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Abstract: Confocal microscopy image analysis is a useful method for neoplasm diagnosis. Many
ambiguous cases are difficult to distinguish with the naked eye, thus leading to high inter-observer
variability and significant time investments for learning this method. We aimed to develop a deep
learning-based neoplasm classification model that classifies confocal microscopy images of 10×
magnified colon tissues into three classes: neoplasm, inflammation, and normal tissue. ResNet50
with data augmentation and transfer learning approaches was used to efficiently train the model
with limited training data. A class activation map was generated by using global average pooling
to confirm which areas had a major effect on the classification. The proposed method achieved
an accuracy of 81%, which was 14.05% more accurate than three machine learning-based methods
and 22.6% better than the predictions made by four endoscopists. ResNet50 with data augmentation
and transfer learning can be utilized to effectively identify neoplasm, inflammation, and normal tissue
in confocal microscopy images. The proposed method outperformed three machine learning-based
methods and identified the area that had a major influence on the results. Inter-observer variability
and the time required for learning can be reduced if the proposed model is used with confocal
microscopy image analysis for diagnosis.

Keywords: colorectal neoplasm; colorectal inflammation; confocal microscopy; deep learning;
machine learning

1. Introduction

Colorectal cancer (CRC) is the second deadliest cancer worldwide [1]. The precise and
timely diagnosis of CRC is critical for improving treatment efficacy. However, conventional
CRC diagnosis requires thorough visual examinations by highly experienced endoscopists.
Conventional approaches [2–5] toward CRC management include the sampling of suspi-
cious lesions via regular colonoscopy and deciding future countermeasures via histological
analysis [6,7]. Consequently, conventional CRC diagnosis requires a long time for proper
examination (ranging from several days to weeks); if an abnormality is identified, it is
cumbersome to repeat the secondary endoscopic examination [7,8]. Moreover, endoscopists
are required to have high concentration during examinations to avoid possible errors.
Therefore, it is imperative to develop a reliable system for CRC analysis that can improve
clinical efficiency and minimize potential errors during diagnosis.

In recent years, there has been increased interest worldwide in exploring methods for
the prevention, diagnosis, and improved visualization of CRC [2–5]. Most techniques [9–12]
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integrate confocal laser endomicroscopy (CLE) and narrow banding imaging into the tip
of a flexible endoscope to provide high-resolution endomicroscopy for real-time virtual
biopsies. For example, the Cellvizio probe-based CLE has been commercialized. How-
ever, CRC diagnosis with such a system remains difficult because of the long processing
time, inconsistent efficiency, physician disagreement, long learning curves, and low consis-
tency across observers [13–15]. To address this issue, computer-assisted assessment that
uses artificial intelligence technology has recently been explored extensively for lesion
identification [5,16–18].

Specifically, machine learning and deep learning-based methods have been pro-
posed [2,19–21]. Tamaki et al. [20] extracted image features by using the bag-of-visual-
words method and then classified colorectal tumor images into three tumor types (A, B,
and C3) by using the support vector machine (SVM) classifier. Zhou et al. [19] developed
a dense convolutional network by using colonoscopic images to classify CRC from normal
tissues. To supplement the small training data, Kolligs [2] and Ito et al. [2,21] adopted
a deep transfer learning method that pre-trained the model with ImageNet and updated the
last layer of the model with CRC data. However, even though these studies achieved high
accuracy scores on classification tasks, the scores were not compared with the predictions by
endoscopists, thus making it difficult to determine the difficulty of the task they achieved.
Furthermore, most methods primarily focused on CRC classification, with relatively little
attention paid to inflammatory bowel disease (IBD) [22]. The number of patients with IBD,
which has recently established itself as a global disease, is rapidly increasing [23–26]. How-
ever, it is difficult to accurately distinguish CRC from colonic inflammation because the
patterns appearing in tissue confocal microscopy images look similar [27–30]. To the best
of our knowledge, no study has classified CRC and IBD by using a machine learning-based
method. Therefore, this study presents a deep learning method for classifying confocal
microscopy images into colorectal neoplasms, colon inflammation, and normal tissues. We
collected 411 confocal microscopy images from normal, CRC, and IBD tissues that were
subjected to histological analysis and then trained and tested a deep learning model to
classify them with a 4-fold cross-validation setting. We then compared the performance of
the proposed model with those of three machine learning-based methods by using radiomic
features and the predictions of four endoscopists.

