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Abstract
Background: Time perception refers to the capability to recognize the passage of time. The 
cerebellum is located at the back of the brain, underlying the occipital and temporal lobes. 
Dyschronometria is a cerebellar dysfunction, in which a person cannot precisely estimate the amount 
of time that has passed. Cardiac indicators such as heart rate (HR) variability have been associated 
with mental function in healthy individuals. Moreover, time perception has been previously studied 
concerning cardiac signs. Human time perception is influenced by various factors such as attention 
and drowsiness. An electroencephalogram (EEG) is a suitable modality for evaluating cortical 
reactions due to its affordability and usefulness. Because EEG has a high sequential outcome, it offers 
valuable data to explore variability in psychological situations. An electrocardiogram (ECG) records 
electrical signals from the heart to examine various heart conditions. The electromyography (EMG) 
technique detects electrical impulses produced by muscles. Methods: EEG, ECG, and EMG are 
integrated during time perception. This study evaluated the human body’s time perception through 
the neurological, cardiovascular, and muscular systems using a simple neurofeedback exercise after 
time perception tasks. The three biosignals which are EEG, ECG, and EMG were investigated to 
use them as biomarkers for recognizing time perception difficulty as the main goal of the study. 
Five healthy college students with no health issues participated, and their EEG, ECG, and EMG 
were recorded while relaxing and performing a time wall estimation task and neurofeedback training. 
Previous research has shown the relationship between EEG frequency bands and the frontal center 
during time perception. Investigating the connection between ECG, EEG, and EMG under time 
perception conditions is significant. Results: The results show that ECG (HR), EEG (Delta wave), 
and EMG (root mean square) are critical features in time perception difficulties. Conclusion: The 
ability and outcomes of multiple biomarkers might allow for improved diagnosis and monitoring 
of the progress of any treatment applications such as biofeedback training. Furthermore, those 
biomarkers could be used as useful for evaluating and treating dyschronometria.
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Introduction
The brain is a complicated system of 
connected fibers that transmit electrical 
signals.[1] It comprises three areas: the 
cerebrum, cerebellum, and brainstem.[2] 
The cerebrum, which is the central portion 
of the brain, consists of the right and left 
cerebral hemispheres. Senses such as 
touch, vision, hearing, speech, emotions, 
learning, and self‑control of movement 
are cerebellar functions.[2] The brainstem 
is linked to the cerebrum, cerebellum, and 
spinal cord.[2] The synchronous electrical 
movement inside a neuronal network can 

be detected using an electroencephalogram 
(EEG).[3] Cardiac waves have been linked 
to a wide variety of mental statuses.[4] EEG 
electrical signals are divided into numerous 
frequency waves by filtering the EEG 
electrical signals as delta, theta, alpha, 
beta, and gamma, and each frequency has 
different ranges.[5] Cardiac waves reflect 
the role of the autonomic nervous system 
(ANS) and its immediate influence on 
cardiac activity.[6] For example, increasing 
the heart rate (HR) through exercise does 
not considerably affect time perception.[7] 
However, other cardiac signs offer a more 
comprehensive indication of the ANS such 
as HR variability (HRV) which is reflected 
as a warning of future health problems.[7]
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The heart is innervated by the sympathetic nervous 
system (SNS) and parasympathetic nervous system (PNS).[8] 
Thus, various HRV components can be attributed to the SNS 
and PNS.[8] The frequency and time domains of HRV reveal 
the heart condition.[9] Over the past decade, researchers 
have used EEG,[10] electrocardiogram (ECG),[4] or 
electromyography (EMG)[11] to describe and evaluate their 
influence on time perception. Previous studies observed 
connections between time perception and HR.[12] For 
example, one study found that individuals have improved 
fundamental precision at replicating periods when their 
HR decelerates throughout the sample interval encoding.[13] 
As the PNS is responsible for reducing HR and is also the 
principal factor determining HRV, individuals with higher 
PNS activity perform better.[14] The biological alteration 
in the HR, monitored by the ANS, is identified as HRV. 
HRV is extracted from ECG with the help of the QRS 
complex.[15,37]

Time‑domain indicators of HRV are used to assess the 
quantity of irregularity around the magnitudes of the 
interbeat interval, which is the period between continuous 
heartbeats.[9]

Frequency‑domain indicators assess the allocation 
of complete or comparative power to four frequency 
bands.[9] The association between the ANS function, 
temporal reproduction, and muscular system requires 
additional investigation[16,17] The central nervous system and 
ANS immediately influence how humans observe time.[18,38]

