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Abstract

Background

The manual extraction of valuable data from electronic medical records is cumbersome,

error-prone, and inconsistent. By automating extraction in conjunction with standardized ter-

minology, the quality and consistency of data utilized for research and clinical purposes

would be substantially improved. Here, we set out to develop and validate a framework to

extract pertinent clinical conditions for traumatic brain injury (TBI) from computed tomogra-

phy (CT) reports.

Methods

We developed tbiExtractor, which extends pyConTextNLP, a regular expression algorithm

using negation detection and contextual features, to create a framework for extracting TBI

common data elements from radiology reports. The algorithm inputs radiology reports and

outputs a structured summary containing 27 clinical findings with their respective annota-

tions. Development and validation of the algorithm was completed using two physician

annotators as the gold standard.

Results

tbiExtractor displayed high sensitivity (0.92–0.94) and specificity (0.99) when compared to

the gold standard. The algorithm also demonstrated a high equivalence (94.6%) with the

annotators. A majority of clinical findings (85%) had minimal errors (F1 Score� 0.80). When

compared to annotators, tbiExtractor extracted information in significantly less time (0.3 sec

vs 1.7 min per report).
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Conclusion

tbiExtractor is a validated algorithm for extraction of TBI common data elements from radiol-

ogy reports. This automation reduces the time spent to extract structured data and improves

the consistency of data extracted. Lastly, tbiExtractor can be used to stratify subjects into

groups based on visible damage by partitioning the annotations of the pertinent clinical con-

ditions on a radiology report.

Introduction

Radiology reports from electronic medical records (EMR) are formatted as unstructured nar-

rative text meant for human consumption and contain vast amounts of detailed information

that is underutilized. For example, one of the most valuable sources of information for assess-

ing traumatic brain injury (TBI) is the initial head computed tomography (CT) scan. Notably,

CT findings have been shown to be one of the most powerful prognosticators in assessing six-

month outcomes in TBI [1]. However, extracting structured information from radiology

reports is time consuming, error-prone, requires trained professionals for accuracy, and is

inconsistent across clinical trial sites and research studies [2].

To address these inconsistencies, many fields have adopted common data elements [3],

which are predefined units of information to be used in a collaborative fashion; in other

words, a set of uniform terminology [4]. By enabling this interoperability of data via common

data elements, the design of clinical trials and research studies based on standard stratification

of subject groups is possible [2]. It should be noted that two standardized classifications of TBI

based on CT findings have been widely used, namely Marshall and Rotterdam scores [5,6].

However, these classifications focus on subjects with severe injuries and forgo granularity in

variables describing the underlying pathology. Therefore, the focus on common data elements

remains important for detailing TBI injuries.

Even with the adoption of common data elements, extracting structured information from

radiology reports is limited by manual annotation, which takes time and is error-prone.

Bypassing this human bottleneck through automation has the potential to expedite research

findings, aid in large-scale clinical trials, and ultimately improve clinical care for TBI patients

[7]. To facilitate this automation, natural language processing methods can be utilized to parse

free-text clinical narratives from EMRs by analyzing linguistic concepts and categorizing them

appropriately [8,9].

The field of natural language processing is extensive with a diverse set of subproblems [10]

that have been implemented in a variety of medical contexts [11–21]. Four subproblems of

interest are problem-specific segmentation, named entity recognition, negation and uncer-

tainty identification, and information extraction. Problem-specific segmentation aims to sepa-

rate text into groups; for example, segmenting sections of a radiology report into “History”

and “Findings” sections. Named entity recognition aims to identify and categorize specific

words or phrases; for example, categorizing a set of radiology reports based on type of scan

(e.g., head CT vs lumbar spine CT). Negation and uncertainty identification aim to identify

specific words or phrases as present or absent; for example, “no evidence of intracranial

pathology” would indicate absence of pathology. Information extraction aims to identify and

translate problem-specific information into structured data; for example, identifying mass

lesions on a radiology report requiring surgical evacuation.
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The purpose of our study was to develop and validate an algorithm, termed tbiExtractor,

which incorporates natural language processing methods to extract twenty-seven common

data elements from radiology reports in an automated fashion. The output provides a struc-

tured summary of pertinent clinical conditions for a TBI subject. Successful implementation

of this algorithm has the potential to reduce the time spent to extract structured data, improve

the quality of data extracted, and provide a mechanism for systematic placement of subjects

into research groups.