2. Materials and Methods
2.1. Dataset

Fresh colon tissues were collected from 29 individuals who were over 18 years old,
provided informed consent, and underwent elective colonoscopies at Korea University
Medical Center, Anam Hospital, by following a protocol approved by the institutional re-
view board (2019AN0051). Bright field images of the tissues were obtained using a confocal
microscope (Leica TCS SP2, Leica, Solms, Germany) with a mode-locked Ti:sapphire laser
source (Chameleon, Coherent Inc., Santa Clara, CA, USA) set at a wavelength of 750 nm
and with a 10× dry objective with a numerical aperture of 0.30. A total of 132 ex vivo colon
tissues were obtained from 29 patients, including 68 normal colon tissues, 18 inflamed colon
tissues, and 46 neoplasm colon tissues. Tissue types were determined using histological
analysis, which is the gold standard of diagnosis of colon tumor/inflammation/normal.
From the tissues, we imaged 411 confocal microscopy images, including 178 normal images,
173 tumor images, and 60 inflammatory images.

2.2. Assessment by Endoscopists

Four endoscopists performed an anonymous evaluation of each confocal microscopy
image of colon biopsy sample to determine whether it was a neoplasm, inflammation,
or normal tissue. The four endoscopists were all experts and had performed more than
200 colonoscopies. The colon images were evaluated anonymously, and there was no
communication among the endoscopists regarding the classification.
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2.3. Classification Using Machine Learning Methods

We extracted image features from the confocal microscopy images and utilized them as
inputs for the three machine learning methods. Specifically, the PyRadiomics toolbox [31]
was used to extract radiomic features [32] from the collected colon images. We extracted
first-order statistical features that describe the distribution of individual pixel values, as well
as second-order statistical features (also called textural features), and higher-order statistical
features by using statistical methods after applying filters or mathematical transforms to
the images [33]. Among the extracted features, we selected some important features to
exclude junk information on classification. To determine which feature is fundamental
to classification, we computed importance scores by using a machine learning library
called scikit-learn. By referring to the importance score, we empirically selected the top
94 important features and used them for classification. Features related to gray-level
intensity and textures, such as gray-level non-uniformity, short-run emphasis, and zone
percentage feature, were highly selected rather than first-order features. By using the
selected radiomic features, we trained three classification models: random forest (RF) [34],
SVM [35], and extreme gradient boost (XGB) [36].

2.4. Classification Using Deep Convolutional Neural Networks

Unlike the machine learning methods using hand crafted features, we can learn the
relationship between images and labels in end-to-end manner via deep convolutional
neural networks. We trained a deep learning model by using the residual network [37],
which is known to achieve high performance in various image classification tasks. We
used data augmentation and transfer learning to handle the lack of annotated colon data.
Specifically, we sampled 20 images during each mini-batch training and transformed
them with random horizontal and vertical flips and random rotations between −180◦ and
180◦. Data augmentation was also performed on machine learning-based methods for fair
comparisons. For transfer learning, we used the ImageNet pre-trained model and then
froze the model except for the last layer. We additionally trained the model and updated
the last layer with confocal colorectal images.

The residual network consists of four residual blocks including skip connections,
a global average pooling (GAP) layer, and a fully connected layer (Figure 1). Convolutional
layers and max pooling layers were used to extract informative features from images and
prominent signals from the feature maps. We used 3 × 3 filters for each convolution layer
and max pooling layer and used batch normalization after each convolution layer. To
extract the prominent signals, the pooling layer downsamples the image to a small size.
When the image size was reduced by the pooling and convolution layers, the number of
channels gradually doubled from 64 to 512. A rectified linear unit (ReLU) [38], alleviating
the gradient vanishing problem, was used as the activation function for all the convolution
layers. The ResNet50 model applied the GAP [39] layer at the end of the model, which can
conserve location information. The conserved location information can then be used to
visualize the influential area in the testing stage.
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Figure 1. The proposed residual network architecture. Conv, pad, Batch Norm, and ReLU indicates
convolution, padding, batch normalization [40], and rectified linear unit [38], respectively.

To train the proposed model, the mini-batch size was fixed to 20. The error between
the label and prediction was calculated using cross-entropy with the softmax function. The
model was optimized by the ADAM optimizer [41]. The learning rate was fixed to 0.001
with a total of 100 epochs. Experiments were performed using a PC equipped with an
Intel i7-8700K 3.7 GHz CPU, an NVIDIA GTX 1080 Ti GPU, and 64 GB of RAM, and the
algorithms were implemented in PyTorch [42].

During the testing stage, the proposed model computes the prediction score from
a given colorectal image. We employ class activation maps (CAMs) [43], which visually
activate the parts that have a significant influence on the classification. To construct the
CAM, we retrieved the GAP layer of the trained network that conserved the location
information. By using the location information, we obtained a map of the most salient
features used in classifying the image pixels as neoplasms.

