use the information from the 
animals with phenotypes but without genotypes, we 
used a single-step BLUP (ssBLUP) to estimate the 
genetic parameters for the six traits. The estimates of 
the heritability for these traits ranged from 0.05 to 0.36, 
with MFD and LW having the highest estimated herit-
ability, i.e. 0.36 (SE = 0.04) and 0.33 (SE = 0.03), respec-
tively, and CVFD and CN having the lowest heritability, 
i.e. 0.05 (SE = 0.02) and 0.07 (SE = 0.03), respectively. 
The details of the phenotypic records and estimated 
genetic parameters for the six traits are in Table 1.

In general, the phenotypic correlations among the 
wool traits and LW were weaker than their genetic cor-
relations. The strongest positive phenotypic and genetic 
correlations were observed between GFW and LW, 
with correlation coefficients of 0.50 and 0.77, respec-
tively. MSL was genetically positively correlated with 
MFD, LW, and GFW, with moderate correlation coef-
ficients of 0.29, 0.29, and 0.27, respectively. It should be 
noted that LW was negatively genetically (r = − 0.44) 
correlated with CN. The details of phenotypic and 
genetic correlations among those traits are summarized 
in Table 2.

Tsum =

mg∑

i=1

b2,
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Weighted single‑step genome‑wide association study
As determined via the sliding window strategy with Wss-
GWAS [17], which is a commonly used approach in ani-
mal genetics [16, 51], the top 10 genomic regions that 
explained the largest genetic variance are reported as the 
QTL for each trait. The percentages of genetic variance 
explained by windows of 20 consecutive SNPs along the 
genome for the six traits are shown in Fig.  1. The total 

genetic variances explained by the top 10 ranked win-
dows ranged from 3.52% (MSL) to 6.94% (CN) across 
the six traits. In total, we detected 54 unique QTL for the 
six traits, which cover 81 annotated genes on 21 ovine 
autosomes, among which six QTL were shared by at 
least two traits, which indicates that the corresponding 
causal variants likely exert pleiotropic effects on multiple 
traits. For instance, the region on Ovis aries chromosome 

Table 2  Genetic correlations (above the diagonal) and phenotypic correlations (below the diagonal) between wool traits and live 
weight in Merino sheep

Standard error (SE) is presented in parentheses, and * indicates correlation coefficients that were significant (P < 0.0.5). MFD, mean fibre diameter; CVFD, coefficient of 
variation of the fibre diameter; CN, crimp number; MSL, mean staple length; GFW, greasy fleece weight; LW, live weight

Trait MFD (µm) CVFD (%) CN (/2.5 cm) MSL (cm) GFW (kg) LW (kg)

MFD (µm) − 0.21 (0.20) 0.11 (0.18) 0.29* (0.09) 0.06 (0.10) 0.14 (0.09)

CVFD (%) − 0.07* (0.01) 0.06 (0.31) 0.02 (0.21) 0.05 (0.20) 0.05 (0.19)

CN (/2.5 cm) 0.05* (0.01) − 0.13* (0.01) − 0.18 (0.17) − 0.25 (0.17) − 0.44* (0.15)

MSL (cm) 0.15* (0.01) − 0.04* (0.01) − 0.12* (0.01) 0.24* (0.09) 0.29* (0.08)

GFW (kg) 0.05* (0.01) − 0.09* (0.01) 0.02 (0.01) 0.18* (0.01) 0.77* (0.05)

LW (kg) 0.08* (0.01) − 0.09* (0.01) 0.02 (0.01) 0.11* (0.01) 0.50* (0.01)

Fig. 1  GWAS results of five wool traits and live weight in Merino sheep. a–f show the mean fibre diameter (MFD), coefficient of variation of the fibre 
diameter (CVFD), crimp number (CN), mean staple length (MSL), greasy fleece weight (GFW), and live weight (LW), respectively. Each dot represents 
one window region of 20 consecutive SNPs. The X-axis represents 26 autosomes, and the Y-axis represents the percentages of the genetic variance 
explained by the windows
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13 (OAR13) between 55,897,362 and 56,044,564  bp 
was associated with MSL and GFW, and the region on 
OAR16 between 31,883,408 and 31,963,084 bp was asso-
ciated with CN and MSL. Detailed information on these 
54 QTL is summarized in Additional file 2: Table S2.