Materials and methods

Development and analysis were performed using Python 3.6.6 [22] with the following libraries:

Pandas (0.23.4) [23], NumPy (1.15.0) [24], SciPy (1.1.0) [25], spaCy (2.0.12) [26], scikit-learn

(0.19.2) [27], pyConTextNLP (0.6.2.0) [28], NetworkX (1.11) [29], Matplotlib (2.2.3) [30], and

Seaborn (0.9.0) [31]. A methods flowchart is shown in Fig 1.

Ethics statement

Data were acquired from subjects participating in the CLASSIFY-TBI study (details in S1

Appendix). Written informed consent was obtained from the patient or legal proxy, except in

the rare case of permanently waived consent, justified in accordance with 45 Code of Federal

Regulations 46.116(d). Permanently waived consent was only applicable to expired patients

whose family members, or legal representatives, did not present to the hospital or who could

not be contacted by any other means during the patient’s hospitalization. This study was

reviewed and approved by the Hennepin Healthcare Research Institute’s Institutional Review

Board.

Data capture and cleaning

Hospital admission radiology reports from non-contrast head CT scans were extracted from

EMRs. The text for a given radiology report was written by neuroradiologists at Hennepin

County Medical Center as part of the standard-of-care. Each radiology report was converted

to a spaCy [26] container for assessing linguistic annotations and partitioned into sentences.

Sentences before “Findings” and after “Impressions” sections were removed. Then, the sen-

tences were concatenated with newline characters replaced with a space, symbols removed,

and whitespace stripped. Radiology reports that did not contain “Findings” or “Impressions”

sections were removed along with radiology reports containing multiple scan types.

Calculate TF-IDF and cosine similarities

Using scikit-learn [27] TfidfVectorizer, the corpus was converted into a matrix of TF-IDF

(term-frequency times inverse document-frequency) features using n-grams with n-range

from one to ten. Cosine similarities were calculated between each pair of radiology reports by

multiplying the TF-IDF matrix by its transpose. Using the cosine similarity for each pair of

radiology reports, one radiology report was randomly selected and all radiology reports with at

least 0.70 cosine similarity to that radiology report were collected in a set. From this set, one

radiology report was randomly selected to keep for further analysis and the remainder were

removed. This was applied recursively for each set until each radiology report was retained for

further analysis or marked for removal. The purpose of this removal was to reduce the data

requiring human annotation. Details in S2 Appendix.
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Dataset partitioning

A random deck of three numbers the same size as the number of radiology reports retained for

analysis was created. The three numbers represented the proportion of radiology reports to be

assigned to each of the datasets: 10% initialization, 40% training, and 50% validation. From the

set of radiology reports retained for analysis, one radiology report was randomly selected

along with up to three most similar radiology reports, based on cosine similarity. From this

subset, each radiology report was assigned the next number in the shuffled deck. This was

applied recursively until each radiology report was assigned to one dataset.

The initialization dataset was solely used for training annotators and was not used by the

algorithm, the training dataset was used to enhance the development of the algorithm by

incorporating input from annotators, and the validation dataset was used to compare the

annotators to the developed algorithm to determine the algorithm’s viability.

Radiology report annotation

The annotators are TBI researchers with professional medical training/education (authors: DR

& ME) supervised by both a board-certified neurosurgeon (author: US) and two board-certi-

fied neuroradiologists (authors: CT & MO). The annotators underwent training by reading

and discussing [3].

A custom-built Graphical User Interface (GUI) was developed using Python’s TkInter

library [22]. The GUI presented two physician annotators with one de-identified radiology

report and drop-down menus, one for each lexical target with the respective annotation

options (a screenshot of the GUI is provided in S3 Appendix). Annotators viewed one radiol-

ogy report at a time and were not allowed to edit their annotations after submission. Addition-

ally, annotators were not given access to the corresponding DICOM images for the non-

contrast head CT scan for interpretation and exclusively relied on the radiology report for

annotations. The annotation options were: PRESENT: radiology report explicitly denotes lexi-

cal target. SUSPECTED: radiology report indicates potential lexical target. INDETERMI-

NATE: radiology report mentions lexical target as one of multiple etiologies. NOT

SPECIFIED: radiology report does not explicitly mention lexical target but has potential for

being present given the clinical context. ABSENT: radiology report explicitly denies lexical tar-

gets presence or is not mentioned or inferred from the clinical context. NORMAL: radiology

report explicitly states lexical target is normal or is not mentioned but given the clinical con-

text, is assumed to be normal. ABNORMAL: radiology report explicitly states lexical target is

abnormal or is inferred based on clinical context.