2.5. Evaluation Settings

For evaluation, we performed 4-fold cross-validation by dividing 411 images into
4 sets (namely, 102, 103, 103, and 103), and each set had an equal distribution of the 3 classes.
We used 3 of the 4 sets as training data and 1 set as test data, and the aforementioned process
was repeated for every fold to obtain the prediction scores of all 411 images. A similar
procedure was repeated for the machine learning-based methods with the same data splits.

We evaluated the performance in terms of accuracy, precision, recall, F1-score, false
positive rate (FPR), and false negative rate (FNR). Moreover, to demonstrate the effec-
tiveness of the proposed method, we compared its performance to the assessments of
4 endoscopists for all 411 images. We computed confusion matrices to check for inter-
observer variability among the assessments of the four endoscopists and highlighted the
efficacy of the proposed method over the assessments. To confirm the robustness of the
proposed method, we investigated the prediction trends by evaluating the FPR and FNR.
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3. Results
3.1. Performance of Predictions by the Endoscopists

Tables 1 and 2 show the classification scores of the four endoscopists. The accuracy
scores of the four endoscopists were 0.51, 0.62, 0.59, and 0.64. The average accuracy
of the four endoscopists on normal images was 72% even though 14% of images were
misinterpreted as tumors and inflammation. They predicted 55% of tumor images well,
but 38% were incorrectly predicted as inflammation. For inflammation images, 34% were
well predicted, but 53% of images were incorrectly classified as tumors.

Table 1. Confusion matrices of four endoscopists. T, I, and N denote tumor, inflammation, and
normal, respectively.

A Label_T Label_I Label_N B Label_T Label_I Label_N

Pred_T 41 16 18 Pred_T 128 43 15

Pred_I 119 38 28 Pred_I 39 8 43

Pred_N 13 6 132 Pred_N 6 9 120

C Label_T Label_I Label_N D Label_T Label_I Label_N

Pred_T 83 26 22 Pred_T 131 43 37

Pred_I 76 29 25 Pred_I 29 7 16

Pred_N 14 5 131 Pred_N 13 10 125

Table 2. Classification results of the four endoscopists.

Endoscopist Accuracy FPR FNR Precision Recall F1-Score

A 0.5133 0.2144 0.4627 0.5420 0.5373 0.4810

B 0.6228 0.1805 0.4842 0.5553 0.5257 0.5288

C 0.5912 0.1903 0.4336 0.5766 0.5663 0.5500

D 0.6399 0.1876 0.4746 0.5333 0.5253 0.5247

Endo-AVG 0.5913 0.1932 0.4637 0.5614 0.5362 0.5369

3.2. Comparison of Learning-Based Methods

Tables 3 and 4 present the four fold cross-validation performance of the three machine
learning-based approaches and the proposed deep learning-based method. Among the
machine learning-based methods, XGB achieved the highest score in all performance
metrics. The performance difference between RF and SVM was insignificant, but SVM
performed the worst in terms of accuracy, precision, and F1-scores. The proposed method
achieved state of the art results and outperformed all the machine learning-based methods.
The proposed method has a high accuracy of 81.73% in categorizing confocal microscopy
images of colon biopsy samples into three categories. After comparing the results of the
proposed method with those of the machine learning-based methods, we found a marked
improvement of +9.21% in accuracy on average. Moreover, the proposed method obtained
the lowest FPR and FNR (lower FPR and lower FNR are better).

To facilitate endoscopists in the clinical diagnosis of CRC, we employed a CAM, which
activates the regions that are crucial for CRC categorization in a confocal microscopy
image. Figure 2 depicts various examples of normal, tumor, and inflammation-activated
regions using CAMs. A healthy normal colon mucosa is characterized by dark goblet cells,
regular and narrow vessels surrounding crypts, and a round crypt structure [44], whereas
inflammation of the colon mucosa is characterized by variations in the shape, size, and
distribution of crypts, increased distance between crypts, focal crypt distribution, mild-to-
moderate increase in capillaries, and dilated and distorted crypts [45–47]. Neoplasm colon
mucosa is characterized by a ridge-lined irregular epithelial layer with the loss of crypts and
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goblet cells, irregular cell architecture with little or no mucin, dilated and distorted vessels
with increased leakage, irregular architecture with little or no orientation to adjunct tissue,
disorganized villiform or lack of structure, dark and irregularly thickened epithelium, and
dilated vessels [14,48]. Our CAM results show the well-activated characteristic areas of
each neoplasm, inflammation, and normal tissue (Figure 2); for example, the activated
regular and round crypt structures of neoplasms, dispersed crypt structure of inflammation,
and irregular cell architecture of neoplasms.