Precise time assessment is vital for perception.[19] Previous 
neuroimaging experiments on humans implied that 
perceptual timing involves several brain zones.[20] The 
results show that duration information appears in numerous 
brain lobes, including the bilateral parietal cortex, right 
inferior frontal gyrus, and medial frontal cortex.[20]

However, individual differences in the duration judgment 
are associated with the accuracy of interpretation of the 
duration in the right parietal cortex.[20] Neurophysiology 
uses EEG to identify brain disorders such as epilepsy.[21,36,42]

One of the extensively applied procedures for analyzing 
EEG data is to decompose the electrical signal into 
frequency bands.[22,39,41] This implies a breakdown of the 
EEG signal into frequency elements through a fast Fourier 
transform (FFT).[22] In spectral analysis, it is common to take 
the square of the absolute magnitudes of FFT to estimate 
the power spectral density (PSD).[22] The frequency bands 
are delta (0.5–4 Hz), theta (4–7 Hz), alpha (8–12 Hz), 
beta (12–30 Hz), and gamma (30–100 Hz).[9,40]

The 10–20 system is the traditional electrode placement 
method that is used to gather EEG data.[23] According to this 
system, each electrode location is characterized by a sign 
to categorize the lobe or part of the brain the electrode is 
reading.[23] In addition, even numbers point to the right side 
of the brain, whereas odd numbers point to the left side.

EMG signals are biomedical signals that determine the 
electrical flows produced in muscles during contraction, 
indicating neuromuscular events.[24] The nervous system 
constantly controls muscle action. Consequently, the EMG 
signal is a problematic signal manipulated by the nervous 
system and differs based on the body and physiological 
states of the muscles.[25]

Previous research has evaluated the correlation between 
ECG and time perception. They found that individuals 
with advanced HRs and low‑frequency (LF) modules of 
HRV were linked with a less precise perception of time, 
indicating that time perception could be modulated by ANS 
events.[4] The ECG features included HR, root means square 
of successive relative risk interval differences (RMSSD), 
high frequency (HF), and LF.[4]

Furthermore, an EMG study claimed that the phenomenon 
of electromyographic gradients increases muscle activity 
during cognitive tasks that involve prolonged attention, 
which is a critical function in perceptual timing.[11] They 
evaluated the facial muscle dynamic activity indices over 
time. They concluded that the electromyographic activity in 
the corrugator supercilii over time reflected objective time, 
and this association forecasted assessments of duration.[11]

In addition, the zygomaticus major muscle signaled a 
bias that knowledge presents in duration judgments. 
Rectification is the translation of a natural EMG signal to 
a signal with a specific polarity, typically a positive sign.[26] 
The objective of rectifying the signal is to confirm that 
the signal ensures a nonzero mean because the raw EMG 
signal has positive and negative components.[26]

However, in this study, the instrumentation included EEG, 
ECG, and EMG to evaluate time perception. The goal was 
to increase the number of measurements related to the 
human body to consider their correlation in depth.

The time wall estimation task[27] was used for subjects in 
three conditions: rest, performing a time perception task, 

Figure 1: The 10–20 electrode positions
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and neurofeedback. This task is an essential time/movement 
estimation task in which a moving item disappears behind 
a wall, and the subject must judge when it would have 
touched a gap.

In this study, the EEG, ECG, and EMG features were 
extracted and evaluated. The study amplified the number of 
features to determine unexpected associations between the 
nervous, cardiovascular, and muscular systems.

Methods
This study evaluated EEG, ECG, and EMG features 
using MATLAB. The experiment involved three 
sessions (relaxation, time wall task, and neurofeedback) 
simultaneously. In the relaxation session, subjects were 
supposed to close their eyes, whereas in the task session, 
the time wall estimation was performed.[27] In the 
neurofeedback session, the subject was asked to take a 
deep breath every minute.

Subjects

Fifteen EEG, ECG, and EMG recordings were obtained 
from five right‑handed male participants, who were 
graduate and undergraduate students with a mean age of 
27.5 ± 3.1 years. An authorized consent form was obtained 
from all subjects.

Signal condition and feature extraction

Several filters were employed to eliminate physiological 
and nonphysiological artifacts from EEG, ECG, and 
EMG. For EEG, a band‑pass filter of 1–35 Hz range 
was used, whereas EEG recordings using a Dry Sensor 
Interface‑24 (DSI‑24) and dry electrode EEG headset were 
performed.

DSI‑24 is a wireless EEG headset that includes 21 
electrodes at positions equivalent to the 10–20 international 
system, with a sampling rate of 300 Hz. ECG and EMG 
signals were recorded using a BioRadio device at a 
sampling rate of 960 Hz. EEG, ECG, and EMG recordings 
were simultaneously obtained. Electrodes F3, F4, C3, C4, 
P3, and P4 were selected for EEG signal analysis, and Fz, 
Cz, and Pz were the reference electrodes[Figure 1].