Each dataset was presented to annotators separately. The initialization dataset was used to

train annotators on the data entry process and scope of the project, ensure the data processing

flow was valid, and make adjustments to the GUI. The training and validation datasets were

presented to the annotators and their annotations were retained for development and valida-

tion of the algorithm, respectively.

tbiExtractor development

We developed tbiExtractor, which extends pyConTextNLP [28] to create a framework for

extracting TBI common data elements from radiology reports [3]. tbiExtractor inputs a non-

Fig 1. Graphical outline of the methods. Purple rectangle shapes correspond to methods subsections, meaning they represent steps in the

processing workflow, orange parallelogram shapes represent data, blue diamond shapes represent binary decisions on data, gray rectangle shapes

represent excluded data, and green isosceles trapezoid shapes correspond to subcomponents of the algorithm.

https://doi.org/10.1371/journal.pone.0214775.g001
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contrast head CT radiology report and outputs a structured summary containing 27 common

data elements with their respective annotations. For example, subdural hemorrhage (common

data element) is PRESENT (annotation). Code and data files to implement tbiExtractor, along

with a Jupyter notebook tutorial, are available at https://github.com/margaretmahan/

tbiExtractor.

pyConTextNLP background. Based on a regular expression algorithm called NegEx [32],

which uses negation detection (e.g., no evidence of intracranial pathology), the ConText

[33,34] algorithm captures the contextual features surrounding the clinical condition by rely-

ing on trigger terms and termination clues. A more extensible version of the ConText algo-

rithm was implemented in Python, pyConTextNLP [28], and offers added flexibility for user-

defined contextual features and indexed events (e.g., specific clinical conditions) [35].

As a lexicon-based method, pyConTextNLP inputs tab-separated files for lexical targets

(indexed events) and lexical modifiers (contextual features). It then converts these into item-

Data, which contains a literal, category, regular expression, and rule (the latter two are

optional). The literal, belonging to a category (e.g., ABSENT), is the lexical phrase (e.g., is neg-

ative) in the text. The regular expression allows for variant text phrases (e.g., was negative) giv-

ing rise to the same literal and is generated from the literal if not provided. Further, the rule

provides context to the span of the literal (e.g., backward).

For text data, pyConTextNLP marks the text with lexical modifiers and lexical targets

according to their representative itemData. The pyConTextNLP algorithm outputs a direc-

tional graph via NetworkX [29] which represents these markups. Nodes in the graph represent

the concepts (i.e., lexical modifiers and lexical targets) in the text and edges in the graph repre-

sent the relationship between the concepts.

The following three subsections will describe the details used for extending

pyConTextNLP.

Lexical modifiers and lexical targets. Lexical modifiers were adapted from a pyCon-

TextNLP application to CT pulmonary angiography reports [35]. Modifications in deriving

the final lexical modifiers are as follows:

1. The literal is a lexical phrase (e.g., was not excluded). Literals were added and removed dur-

ing the training stage.

2. The category is what the literal refers to (e.g., INDETERMINATE). Each literal was

assigned a category before the initialization stage and updated during the training stage.

The categories used for this study are PRESENT, SUSPECTED, INDETERMINATE, NOT

SPECIFIED, ABSENT, NORMAL, and ABNORMAL. Henceforth, the term "annotation"

will be used when referencing the category to maintain consistency between annotators and

algorithm vocabulary.

3. The regular expression is used to find variant text phrases (or patterns) for the same literal

(e.g., the regular expression: (was|were)\snot\sexcluded, would find sentences

with "was not excluded" and "were not excluded"). Regular expressions were added and

updated during the training stage.

4. The rule dictates the span of the literal (e.g., backward). Each literal was assigned a rule

before the initialization stage and updated during the training stage. The rules used for this

study are forward, backward, and bidirectional.