To explore the independence of these QTL, we esti-
mated the linkage disequilibrium (LD, r2) patterns 
between SNPs along their physical distances in the 
studied population (see Additional file 3: Figure S1) and 
found that r2 decreased to 0.4 when the averaged dis-
tance between SNPs increased to 100 kb. Thus, we esti-
mated the LD between adjacent QTL regions separated 
by less than 100  kb (see Additional file  2: Table  S2). A 
first example concerns two adjacent regions on OAR10, 
421,64,611–42,373,451 bp and 42,375,920–42,553,316 bp, 
which had an averaged LD (r2) of 0.81, and four haplo-
type blocks were observed in the combined regions 
(see Additional file  4: Figure S2a). The second example 
concerns two adjacent regions on OAR18, 22,741,289–
22,871,683 bp and 22,871,683–23,005,179 bp, which had 
an averaged LD (r2) of 0.64, and six haplotype blocks 
were observed in the combined regions (see Additional 
file  4: Figure S2b). By comparing these 54 regions with 
the Sheep QTLdb [39, 52], we found that five QTL had 
been previously reported, whereas the remaining 49 QTL 
were newly discovered in this study (see Additional file 5: 
Figure S3a) with most of them (n = 30) being associated 
with wool traits.

We conducted gene ontology (GO) enrichment analysis 
for genes within the top 1% of the windows for each trait 
according to the explained genomic variance (see Addi-
tional file 5: Figure S3b and Additional file 6: Table S3). 
Out of 28 unique enriched GO terms, 15 were related to 
cell development, and five to metabolic processes. For 
instance, genes associated with CN, including RARG​, 
NKX2-6, PTK2B, RARA​, SOX8, STAT3 and MRE11, were 
enriched in the negative regulation of apoptotic pro-
cesses (P = 0.018). Genes associated with GFW, includ-
ing MAFG and MAFF, were enriched in the regulation of 
epidermal cell differentiation (P = 0.035).

Identification of trait‑related tissues and cell types 
by GWAS signal enrichment
We found that tissues and cell types within the same 
organ system were highly positively correlated based 
on their expression profiles (see Additional file  7: Fig-
ure S4), which indicated a high similarity in their tissue-
specific expression. The function of these tissue-specific 
genes clearly agreed with the known biology of the cor-
responding tissues (Fig.  2a) and (see Additional file  8: 
Table S4). For instance, brain-specific genes were signifi-
cantly enriched for the chemical synaptic transmission 
(FDR = 8.55E−18); skin-specific genes were significantly 

enriched for water homeostasis (FDR = 0.002) and skin 
development (FDR = 0.01); immune-specific genes 
were significantly enriched for immune responses 
(FDR = 8.56E−11); and liver-specific genes were sig-
nificantly enriched for organic acid metabolic processes 
(FDR = 6.35E−9) (Fig. 2a).

To detect the relevant organ systems for each trait, we 
conducted a GWAS signal enrichment analysis of genes 
that were specifically expressed in each of the 13 organ 
systems (Fig.  2b) and (see Additional file  9: Table  S5). 
We found that muscle was significantly (FDR < 0.05) 
associated with MFD, GFW and LW, whereas liver was 
significantly associated with MFD and LW. It is worth 
mentioning that the GI tract was significantly associ-
ated with CN, GFW and LW. To further determine 
which tissues within the GI tract were related to these 
traits, we conducted a GWAS signal enrichment analy-
sis of genes specifically expressed in each tissue of the 
GI tract (Fig.  2c) and (see Additional file  9: Table  S5). 
We found that the abomasum mucosa and rumen were 
significantly associated with five of the six traits (Fig. 2c) 
and (see Additional file 9: Table S5). Although the entire 
immune system was not significantly associated with 
any of these traits, several immune cell types were sig-
nificantly associated with most of the traits (Fig. 2d). For 
instance, peripheral blood mononuclear cells (PBMC) 
and macrophages were significantly associated with LW, 
and blood leukocytes were the top immune cells associ-
ated with CN (Fig. 2d). In addition, macrophages at the 
early stage (2–7 h post-infection) but not at the late stage 
(24  h) after LPS infection were significantly associated 
with LW and MFD (Fig. 2d).