Statistical analysis

One‑way ANOVA and Pearson’s correlation were used to 
verify the significance and correlation between the EEG 
and ECG‑derived features. All statistical analyses were 
performed using MATLAB R2017a.

Results
The biometric information of all the subjects is presented 
in Table 1. Participants were asked multiple questions 
about their lives. All subjects were right‑handed and had 
a meal before the experiment. The responses are presented 
in Table 2.

Figures 2‑4 show the rectified EMG signals for three 
different sessions, whereas Figures 5‑7 show the PSD for 
the F3, F4, C3, C4, P3, and P4 electrodes.

Tables 3‑7 show the estimation of five frequency bands: 
delta, theta, alpha, beta, and gamma, respectively, in three 
recording sessions: relaxation, time perception task, and 
neurofeedback.

Discussion
In this study, advanced instrumentation analysis was used 
to compare the performance of different biosignals. For the 
EEG analysis, the PSD was calculated for five frequency 
bands: delta, theta, alpha, beta, and gamma. In addition, 
ECG and EMG features were acquired. This study’s 
significant benefit is that it assesses which instrumentation 
is better for evaluating the time perception disorder and 
indicates the best features for different research areas, such 
as mental status.

Table 1: Subjects information
Information Data
Gender Male: 5
Age 27.5±3.1
Weight 80±8.6
Height 170±2.2
BMI 28±0.7 kg/m2

BMI – Body mass index

Table 2: Questions and answers about the subjects life
Questions Answers
How often do you exercise? 1‑2 days/week
Do you smoke? Two yes and Three no
How many siblings do you have? 8.3±2.7
How many hours do you study (per day)? 3.5±1.0
Between 1 and 10, how important is time for 
you? (1 is the lowest)

8.3±0.4

Between 1 and 10, how often are you right 
on time for an appointment? (1 is the lowest)

7.5±0.57

When you have an appointment, how much 
earlier do you usually arrive? (Before)

6.25±1.1 min

Do you think you have a problem with timing? Yes
How many hours per day do you sleep usually? 6.25±0.9 h

Table 3: Electroencephalogram features calculation delta
Feature* Relax Time task Neurofeedback
F3 42±0.9 41±1.0 38±2.0
F4 42±0.4 41±0.7 40±0.6
C3 41±0.9 36±3.3 30±4.2
C4 40±1.2 38±1.4 34±4.0
P3 38±2.2 32±4.3 33±2.0
P4 41±0.5 35±2.0 26±6.0

100Summation of power from 0.5 to 4 Hz *Feature = ×
Total power
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Table 1 lists the body mass index (BMI) of subjects. An 
individual with a BMI of more than 28 is considered 
“overweight.”[28] However, the average weight is 
recommended for better time perception.[29] Table 2 
lists the different answers from the subjects; however, 
they all confirmed they had problems with time 
perception.

Figures 2‑4 show the rectified EMG signals under the 
aforementioned three sessions. The amplitude of EMG 
signals decreased threefold, indicating muscle forces during 
the time perception task.[30]

The frequency bands are delta (δ: up to 4 Hz), theta (θ: 
4–8 Hz), alpha (α: 8–15 Hz), beta (β: 15–32 Hz), 
and gamma (γ: ≥32 Hz) waves, as clearly shown in 
Figures 5‑7.

From these figures, the alpha band appears in the relaxation 
session in the frequency range of 8–15 Hz, while it 
disappears in the time perception session. The alpha band 
then appears in the neurofeedback session. The other 
frequency bands exhibit variations. However, alpha and 
theta are involved in different waking tasks in many parts 
of the brain.[31]

Figure 6: PSD for time task session: six electrodes. PSD – Power spectral 
density

Figure 2: Rectified EMG signal: relax session. EMG – Electromyography Figure 3: Rectified EMG signal: time task session. EMG – Electromyography

Figure  4 :  Rect i f ied  EMG s igna l :  neurofeedback  sess ion . 
EMG – Electromyography Figure 5: PSD for relax session: six electrodes. PSD – Power spectral density

Figure 7: PSD for neurofeedback session: six electrodes. PSD – Power 
spectral density
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Tables 3‑7 justify the estimation of these five frequency 
bands. As shown in Tables 3 and 4 for the delta and theta 
bands, the normalized power of all electrodes decreased 
in the time task and then fell in the neurofeedback 
session, except for electrode P3, which then increased 
gradually.[32]

