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Abstract
Introduction  The outbreak of coronavirus disease 2019 (Covid-19) severely impacted global health and economic status. 
The native receptor-ligand interaction of Angiotensin-converting enzyme 2 (ACE2) and S protein induces host cell patho-
genesis via immunosuppression.
Material and Methods  The emerging evidence reports the sex disparity in Covid-19 induced mortality rate which affects 
abundantly men population. Although the biological interaction of Covid-19 with receptor upregulates the viral genome 
protein interactions and initiates the predictive multiorgan failure followed by acute kidney injury (AKI) in Covid-19 infected 
male population.
Conclusion  Besides, the knowledge and lessons learned from the study depict that cellular and molecular links may explain 
the risk and severity of Covid-19 and AKI in the male population and lead to management of Covid-19 induced AKI. 
Therefore, this review explored the pathways associated with the pathogenesis of two diseased conditions with sex disparity.
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Introduction

In March 2020, the World Health Organization (WHO) 
declared SARS-CoV-2 a pandemic that impacted the lives 
of every human being. SARS-CoV-2 is a new coronavirus 
that outbreak emerged in Wuhan, China. And the disease 
caused by this virus is known as coronavirus disease 2019 

(Covid-19). The identified risk factors associated with 
Covid-19 are asymptomatic respiratory infection to severe 
pneumonia and comorbidities like Obesity, Diabetes Mel-
litus, and Hypertension. These risk factors have also been 
reported during Acute Kidney Injury (AKI), which sug-
gests that AKI might specifically contribute to the sever-
ity of Covid-19 (Fig. 1). Also, various studies have already 
been reported that the rate of Covid-19 infection is relatively 
similar in both males and females but the mortality rate quite 
higher (1.5 to 2.5 times) in males [1]. Studies suggested that 
the sex-biased difference in hormonal and immune response 
may be responsible for the higher mortality in the male 
population. Similarly, sexual dimorphism is also common 
in AKI. In the case of AKI, males were 2.19 times higher 
chance to develop AKI than females [2].

The co-relation among two diseased groups and the stern-
ness of Covid-19 [3–5] and AKI progression are also higher 
in the male population [2, 6–10]. Chan et al., reported 46% 
of Covid-19 patients have a higher rate of AKI infection and 
shows patients with aging and comorbidities can become 
more critical for the Covid-19 and devastating for AKI [11, 
12]. This review summarized scientific knowledge associ-
ated with recent progress and research updates in the context 
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of current understanding in a particular field: the cellular, 
Hormonal and immune system association and pieces of 
evidence for sex disparity between two diseased conditions 
Covid-19 and AKI; considerable therapeutic options avail-
able for Covid-19 and patients with Covid-19 induced AKI.

Covid‑19 and Cellular association with AKI 
crosstalk

Involvement of ACE2 receptor

Angiotensin-converting enzyme 2 (ACE2) protein expres-
sion was observed in lung alveolar epithelial cells, small 
intestine epithelial cells, vascular endothelium coronary 
& intrarenal vessels, and in renal tubular epithelium. 
Whereas, in many organs, the ACE mRNA is abundant 
and exhibits expression in the testis, renal, cardiovascu-
lar, and gastrointestinal tissues[13]. There is a significant 
correlation in the pathogenesis of Covid-19 ACE2 to two 
biological functions. First is the catalytic conversion of 
Ang-I and Ang-II helps to protect organs and acts as the 
receptor for the entry of SARS-CoV-2 into cells [14]. Sec-
ond is the ACE-2 induced Covid-19 entry through Spike 
protein encodes by S gene. The ligand-receptor interaction 
facilitates the acquisition of the ACE-2 expressing host 
cells. Since the mechanism of AKI in Covid-19 patients 
involved cellular damage associated with an invasion of 
ACE2 mediated Covid-19 entry and affected hemody-
namic factor and cytokine storms [15, 16]. ACE is located 
on the X-chromosome, which shows its sex-biased expres-
sion and enables the Ang-I and Ang-II to be catalyzed. 
Anti-androgens were used to study pharmacological 