Lexical targets were adapted from the common data elements in radiologic imaging of TBI

[3]. These included pertinent clinical findings in the acute phase of TBI across all severities. By

utilizing an array of specific pathologic features (e.g., subarachnoid hemorrhage, subdural
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hemorrhage, epidural hemorrhage, and intraparenchymal hemorrhage) our framework allows

TBI researchers to dynamically categorize subjects and evaluate the significance of pathological

patterns and their impact on cerebral tissues. In deriving the lexical targets, the literal repre-

sents a clinical condition relevant to TBI on a non-contrast head CT scan (e.g., microhemor-

rhage) and the category, in this study, is the same (e.g., MICROHEMORRHAGE). The regular

expression for each literal (e.g., microhemorrhage(s)?) was added and updated during

the training stage.

Two examples (Figs 2 and 3) are provided for detailed explanation of the application of lexi-

cal modifiers and lexical targets during the algorithm process.

Sentence markup followed by span, modifier, and distance pruning. To implement

tbiExtractor, each cleaned radiology report was converted to a spaCy [26] container and subse-

quently partitioned into sentences. Using pyConTextNLP [28], each sentence was marked

with lexical modifiers and lexical targets according to their representative itemData. Following

the markup, concepts that are a subset of another concept, within the same concept type, are

pruned (span pruning). For example, if the text contained the phrase “findings do not appear

significantly changed”, the lexical modifier not would be pruned and the lexical modifier do

not appear significantly changed would be retained. Then, for the marked lexical targets, the

lexical modifiers are applied. Lexical modifiers that are not linked to a lexical target are

dropped (modifier pruning). For multiple lexical modifiers for the same lexical target in the

same sentence, the nearest lexical modifier by character length is chosen (distance pruning).

For example, if the text contained the phrase “multifocal subarachnoid hemorrhage as

described above most notably in the right sylvian fissure”, the lexical modifier multifocal

would be selected via distance pruning over the lexical modifier in the since it is closer in char-

acter length to the lexical target, subarachnoid hemorrhage. Span and modifier pruning are

part of the pyConTextNLP implementation. Distance pruning was added as part of

tbiExtractor.

At this stage of processing, each sentence in the radiology report will be marked with lexical

targets and linked lexical modifiers. There will be one lexical modifier assigned to one lexical

target.

Report markup with revisions for omitted, duplicate, and derived targets. A radiology

report may have duplicate lexical targets if identified in multiple sentences within the radiology

report or a radiology report may not have any lexical targets indicated. To mitigate this, tbiEx-

tractor employs decision rules. First, for each radiology report, omitted lexical targets are

added with the default annotation of NORMAL for gray-white matter differentiation and cis-
tern lexical targets and annotation of ABSENT for the remaining 25 lexical targets (omitted

targets). Second, if duplicate lexical targets are identified, the majority vote is selected (dupli-

cate targets). For example, if a lexical target appears in the radiology report three times and the

lexical modifiers for two occurrences have an annotation of ABSENT and the other has an

annotation of PRESENT, tbiExtractor will choose ABSENT. Similarly, if there are two lexical

modifiers with an annotation of PRESENT, two with ABSENT, and one with SUSPECTED,

tbiExtractor removes SUSPECTED based on the majority vote. However, the annotations

PRESENT and ABSENT require further decision rules because no majority exists.

In the case where no majority exists, the first lexical modifier in the ordered annotation list

is selected. If the lexical target is extraaxial fluid collection, hemorrhage not otherwise specified
(NOS), or intracranial pathology, the ordered annotation list is: ABSENT, INDETERMINATE,

SUSPECTED, PRESENT, NORMAL, ABNORMAL. For all other lexical targets, the ordered

annotation list is: PRESENT, SUSPECTED, INDETERMINATE, ABSENT, ABNORMAL,

NORMAL. Following this, annotations that are not in the set of annotations for that lexical tar-

get are replaced with their predetermined counterpart (e.g., if the lexical target cisterns has an
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annotation of ABSENT, the annotation is replaced with NORMAL). At this stage of process-

ing, each lexical target has one annotation for the entire radiology report.