Expression profiles of candidate genes across multiple 
tissues
We explored the gene expression patterns of 81 can-
didate genes across all 87 tissues and cell types (Fig.  3) 
and (see Additional file  10: Table  S6) [43]. The genes 
BNC1, ENDOV and RARA​ were specifically and highly 
expressed in the skin and were candidate genes for MFD, 
CVFD and CN, respectively. Seven genes, PPP1R3D, 
ADSL, CHRNB1, PPP1R27, RAPSN, SHISA4 and PSKH1, 
were specifically and highly expressed in muscle and 
were candidate genes for MSL, LW, GFW and MFD. In 
addition, the expression of several genes exhibited strong 
immune specificity, such as the SPHK1, MAFG, ARH-
GDIA and RIPK2 genes, which were candidate genes 
for LW and GFW. Three genes, BNC1, KCTD11 and 
TMEM9, were specifically and highly expressed in the 
GI tract and were candidate genes for MFD and LW. 
GHR, IGFBP4 and GSTK1 were specifically and highly 
expressed in the GI tract and liver and were candidate 
genes for CN and MSL.
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PheWAS of candidate genes in humans
The basic assumption is that, among mammals, ortholo-
gous genes have similar functions. To explore the poten-
tial functions of these 81 candidate genes in humans, 
we used the human GWAS atlas to conduct PheWASs 
[45, 46], and this atlas included 1689 traits of 12 trait 
domains from 322 different GWAS studies (total sample 
size > 5000) (see Additional file  11: Table  S7). As shown 
in Fig.  4, multiple candidate genes were significantly 
(FDR < 0.05) associated with similar traits in humans. For 
instance, genes associated with wool traits in sheep were 
also significantly associated with dermatological traits in 
humans, including ENDOV (associated with CVFD and 
hair colour in sheep and humans, respectively), EDC4 
(CVFD and baldness) and PSKH1 (CVFD and baldness). 
Several genes associated with wool traits were also signif-
icantly associated with immune-related traits in humans, 
such as the reticulocyte fractions of red blood cells 
(SPHK1) and white blood cells (NPTX1) (Fig. 4), which is 
consistent with previous findings that indicated that the 
immune system is involved in hair follicle development 
[53, 54]. Many genes associated with LW in sheep exhib-
ited significant associations with traits related to metabo-
lism and skeletal tissues in humans, such as ADSL (body 

mass index), RAPSN (height), PSKH1 (height), PPP1R3D 
(standing height), SHISA4 (heel bone mineral density), 
ADSL (standing height) and CHRNB1 (body mass index). 
Four candidate genes, BNC1 (associated with MFD in 
sheep), GHR (CN and MSL), CHRNB1 (LW) and SPHK1 
(LW), are shown as examples in Fig. 5 and are specifically 
expressed in the skin, liver, muscle and immune system. 
Considering these results together with those from the 
sheep expression atlas, we propose 10 candidate genes 
for wool and LW traits in sheep (Table 3).

Discussion
Genetic improvement of wool traits and LW is an essen-
tial goal in the sheep breeding industry. In this study, we 
did not directly measure carcass composition traits but 
recorded LW at the age of 15  months, which indirectly 
reflects the health and meat production of the sheep [55]. 
Compared with the results reported by Di et al. [56], we 
found slightly higher estimates of heritability for MFD 
(0.36 vs. 0.22), GFW (0.28 vs. 0.17) and LW (0.33 vs. 0.23) 
and slightly lower estimates for MSL (0.27 vs. 0.32) and 
CVFD (0.05 vs. 0.09) based on an average sample size of 
2639. The heritabilities of these traits were lower than 
those estimated in Australian Merino [57, 58]. We found 

Fig. 2  Detection of tissues and cell types related to wool traits and live weight in sheep. a Functional enrichment analysis of tissue-specific genes 
(the top 10% of genes based on t-statistics) for 13 organ systems (central nervous system (CNS), cardiovascular system (Cardio), skin, muscle, 
liver, lung, kidney, gastrointestinal (GI) tract, endocrine (Endoc), immune system, male reproductive system (Male_R), female reproductive system 
(Fem_R), and embryonic system). b–d Relationships between the six economic traits and the 13 organ systems, GI tract tissues and immune tissues, 
respectively. The colour corresponds to the enrichment degree (i.e., − log10FDR), which was computed by sum-based GWAS signal enrichment 
analysis based on the top 10% tissue-specific genes and a 20-kb extension. *corrected-P (FDR) < 0.05
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a highly favourable genetic correlation between LW and 
GFW (r = 0.77) and moderate positive genetic correla-
tions between MSL and LW (0.28), MSL and GFW (0.27) 
and MSL and MFD (0.29), which is consistent with pre-
vious studies [55, 59]. In addition, the global LD pattern 
between SNPs in this population was consistent with that 
previously reported by [60].

We detected multiple novel QTL for wool traits that 
were not in the sheep QTLdb [39]. Most of the QTL 
included in the sheep QTLdb originate from a single 
previous study that was conducted using a classical sin-
gle-marker GWAS with 50  K SNPs in a relatively small 
population (n = 765) [9]. Here, we performed a Wss-
GWAS to jointly analyse all available data (n = 7135), 
including data from individuals with both phenotypes 
and genotypes and data from individuals with pheno-
types but without genotypes. Gutierrez-Gil et  al. [3] 
reported five genomic regions under positive selection 
in Australian Merino, among which two were detected as 
QTL in our study, i.e. the QTL on chromosome 11 for LW 
and the QTL on chromosome 15 for MFD. Gutierrez-Gil 

et  al. [3] also reported 52 genes within these five posi-
tive selection regions, among which 12 were detected as 
candidates for wool traits or LW in our study, including 
AMN1 for CVFD and MSL, and CHRNB1 and YBX2 for 
LW. These results provide evidence that the region that 
is associated with the positive selection signal in Merino 
might be related to wool phenotypes. The remaining 
different results between these studies could be due to 
differences in the statistical methods used, and/or to dif-
ferences in allele frequencies and in patterns of QTL seg-
regations between the populations analysed [3, 11].