modulation of TMPRSS2 and ACE2 expression in human 
and animal lungs by Baratchian et al. There was no evi-
dence of increased TMPRSS2 expression in male lungs in 
either human or mice,. The expression of AR and ACE2 
in mouse and human lungs, on the other hand, differs by 
gender. ACE2 expression was higher in males smoker’s 
lungs than female smokers' lungs [17]. In addition, one 
of Takahashi and colleague’s most noteworthy findings 
is that immune responses to SARS-CoV-2 differ between 
sexes. The viral loads, antibody titres, plasma cytokines, 
and blood cell phenotypes of patients with mild COVID-
19 who had not received immunomodulatory medicines 
were compared by sex. Male patients have a higher induc-
tion of non-classical monocytes and higher plasma levels 
of innate immune cytokines. Females has more robust T 
cell activation than males during SARS-CoV-2 infection. 
Inadequate T cell responses in men led to worse disease 
outcomes than women [18]. Furthermore, in a study, males 
had higher mortality rate than females. Pro-inflammatory 
cytokines (IL-6, IL-8, MCP-1) were shown to be higher in 
serious male patients than females, but they were lower in 
moderate or control patientsFemales had higher levels of 
the anti-inflammatory cytokine IL-10 than males in moder-
ate group compared to the control group. Males exhibited 
much more circulating neutrophils and monocytes than 
females at 7 and 14 days, wereas females had significantly 
more B cells [19]. These manuscripts addressed the sex 
differences in Covid-19 in the context of the ACE2 gene 
and immunoresponse. Gagliardi et al., study reported an 
up-regulation of ACE-2 influenced by estrogen and pro-
posed the protective role in women with Covid-19 infec-
tion, stressing our view of the importance of ACE2 in 
sexually dimorphic behavior of Covid-19. Therefore, the 

Fig. 1   Risk factors associated 
with acute kidney injury and 
COVID-19 in infected patients
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expression of ACE-2 in the kidney induces pathological 
alteration associated with Covid-19 which causes chronic 
kidney injury followed by acute kidney injury (AKI).

Co‑relation of the Transmembrane Protease Serine 2 
(TMPRSS2) and CD147

The expression of TMPRSS2 is another factor linked with 
Covid-19 and AKI in infected patients [20]. The fusion of 
SARS-CoV-2 and host cell membrane is associated with 
the cleavage activity of viral S-protein by serine protease-
mediated TMPRSS2 activity [21]. The differential expres-
sion of TMPRSS2 was also found in various organs, which 
raises the susceptibility to infection with Covid-19. Also, 
TMPRSS2 is present in various organ tissues such as kidney, 
heart, liver, Intestinal epithelial cells, prostate, epididymis 
[22, 23].

The studies demonstrated pathological alteration coupled 
with Covid-19 expressed the glycosylated CD147 transmem-
brane on the basolateral and luminal surfaces of renal epi-
thelial cells and identified as the primary binding site for 
S- protein followed by Covid-19 [24]. Besides, CD147 is 
associated as a ligand for E- selectin, thus neutrophil recruit-
ment in the renal tubule indicates ischemic injury and renal 
fibrosis attributable to matrix metalloproteinase (MMP) and 
hyaluronan expression [25–27]. The co-relation between 
TMPRSS2 and CD147 was established in Covid-19 patients 
who were usually associated with Covid-19 entry in host 
cells [28]. These findings indicate that the expression of viral 
entry proteins poses a major risk to AKI in viral infected 
patients. However, chronic follow-up for patients with renal 
function failure should be needed for the management of 
Covid-19 infection and a particular treatment strategy for 
Covid-19.

Gonadotropin hormone signaling

Androgen‑induced immune dysregulation

Androgen is the principal circulating hormone with a mas-
culine character in male and androgen-induced signaling, 
which plays a pivotal role in the progression and prolifera-
tion of the prostate gland followed by prostate cancer (CaP) 
[29]. Androgen deprivation therapy (ADT) in CaP caused a 
hypogonadal syndrome that is critically destructive to renal 
function and contributes to AKI. ADT alleviation of tes-
tosterone leads to metabolic alteration, such as hyperglyce-
mia, dyslipidemia, and elevated fat mass in the renal system 
results in obstruction in glomerular function. In addition, 
ADT neutralizes the vasodilation effect of testosterone on a 
renal vessel with a negative outcome and concluded andro-
gen-induced acute kidney injury [30]. Studies have shown 

that prostate cancer patients who have undergone ADT have 
a lower risk of infection with SARS-CoV-2 compared to 
patients that have not receive ADT [31]. It is proposed that 
ADT may be helpful to Covid-19 and, as this disease pro-
gresses rapidly, ADT action may be beneficial at the initial 
stage of viral infection and not in later stages [32].