As shown in Tables 5‑7 for the alpha, beta, and gamma 
bands, the amplitudes of frontal electrodes (F3, F4) 
increased for the time wall task followed by a decrease in 
the neurofeedback session. The amplitudes of electrodes 
C3, C4, and P4 decreased in the time wall task and 
neurofeedback sessions. The amplitude of electrode P3 
declined in the time wall task and then increased, similar to 
the delta and theta bands. These results are similar to those 
reported in previous articles.[33]

The ECG feature calculations in Table 8 demonstrate that 
the HR increased in the time wall task and neurofeedback 
sessions,[4] whereas RMSSD and HF decreased and 
then increased. In addition, those features are usually 
correlated.[34] In addition, LF and LF/HF increased and then 
decreased, indicating the impact of the two sessions.[34]

The EMG root mean square decreased in the time wall task 
and neurofeedback sessions. The average rectified value 
decrease showed a similar result for the neurofeedback 
session as shown in Table 9.[35]

A previous study investigated the correlation between ECG 
and time perception.[4] They found that individuals with 
elevated HRs throughout task performance tended to have 
reduced precision in the perception of time, supporting the 
previous investigation that linked sympathetic responses 
with a decline in impulsivity.[7] In this study, the EEG, 
ECG, and EMG features were examined in detail. The 
EEG electrode P3 shown in the figures and table is a 
better indicator of time perception. In addition, the ECG 
and EMG features showed an impact during the session. 
The neurofeedback was of low significance. The main 
limitations of this study were the number of subjects and 
noise from different sources.

ANOVA analysis showed that there were significant 
differences (P > 0.05) among some ECG, EEG, and 
EMG features. The statistical analysis showed significant 
results at P < 0.05 between ECG features as follows: HR 
versus RMSSD, HR versus HF, HR versus LF/HF, HR 
versus RMS, and HR versus HRV. In addition, the results 
showed significant differences between ECG and EEG 
features at P < 0.05, as follows: HR versus delta F3, HR 
versus delta F4, HR versus delta C3, HR versus delta C4, 
HR versus delta P3, and HR versus delta P4. Moreover, 
ANOVA analysis showed that there were no significant 
differences (P > 0.05) among any of the other ECG, 
EEG, and EMG features. Furthermore, there was not any 
statistically significant difference for any of the features 
among the three conditions time perception task, rest, and 
neurofeedback.

Conclusion
Biosignals play a direct role in recognizing cognitive 
status. The outcomes of this study will allow us to 
discover and understand the activity of the brain, heart, 
and muscles in many situations. Another contribution 

Table 4: Electroencephalogram features calculation theta
Feature* Relax Time task Neurofeedback
F3 30±1.9 27±0.5 26±0.8
F4 29±0.1 28±0.3 28±0.1
C3 41±0.9 36±3.3 30±4.2
C4 40±1.2 38±1.5 34±4.0
P3 38±2.2 32±4.3 33±2.0
P4 41±0.6 35±2.0 26±6.0

100Summation of power from 4 to 7 Hz *Feature =
Total power

×

Table 5: Electroencephalogram features calculation alpha
Feature* Relax Time task Neurofeedback
F3 7.4±0.2 11±0.9 7.8±0.7
F4 7.5±0.3 11±0.8 8.0±0.4
C3 41±0.9 36±3.3 30±4.2
C4 40±1.2 38±1.4 34±4.0
P3 38±2.2 32±4.3 33±2.0
P4 41±0.5 35±2.0 26±6.0

100Summation of power from 8 to 12 Hz *Feature =
Total power

×

Table 6: Electroencephalogram features calculation 
beta

Feature* Relax Time task Neurofeedback
F3 0.6±0.3 2.3±0.5 2.3±1.1
F4 0.3±0.1 1.9±0.3 1.4±0.3
C3 41±0.9 36±3.3 30±4.2
C4 40±1.2 38±1.5 34±4.0
P3 38±2.2 32±4.3 33±2.0
P4 41±0.6 36±2.0 27±6.0

100Summation of power from 12 to 30 Hz *Feature = ×
Total power

Table 7: Electroencephalogram features calculation 
gamma

Feature* Relax Time task Neurofeedback
F3 0.5±0.3 0.7±0.4 1.6±0.9
F4 0.1±0.0 0.2±0.1 0.5±0.2
C3 41±0.9 36±3.3 30±4.2
C4 40±1.2 38±1.5 34±4.0
P3 38±2.2 32±4.3 33±2.0
P4 41±0.6 36±2.0 27±6.0

Summation of power from 30 to 100 Hz *Feature = 100
Total power

×
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of this study is that it can be useful in evaluating time 
perception disorders such as dyschronometria. Future 
research may be capable of precisely explaining how 
signals from the brain and heart influence our perception 
of time.
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