The annotations for three lexical targets can be altered based on the annotations of other

lexical targets in the same radiology report. Thus, a second set of derived decision rules are

applied by tbiExtractor (derived targets). First, if epidural hemorrhage, subdural hemorrhage,
or subarachnoid hemorrhage, are PRESENT or SUSPECTED, hemorrhage (NOS) is annotated

ABSENT. Second, if epidural hemorrhage, subdural hemorrhage, or subarachnoid hemorrhage,
are PRESENT, extraaxial fluid collection is annotated PRESENT. If these lexical targets were

annotated SUSPECTED, and extraaxial fluid collection was annotated ABSENT by default,

then extraaxial fluid collection is annotated SUSPECTED. If gray-white differentiation, cistern,

hydrocephalus, pneumocephalus, extraaxial fluid collection, midline shift, mass effect, diffuse
axonal injury, anoxic, herniation, aneurysm, contusion, brain swelling, ischemia, hemorrhage
(NOS), intraventricular hemorrhage, or intraventricular hemorrhage are annotated PRESENT,

SUSPECTED, or ABNORMAL, then intracranial pathology is annotated PRESENT.

Omitted, duplicate, and derived targets were implemented as part of the tbiExtractor. At

the end of the above processing steps, each radiology report will have a list of 27 lexical targets

each with one annotation, which constitutes the structured summary output.

Evaluation

Radiology reports were assessed using standard descriptive measures (minimum, maximum,

mean, and standard deviation). The assessment included descriptive measures for sentences,

words, and cosine similarities summarized for each datasets (initialization, training, validation,

and remainder).

Fig 2. First example of the application of lexical targets and lexical modifiers.

https://doi.org/10.1371/journal.pone.0214775.g002
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Fig 3. Second example of the application of lexical targets and lexical modifiers.

https://doi.org/10.1371/journal.pone.0214775.g003
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The annotations from physician annotators for the training and validation datasets were

compared. These annotations were compared in the training and validation datasets by sum-

ming each annotation option for each dataset. Annotations were deemed equivalent if they

were the same, similar if one annotation was PRESENT and the other was SUSPECTED, or

divergent if one annotation was ABSENT or NORMAL and the other was PRESENT or

ABNORMAL. Next, annotator reliability was measured using Cohen’s kappa (κ) [36,37],

which measures the inter-rater reliability with κ = 0 when annotators are in divergence and κ
= 1 when annotators are equivalent.

tbiExtractor was evaluated using standard classification performance metrics (equations

listed below). A gold-standard was determined to be when annotators were equivalent and

those annotations were used to evaluated tbiExtractor. True positives (TP) were defined as the

number of times a lexical target was annotated as PRESENT or ABNORMAL by tbiExtractor

and annotators, in the first case. In the second case, SUSPECTED was also assigned to the pos-

itive group. True negatives (TN) were defined as the number of times a lexical target was anno-

tated as ABSENT or NORMAL by tbiExtractor and annotators. False positives (FP) and false

negatives (FN) were defined for all other cases. In addition, false positives and false negatives

were examined to explore why tbiExtractor errors occurred.

Classification performance metrics equations

Sensitivity ¼
TP

TP þ FN

Specif icity ¼
TN

TN þ FP

Positive Predictive Value ¼
TP

TP þ FP

Negative Predictive Value ¼
TN

TN þ FN

Accuracy ¼
TP þ TN

TP þ FP þ TN þ FN

F1 Score ¼
2 � PPV � Sensitivity
PPV þ Sensitivity

Results

Radiology report characteristics

There were 438 radiology reports extracted: 1 was removed because it did not have both "Find-

ings" and "Impressions" sections, 20 were removed because they contained more than one

scan type, and 106 were removed for high cosine similarity. The remaining 311 reports were

split into initialization, training, and validation datasets (Table 1).

Radiology report characteristics for each of the four subsets of data. Values displayed as

minimum, maximum, mean ± standard deviation.

PLOS ONE tbiExtractor: Automated extraction of common data elements for traumatic brain injury

PLOS ONE | https://doi.org/10.1371/journal.pone.0214775 July 1, 2020 10 / 20

https://doi.org/10.1371/journal.pone.0214775


Analysis of annotators

In the training dataset, annotators took an average of 2.84 minutes per radiology report.