The studies demonstrate the immunosuppressive and 
affecting role of androgen in the immune system by influenc-
ing the expression of immune-associated genes against the 
infection (as shown in Fig. 2). The expression of androgen in 
the hematopoietic progenitor would cause the innate immu-
nity of macrophages, neutrophils, monocytes, mast cells, 
and eosinophils to be affected. In addition, myeloid-derived 
suppressor cells (MDSCs) are regulated by neutrophils and 
monocytes with potent T cell-mediated testosterone sup-
pression response in male population [33, 34]. Whereas 
the depletion of testosterone-induced MDSC in females is 
a beneficial result against the pathogenic infection of the 
immune system [35]. In vivo experiments indicate that 
androgen exposure downregulates the surface level of major 
histocompatibility complex (MHC) and human leukocyte 
antigen (HLA) and reduces the proliferation, differentiation, 
and activation of T Cells by inhibiting cytokine production 
in dendritic cells [36, 37].

Androgen has an immune suppressive effect and responds 
to renal dysfunction. This indicates that the aggregation of 
immunosuppressive agents could increase the AKI in the 
male population with Covid-19 and result in an increased 
mortality rate. In addition, androgen ablation in male mice 
shows increased immune cells efficiency for prostate cancer 
[38]. Sex mediated difference in innate and adaptive immu-
nity was thus correlated with the severity and susceptibility 
of two diseases.

Estrogen influenced immune system

Estrogen is expressed differentially in reproductive and 
immune systems. The estrogen induced activity followed 
by estrogen receptor Estrogen receptor-α (Erα) and Erβ 
[39]. The expression of estrogen receptor subsequently 
present in human immune cells, including B & T lym-
phocytes, mast cells, macrophages, dendritic cells, mono-
cytes, and natural killer cells [40].Expression of ERs is 
cell-specific as the predominant form in CD4 T cells was 
found to be ERα, and ERβ was the predominant form in 
B cells [41]. Estrogen-induced signaling and upregulation 
affect the proliferation and progression of epithelial cells 
and become a major oncogenic driver for breast cancer. 
In addition, ER alpha has been reported in human mono-
cytes with higher expression in postmenopausal women 
and males than in premenopausal females, sex and age-
specific expression [41]. While in male and female T and 
B cells, there was no difference in ER expression, the 
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authors indicated that sex differences in immune response 
may not be a direct estrogen influence but may be indirect 
by gonadotropin-releasing hormones [41]. Though Males 
and females are under the influence of complex hormonal 
milieu. Estrogen has an immunoenhancing effect. How-
ever, the immune defense function of estrogen can be 
anticipated by altered the activity of immune cells in the 
adaptive immune system. Whereas the oncogenic role of 
androgen in males is co-relate with estrogen. Since the 
innate response induced by dendritic cells, macrophages 
were functionally active in XX individuals. The estrogen 
hormone controls the function of cytokines by inhibit-
ing pro-inflammatory and anti-inflammatory Interleu-
kin-6 (IL-6), IL-4, (Tumor necrosis factor) TNF-α [42] 
and alteration of CD16 [43, 44]. In comparison, women 
over 70 years of age have a higher level of natural killer 
cells than males, which is the influence of estrogen in XX 
individuals. As a result, estrogen-induced signaling initi-
ates a protective role against the sex-specific AKI [45]. 
In brief, females have strong innate and adaptive immune 

responses to AKI. Elevated transcriptional activation of 
immune response genes on X-chromosomes and sex-spe-
cific steroids such as estrogens, helps to facilitate to AKI 
in females [46].