Comparison of the data from the sheep expression atlas 
and human PheWAS data revealed that several candidate 
genes showed tissue specificity and conserved functions 
among mammals. Multiple candidate genes were associ-
ated with immune traits in humans, which is in line with 
previous findings showing that the immune system has 
been involved in the development of hair follicles [53, 
54, 61]. For instance, it has been demonstrated that the 
immune system mounts a specific autoimmune response 
against hair follicle antigens [53], and that the breakdown 

Fig. 3  Heatmap of 77 of 81 candidate genes based on the sheep expression atlas. The gene expression levels are normalized as transcripts per 
million (TPM). The colour corresponds to the log10 (TPM + 0.25) value. The Y-axis represents the 77 candidate genes, and the X-axis represents the 13 
organ systems
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of the hair follicle immune privilege leads to T-cell 
inflammation [54]. These results reveal the importance 
of integrating omics data for the detection of relevant tis-
sues and candidate genes for complex traits [21, 62–64] 
and suggest the potential of cross-species mapping to 
benefit the livestock industry and human biomedicine 
[65, 66]. However, it should be noted that the PheWAS 
results based on human data, similar to the results from 
comparative genomic mapping, are not easily transposa-
ble to findings in livestock, and that their interpretation is 
often biased by many factors that differ between humans 
and livestock. Therefore, the results from a PheWAS sug-
gest biological hypotheses that require further validation.

BNC1, a candidate gene for MFD, encodes a zinc finger 
protein that is present in the basal cell layer of the epi-
dermis and in hair follicles and plays a regulatory role 
in keratinocyte proliferation [67]. It is mainly expressed 
in the outer root sheath in hair follicles [68]. The gene 
IGFBP4, which was located in the top QTL of CN, 
explained 2.32% of the genetic variance. Based on the 
gene annotation in GeneCards [69], IGFBP4 is involved 

in the regulation of cell growth, glucose metabolic pro-
cesses, and insulin-like growth factor receptor signal-
ling. Previous studies have demonstrated that IGFBP4 is 
preferentially expressed in hair follicles [70, 71] and that 
it functionally interacts with IGF1, which plays a key role 
in the development and growth of hair follicles [72, 73]. 
Therefore, we consider that IGFBP4 is a strong candidate 
gene for CN. CHRNB1 is involved in muscle contraction 
and muscle fibre development [74] and is specifically and 
highly expressed in muscle. The human PheWAS results 
showed that CHRNB1 was significantly associated with 
skeletal traits. A previous GWAS conducted by Komi-
nakis et al. [75] also revealed that CHRNB1 is associated 
with body size in sheep. Thus, we consider that CHRNB1 
is a promising candidate gene for LW. It should be noted 
that 22 QTL regions did not contain annotated genes 
and it would be interesting to link these regions to target 
genes using a more precise functional annotation of the 
sheep genome, such as that developed by the Functional 
Annotation of Animal Genomes (FAANG) project [76, 
77].

Fig. 4  Heatmap of 78 of 81 candidate genes based on the results of the phenome-wide association study (PheWAS). The colour corresponds to the 
− log10P-value value from the PheWAS results. The Y-axis represents the 78 candidate genes, and the X-axis represents the 12 trait domains



Page 11 of 14Zhao et al. Genet Sel Evol           (2021) 53:56 	

Conclusions
We estimated the genetic parameters for five wool 
traits and live weight in a dual-purpose Merino sheep 
and detected 81 candidate genes for these six traits 

using a WssGWAS approach. By integrating multi-
ple biological datasets (e.g., the sheep expression atlas 
and PheWAS) with GWAS signals, we propose a list of 
the 10 most promising candidate genes for these traits: 

Fig. 5  Expression patterns and results of the phenome-wide association study (PheWAS) for four candidate genes. a, b BNC1; c, d GHR; e, f CHRNB1; 
g, h SPHK1. In a, c, e and g, the Y-axis represents gene expression (TPM), and the X-axis represents the samples in 13 organ systems. In b, d, f and h, 
each dot is one trait. The Y-axis represents the -log10P-value value from the PheWAS results, and the X-axis represents 12 trait domains
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BNC1, ENDOV, CDC6, RARA​, IGFBP4, GHR, PPP1R3D, 
CHRNB1, ADSL and SPHK1. Our findings shed light on 
the genetic and biological basis of wool traits and live 
weight, and provide valuable information for genome 
selection in Merino sheep.
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