Between 15% and 16% of annotations across radiology reports were selected from default

(Table 2). There was high equivalence in annotations between the annotators (N = 3175). Fur-

ther, there were an additional 424 similar annotations (i.e., one annotation PRESENT and the

other SUSPECTED). In contrast, there were only 88 divergent annotations (i.e., one annota-

tion ABSENT or NORMAL and the other PRESENT or ABNORMAL). Overall, the two anno-

tators were in high agreement (κ = 0.861). After training, NOT SPECIFIED was removed as an

annotation option secondary to the overlap with ABSENT and INDETERMINATE.

In the validation dataset, annotators took an average of 1.67 minutes per radiology report.

Similar to the training dataset, 16% of annotations across radiology reports were selected from

default (Table 2). For the validation dataset, there was high equivalence in annotations between

the annotators (N = 4072), with an additional 598 similar annotations, and only 87 divergent

annotations. Overall, the two annotators were in high agreement (κ = 0.913).

Number and type of annotation selected for each annotator along with comparisons

between them for training and validation sets. There were 3348 possible annotations for train-

ing and 4212 for validation.

Table 1. Radiology report characteristics.

Dataset Initialization Training Validation Remainder

Reports 31 124 156 106

Sentences 8, 22 4, 72 6, 32 6, 28

14.5 ± 4.1 14.9 ± 7.6 14.3 ± 5.1 8.9 ± 3.4

Words 58, 268 22, 656 35, 284 43, 315

123.5 ± 54.1 122.5 ± 75.9 121.1 ± 53.6 69.7 ± 35.9

Cosine Similarity 0.34, 0.70 0.14, 0.70 0.26, 0.69 0.35, 1.00

0.47 ± 0.05 0.44 ± 0.08 0.46 ± 0.06 0.69 ± 0.13

https://doi.org/10.1371/journal.pone.0214775.t001

Table 2. Physician annotator comparison.

Training Validation

Annotator 1 Absent 2623 3244

Present 405 569

Suspected 50 74

Indeterminate 22 13

Abnormal 21 23

Normal 227 289

Not Specified 0 0

Annotator 2 Absent 2593 3249

Present 440 598

Suspected 56 48

Indeterminate 9 5

Abnormal 17 25

Normal 231 287

Not Specified 2 0

Comparing Annotators Equivalent 94.8% 96.7%

Similar 12.7% 14.2%

Divergent 2.6% 2.1%

Cohen’s kappa 0.861 0.913

https://doi.org/10.1371/journal.pone.0214775.t002
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tbiExtractor performance

tbiExtractor took an average of 0.294 seconds per radiology report. A diagram showing the set

of annotations across tbiExtractor and annotators for the validation dataset is shown in Fig 4.

When comparing tbiExtractor to annotators, there was high equivalence (N = 3984) and low

disagreement (N = 13). For the purposes of evaluating the performance of tbiExtractor, cases

where annotators were equivalent was considered the gold standard (Fig 4 dashed line). The

evaluation revealed high performance across all metrics (Table 3).

From the validation dataset (N = 156), the number of lexical targets with equivalence ran-

ged from 20 to 27 (25.5 ± 1.7, mean ± standard deviation), indicating most radiology reports

had few errors. Approximately 77% (N = 120) of radiology reports exhibited partial equiva-

lence with at least 25 lexical targets accurately annotated and 93% (N = 145) with at least 23

Fig 4. Annotation overlap. Diagram depicting the overlap in annotations for two annotators (P1, P2) and tbiExtractor (ALG) in validation dataset. Dashed line

indicates gold standard (i.e., where two annotators are in agreement).

https://doi.org/10.1371/journal.pone.0214775.g004
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lexical targets. To show the final lexical targets and their annotations, tbiExtractor was run on

the corpus and results for each lexical target are shown in Fig 5.

Error analysis

tbiExtractor was evaluated for accuracy on the 27 lexical targets (Table 4). Two lexical targets,

intraparenchymal hemorrhage and facial fracture, produced the most false negatives, meaning

tbiExtractor missed these lexical targets outright. This is likely due to the complexity of these

lexical targets and the restriction in the regular expressions to term distance (i.e., the distance

between fracture and a term indicating facial is more than the allocated {0, 5} from the regular

expression). The remaining lexical targets produced minimal false negatives.