Testosterone‑influenced immune system

Testosterone has an immunosuppressive effect, [47] which 
suggests a decrease response to influenza vaccine [48]. 
Testosterone has been shown to inhibit T helper cell differ-
entiation [49] and positively associated with the viral load 
of Venezuelan equine encephalitis virus in macaques [50]. 
The correlation between low testosterone and high B cells 
results in a positive response of vaccine in females rather 
than males who showed B lymphopoiesis [48]. Since the 
inhibitory influence of testosterone-induced B cells effect 
depends on bone marrow stromal cells where TGFβ upregu-
lation inhibits interleukin (IL-6) expression and suppresses 
the B lymphopoiesis [51–53]. Although Covid-19 patients 
without immunomodulatory medicines and after study of 

Fig. 2   Sex disparity in Covid-19 patients: the illustration demon-
strates the regulation of Androgen with androgen receptor (AR) and 
shows immunosuppressive response followed by comorbidities. 

Whereas infected female has an immune protective role associated 
with estrogen receptor interaction and upregulates the immunoprotec-
tive genes
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their SARS-CoV-2 (Immunoglobulin-G) IgG antibody, and 
plasma cytokines have been reported in both sex, the iden-
tification of robust T cells activation in infected females of 
Covid-19 and an increased rate of SARS-CoV-2 IgG anti-
body compared to males is reported [18, 54].

Viral clearance and testis

The testis is an immune-privileged organ since it cannot 
develop immune response both allo- and auto-antigenic. 
This function is essential to keep the immune response 
from immunogenic germ cells. The unregulated immune 
system can respond to sperm cells known as meiotic germ 
cell antigen (MGCA), and cause infertility with the surface 
antigen [55]. It can activate innate immunity when the organ 
is invaded by microbial pathogens. It is known that viruses 
such as HIV, cytomegalovirus, and mumps infect the testi-
cles and cause testicular disorders [56]. In addition, from 
semen samples, viruses like Zika, Ebola, and Marburg have 
been isolated and are believed to be sexually transmitted 
[57]. Shastri et. Al found that males in families required 
more time than other female family members to recover from 
Covid-19. The investigators observed that, at both mRNA 
and protein level 55, the testis had a high expression of 
ACE2 [58]. The authors indicated that it should be possible 
for the coronavirus to enter the testis and therefore lead to 
a higher viral load, requiring more time for viral clearance.

Sex‑biased expression of Toll‑like receptors (TLR’s)

Male and female virus infection shows a different type of 
innate and adaptive immune response. In the case of acute 
HIV females have less viral RNA and higher mortality 
occurred by hepatitis in males [59]. X-chromosome con-
tains several genes involved in pattern recognition recep-
tors. Toll-like receptors TLR’s express differently in males 
and females. TLR3, TLR7 is female-biased while TLR2 and 
TLR4 are male-biased [58]. TLR3, TLR7, and TLR9 recog-
nize the viral RNA and DNA to protect against viral infec-
tions. TLR2 and TLR4 recognize the PAMPs on the cell wall 
to protect against bacterial infections [47]. The early antivi-
ral response of the innate sensing of SARS-CoV-2 genetic 
material by the PRR including TLR7 may be a significant 
step [60]. Since TLR7 escapes X chromosome inactivation 
and is triggered by estrogen [59], females may have a better 
strategy to combat an early SARS-CoV-2 attack.

Covid‑19 and AKI induced inflammation

Potential and stable change in gene expression including his-
tone acetylation and deacetylation, chromosome compaction, 
DNA methylation, and non-coding sequence of RNA [61]. 
These modifications are associated with increased production 
of inflammatory markers like complement protein 3, Tumor 
growth factor-β (TGFβ), monocyte chemoattractant protein 1 
(MCP-1) which ultimately induce epithelial to mesenchymal 
transition and cause renal fibrosis [62].The AKI induces cel-
lular and molecular damage and initiates a robust inflamma-
tory response with susceptibility to oxidative stress [63]. The 
necrotic renal cells activate damage-associated molecular 
pattern (DAMP) and toll-like receptors (TLR) in epithelial 
and endothelial cells. The secretion of chemokines (CXCL1, 
CXCL8, CCL2, and CCL5) promote macrophage dependent 
inflammatory response in AKI patients [64]. Therefore, the 
change in expression of TNF-α, IFN-ϒ, IL-6, C3, C5a, IL-23, 
IL-4, IL-8 should be stabilized in systematic and renal inflam-
mation for tissue repair and homeostatic status in existing two 
diseased conditions [64–67]. Though the significantly higher 
level of IL-6, IL-8 is linked with Covid-19 infection [68]. In 
addition, IL-6, IL-4, and MCP-1 contribute to the immune sys-
tem initiated by the elevated TNF-α in infected patients [69, 70].