For each of the 27 lexical targets, the occurrences in the validation dataset of each lexical tar-

get are displayed with the number of false negatives (FN), false positives (FP), and F1 score

performance metric.

Six false positives were produced for intracranial pathology and four for hemorrhage (NOS),
meaning tbiExtractor identified these lexical targets as PRESENT, while the annotators marked

these as ABSENT. This is due to the derivation of these lexical targets in relation to other lexi-

cal targets (i.e., if extraaxial fluid collection is PRESENT, then by decision rules, so is intracra-
nial pathology). The remaining lexical targets produced less minimal false positives. Overall,

the errors are minimal as measured by the high F1 scores for the majority of lexical targets.

Further examination of divergent cases (i.e., annotators annotated ABSENT and tbiExtrac-

tor annotated PRESENT, or vice versa) revealed the most common diverged lexical targets to

be intracranial pathology, facial fracture, intraparenchymal hemorrhage, hemorrhage (NOS),
and herniation. The remaining lexical targets exhibited less than four diverged responses. The

most common lexical modifiers in the divergent cases were the default selection and the

derived-from-decision-rules intracranial pathology, indicating that most errors were from

tbiExtractor missing the lexical targets outright. In most divergent cases where this was not the

reason, there were more complex structures to the sentences. In a few other instances, there

were sentences that only displayed the lexical target with no available lexical modifier (e.g.,

hemorrhagic extension into the lateral ventricles). Two divergent examples are shown in Fig 6.

Discussion

Assessing the corpus revealed noteworthy characteristics of radiology reports from TBI sub-

jects. First, cosine similarities across the four subsets of data were not different and indicated a

normal, albeit slender, distribution of radiology report similarity. Second, the average number

Table 3. tbiExtractor performance metrics.

Metrics Case 1: where positive if {present,

abnormal}

Case 2: where positive if {present, suspected,

abnormal}

Sensitivity 0.938 0.924

Specificity 0.993 0.993

Positive Predictive

Value

0.957 0.960

Negative Predictive

Value

0.990 0.987

Accuracy 0.986 0.983

F1 Score 0.948 0.941

tbiExtractor performance metrics for two cases of positive selection. In both cases, negative if {absent, normal}.

https://doi.org/10.1371/journal.pone.0214775.t003
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of sentences in each radiology reports approached the minimum, indicating a skewed right

distribution where the majority of radiology reports will have low numbers of sentences. The

same holds true for the number of words. Taken together, this could be reflective of the find-

ings generally found in CT reports on TBI subjects, where the prevalence of CT findings is less

Fig 5. tbiExtractor output annotations. tbiExtractor output annotations for the 27 selected lexical targets over the entire corpus (N = 417 radiology reports).

https://doi.org/10.1371/journal.pone.0214775.g005
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than 10% in mild TBI cases [38–42], which constitute approximately 80% of TBI subjects

[43,44].

Annotators displayed high equivalent and low divergent annotations. This provided a solid

foundation for developing and validating tbiExtractor. In cases where annotators were not

equivalent, data entry issues tended to be the culprit. Mostly, this was a result of overlooking

the lexical target and not selecting an annotation different from default. The overlooking could

be a result of annotator fatigue, which may be attributed to length and/or complexity of the

radiology report. Another data entry issue appears with derived lexical targets, which may be

attributed to differences in how the lexical targets are interrelated, and hence, their derivation

is differently inferred. In other cases, differences in interpretation of the radiology report were

the basis for annotator disagreement. For example, “mixed density lesion” was attributed to

hypodensity in one case and hyperdensity in another. There was also a difference in whether

“parenchymal contusion” was considered an intraparenchymal hemorrhage. However, the dif-

ferences between the annotators was minimal and therefore provided a valid gold standard to

develop and validate tbiExtractor.

Standard assessment metrics for evaluating tbiExtractor were exceptionally high, demon-

strating the utility of the algorithm for extracting accurate clinical conditions relevant to TBI

research. Additionally, 93% of radiology reports in the validation dataset were accurate for

over 85% of the lexical targets. While the errors from tbiExtractor on the validation dataset

Table 4. tbiExtractor lexical target errors.