The high rate of morbidity and mortality of Covid-19 in the 
male population and the potential association of inflamma-
tion and AKI will substantially show the impact of inflamma-
tory and anti-inflammatory cytokines TNF-α, (Interferon-ϒ) 
IFN-ϒ, IL-6, C3, C5a, IL-23, IL-4, IL-8 on AKI and helps 
to understand the pathways and impact of Covid-19 on AKI.

The current knowledge suggests that Covid-19 adversely 
affects the urinary system with special emphasis on the kid-
ney [71]. The emerging evidence from autopsy studies shows 
the Covid-19 induced viral nephropathy induced by ACE-2 
expression on proximal tubular cells of the podocyte, hyper-
inflammatory, and cytokine storms induced at the primary site 
of Covid-19 infection [72, 73]. Therefore, Covid-19 inflamma-
tion at the adjacent organ may induce AKI, where inflamma-
tion is the driver of AKI.

It is important to note that ACE2 and TMPRSS2 are 
expressed by the kidney and may be a direct target of infection 
with Covid-19 that could result in inflammatory response [74, 
75]. Conceptually, this can occur through the arteries that feed 
the kidney via systemic circulation, or viaducts responsible for 
glomerular filtration, which may have a deleterious effect on 
AKI.In addition, it is conceivable that the kidney could be a 
direct target of Covid-19-associated inflammation and adverse 
pathogenesis of Covid-19, based on a recent study showing 
that ACE2 and TMPRSS2 are expressed in the kidney.

Although these theories are less well known at present, in 
the sense of AKI, they suggest possible threats and routes of 
infection. They will need molecular validation and research 
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in-depth. The possible biological differences between males 
and females (hormone signaling, immunological) and behavio-
ral differences that lead to sex divergence in response to Covid-
19 and the inferred relation between Covid and AKI.

Therapeutics for COVID‑19 and COVID‑19 
induced AKI in patients:

Therapeutic intervention

The current pandemic exemplified the twentieth century’s 
technological advantage. In the age of the pandemic, the 
focus has been on the development of potential vaccine, 
including the repurposing of existing drugs such as BCG, 
ACE2 Inhibitors Remdesivir, hydroxychloroquine, Toci-
lizumab, Sarilumab, Favilavir, and others. Despite this, 
over 1400 clinical trials for therapeutic interventions are 
now underway around the globe. More than 16 vaccines 
have been approved in various countries (Table 01), and 
over 100 vaccines are in clinical trials. These vaccines 
are derived using many technologies,such as adenovirus 
vaccine, adjuvanted protein subunit vaccine, inactivated 
vaccine, mRNA-based vaccine and so on.. Whereas, apart 
from the above-cited vaccine, BNT162b2 is mRNA based 
drug with 95% effectiveness against the Covid-19 in clini-
cal trials (NCT04368728) [76]. Another, vaccine Corona-
Vac (NCT04456595), (NCT04582344), (NCT04508075), 
[77, 78] BBIBP-CorV (NCT04560881), and Wuhan Insti-
tute of Biologicals (ChiCTR2000031809) had completed 
phase 3 trial with highly efficient protection against the 
Covid-19 by neutralizing the antibody response and dem-
onstrated immunogenicity. The clinical trial study of Sput-
nikV (NCT04530396) (NCT04564716) inside and outside 
of Russia shows a 91.4% effectivity by the mechanism 
of a non-replicating viral factor in interim trials against 
Covid-19.

Furthermore, the long-term output of vaccine is unclear 
in younger aged and primarily targeted immune-compro-
mised patients. Although, the vaccine response towards 
mutated stains could be attenuated and leads to propagat-
ing the outbreak [79]. Additionally, the time of exposure 
and their effect, availability, manufacturing, and storage 
of a vaccine are an issue in course of the pandemic[80]. 
Although, a drug with the potentiality to combat Covid-19 
infection is listed in Table 1.

AKI treatment and Covid‑19

The therapeutic approach of ACE2 inhibitor (ACEI) and 
angiotensin II receptor blocker (ARB) in AKI could inhibit 
the ACE2 pathways and avoid mitochondrial dysfunction 
associate with acute tubular necrosis, glomerulopathy, and 
protein exposure in bowman’s capsule of nephron [100]. 
Though the adjustment of body fluid coupled with ACE2 
volume responsiveness will reduce the pulmonary edema 
and subsequently in AKI patients [101]. Therefore, the 
repurposed of ACEI/ARB as a potential therapeutic for the 
management of AKI in Covid-19 patients. The above treat-
ment suggestion proposes that the severity of Covid-19 can 
be deprived by ACEI/ARB. Several studies showed the 
patients with Covid-19 on ACEI/ARB were having posi-
tive clinical outcomes [102]. Additionally, on the available 
scientific evidence, we hypothesized that the patients with 
AKI having ACEI/ARB therapy falls under the low-risk 
category of Covid-19 infection and attenuate the severity.

Conclusion

Based on the existing scientific evidence, we concluded 
that female have a strong immune system, which aids in 
the virus’s easy escape from the body, whereas males 
have lesser innate antiviral immune responses. As a result, 
females are more likely to develop an autoimmune disorder 
or have a poor response to immunization, as well as higher 
immunological pathogenesis. While the role of estrogen 
and protective effect is emphasized in an age-dependent 
manner. Because the vast majority of the severe ill and 
deceased women are postmenopausal, estrogen expression 
levels in them are expected to be comparable to men’s level. 
Furthermore, we hypothesize AKI patients on ACE inhibi-
tor therapy have a lower risk of Covid-19 induced mortal-
ity. Though approximately 75% of the Covid-19 mortality 
rate occurs at the age of 65 years. Therefore, the trial of 
potential and repurposed drugs help to combat Covid-
19 with a positive impact on induced AKI. Though, the 
clinical management of Covid-19 poses significant chal-
lenges in decision making and inhibits mitigating the risk 
of AKI in viral infected patients. This review concluded 
the knowledge about treatment and overlaps of Covid-19 
with AKI. Additionally, the lack of standard AKI therapy 
in a set of Covid-19 is largely unclear and requires in-depth 
knowledge. Therefore, urologists and nephrologists need 
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an initiative for the research and preparedness during and 
post-pandemic era to consider the effect on the renal sys-
tem in the surge of higher mortality and morbidity against 
Covid-19 induced AKI.
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1 BNT162b2 mRNA-Based Vaccine NCT04368728 CanSino Biologics [81]
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NCT04564716
Gamaleya Research Institute, 

Acellena Contract Drug 
Research, and Development

[84]

5 CoronaVac Inactivated Vaccine NCT04456595
NCT04582344

Sinovac [85, 86]

6 BBIBP-CorV Inactivated Vaccine ChiCTR2000034780
NCT04560881

Beijing Institute of Biologicals [87, 88]

7 EpiVacCorona Peptide Vaccine NCT04527575 Federal Budgetary Research 
Institution State Research 
Center of Virology and Bio-
technology

[89]

8 AZD1222
Vaxzevria and Covishield

Replication Deficient viral Vec-
tor Vaccine

NCT04516746 The University of 
Oxford; AstraZeneca; IQVIA; 
Serum Institute of India

[90]

9 BCG Live Attenuated Vaccine NCT04327206 University of Melbourne and 
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Institute; Radboud University 
Medical Center; Faustman 
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of Biological Products

[94]

12 WIBP-CorV Inactivated vaccine ChiCTR2000031809 Sinopharm and the Wuhan Insti-
tute of Virology

[87]

13 Sputnik Light (rAd26) Recombinant adenovirus vac-
cine

NCT04741061 The Gamaleya Research Insti-
tute in Russia and the Health 
Ministry of the Russian 
Federation

[95, 96]

14 NVX-CoV2373 (Nuvaxovid; 
Covovax in India)

Recombinant nanoparticle 
vaccine

NCT04611802 Novavax; CEPI, Serum Institute 
of India

[97]

15 ZF2001 (ZIFIVAX) Recombinant vaccine NCT04833101 China's Anhui Zhifei Longcom 
Biopharmaceutical and the 
Institute of Microbiology 
of the Chinese Academy of 
Sciences

[98]

16 Convidicea (PakVac, Ad5-
nCoV)
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