Lexical Target Occurrences FN FP F1 score

Intraparenchymal Hemorrhage 29 7 1 0.85

Facial Fracture 30 6 1 0.87

Extraaxial Fluid Collection 75 3 0 0.98

Hypodensities 36 3 0 0.96

Skull Fracture 27 3 0 0.94

Intraventricular Hemorrhage 17 3 0 0.90

Herniation 11 2 3 0.78

Mass Effect 26 2 2 0.92

Subarachnoid Hemorrhage 69 2 0 0.99

Subdural Hemorrhage 40 2 0 0.97

Hyperdensities 33 2 0 0.97

Atrophy 22 2 0 0.95

Contusion 17 2 0 0.94

Hemorrhage 2 1 4 0.29

Swelling 20 1 2 0.93

Pneumocephalus 17 1 1 0.94

Ischemia 2 1 1 0.50

Epidural Hemorrhage 8 1 0 0.93

Anoxic 4 1 0 0.86

Aneurysm 3 1 0 0.80

Hydrocephalus 2 1 0 0.67

Intracranial Pathology 84 0 6 0.97

Gray-White Differentiation 7 0 2 0.88

Cistern 11 0 1 0.96

Midline Shift 20 0 0 1.00

Diffuse Axonal Injury 3 0 0 1.00

Microhemorrhage 1 0 0 1.00

https://doi.org/10.1371/journal.pone.0214775.t004
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were minimal, there are a few cases worth exploring. First, regular expressions are unable to

handle complex syntax and semantics to select the lexical target. One particularly error-prone

case was facial fracture. Often, radiology reports with facial fractures are lengthy and involve

compound sentence structures, which are missed by the regular expressions and span pruning.

Second, there were several cases where the lexical modifier was absent or at a distance further

away than another lexical modifier. For example, “cerebellar volume loss” would indicate atro-
phy is PRESENT, but with this sentence, there is no lexical modifier available and therefore

would result in a default lexical modifier of ABSENT. Third, there were cases where derived

lexical targets were not accurately annotated by tbiExtractor. After reviewing these errors,

many of them were the result of ambiguous reports where “smart-phrases” had not been

updated by the radiologist. These “smart-phrases” are made available in EMR systems to pro-

vide structured text statements that can easily be programmed for rapid reporting of results.

For example, the sentence “there is no evidence of intracranial hemorrhage, mass effect, mid-

line shift or abnormal extraaxial fluid collection” was frequently the first sentence in the radiol-

ogy reports. This “smart-phrase” provides valuable information, however, if it is not updated,

say if later in the radiology report a subdural hemorrhage is reported, then tbiExtractor is

Fig 6. Divergent annotation examples. Two examples of divergent annotations between annotators and tbiExtractor.

https://doi.org/10.1371/journal.pone.0214775.g006
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unable to distinguish this and annotates extraaxial fluid collection to be ABSENT. Further

examination of these errors is an avenue for future research that may aid in optimizing

tbiExtractor.

While tbiExtractor is a valuable algorithm with high performance metrics, there are limita-

tions to its design. The dataset used for this study was from a single institution which limits the

style of radiology reports and decreases heterogeneity in the sample. Furthermore, the dataset

was limited in size as there were only two annotators available for annotation. In addition,

there were data entry issues from extracting the radiology report from the EMRs. For example,

a subsequent radiology report was used instead of the admission. Lastly, the only scan consid-

ered in this dataset is the admission non-contrast head CT. With the nature of TBIs, some visi-

ble pathologies are only seen on follow-up CTs and would be missed on initial imaging.

Conclusion

tbiExtractor was developed to automate the extraction of TBI common data elements from

radiology reports. Using two annotators as the gold standard, tbiExtractor displayed high sen-

sitivity and specificity. Findings also showed high equivalence in annotations between annota-

tors and tbiExtractor. Additionally, the time it took tbiExtractor to extract information from

the radiology reports was significantly less than the time it took annotators to complete the

same task. In conclusion, tbiExtractor is a highly sensitive algorithm for extracting clinical

conditions of interest in TBI by providing a structured summary of their status from the radi-

ology report. This algorithm can be used to stratify subjects into severity-groups based on visi-

ble damage by partitioning the annotations of the pertinent clinical conditions on a non-

contrast head CT report.
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