Table 3. Confusion matrices of machine learning.

XGB Label_T Label_I Label_N SVM Label_T Label_I Label_N

Pred_T 130 11 38 Pred_T 125 18 43

Pred_I 7 43 5 Pred_I 7 37 10

Pred_N 36 6 135 Pred_N 41 5 125

RF Label_T Label_I Label_N Proposed Label_T Label_I Label_N

Pred_T 126 15 41 Pred_T 148 22 15

Pred_I 6 33 6 Pred_I 6 31 2

Pred_N 41 12 131 Pred_N 19 7 161

Table 4. Machine learning and deep learning performances.

Methods Accuracy FPR FNR Precision Recall F1-Score

XGB 0.7495 0.1401 0.2578 0.7591 0.7423 0.7488

SVM 0.6981 0.1673 0.3195 0.7191 0.6806 0.6786

RF 0.7058 0.1656 0.3285 0.7196 0.6717 0.6886

Proposed 0.8173 0.0964 0.2408 0.8186 0.7588 0.7784
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Figure 2. Test data samples (a) and the results of class activation map (b). Neoplasm examples are
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Red arrows on neoplasm images indicate the area where the glands are hard to see, and yellow
arrows on normal images indicate where the glands are uniformly represented. The arrangement of
gland is an important feature on neoplasm classification task, and it can be seen that CAM focuses
well on this area. The white bars on the lower right of the image indicates the scale 50 µm.

4. Discussion

This study demonstrated the efficacy of the proposed model by comparing it with the
performance of three machine learning methods and the predictions of four endoscopists.
The proposed method provides a significant performance improvement compared with
the XGB, SVM, and RF methods. Machine learning-based methods frequently misclassify
normal and tumor classes, which may lead to incorrect treatment for the patients. On
the contrary, the proposed deep learning-based method obtained 12% and 17% better
accuracy rates for classifying normal and tumor classes in images, respectively. The
proposed method also produced better results than the evaluations of the endoscopists
in terms of accuracy, precision, recall, and F1 score by +22.60%, +25.14%, +22.26%, and
+24.15%, respectively. There was a high degree of inter-observer variability among the
decisions of the endoscopists, particularly in differentiating between inflammation and
neoplasm classes. For example, endoscopists A and C were inclined to predict neoplasm
as inflammation, whereas endoscopists B and D were inclined to predict inflammation
as a neoplasm class. Therefore, the classification evaluations of the endoscopists indicate
a significant bias and low accuracy in neoplasm–inflammation classification. On the
other hand, the proposed method obtained consistent performance in the classification of
neoplasm and inflammation. After rigorous evaluation of the performance of the proposed
method, we confirmed that the proposed method will perform with high reliability when
employed in the clinical workflow for diagnosing neoplasms in colonoscopies.

In the literature, prior studies [49,50] have shown 93.1% and 89.1% accuracy rates
for colon classification. However, these techniques only consider binary classification
tasks. Our method achieved an accuracy of 81.7% for the three class classification tasks,
including the difficult task of distinguishing neoplasm and inflammation classes. In the
binary classification problem that classifies CRC and normal tissue, our method can obtain
an accuracy of 95.1%.
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In medical settings, diagnosis is dependent on the subjective opinions of analysts and
often shows a significant discrepancy between experienced and novice endoscopists. We
confirmed that the proposed deep learning-based method may assist novice endoscopists
in confusing situations, particularly in tumor-inflammation classification. Furthermore, the
proposed method can accelerate the analysis. In particular, our proposed method predicts
the confocal image class with higher accuracy in less than 1 s, whereas endoscopists often
require 5–10 s to diagnose a single confocal image. Moreover, CAM visualization can help
novice endoscopists with confocal image interpretation because they are less reliable and
take longer to interpret confocal images.

Despite the significant performance of the proposed method across various settings,
we highlight some shortcomings and constraints that require careful consideration. First,
although data augmentation and transfer learning methods were used, the annotated colon
dataset was insufficient in our experiments. Additionally, the current work is limited to
the single domain study. In the future, we would like to expand our model to address
more general tissue images taken from various hospitals. Since each hospital has different
lens specs or laser specs for commercially available confocal microscopes, there may
be differences in the images. However, the specifications of the commercial confocal
microscope used in this study are not particularly high-level special equipment, and the
model will be generalized if more images from various hospitals can be used in the training
stage. We will verify the performance of the proposed method on a large amount of data
obtained from more sites. Second, the images used in our experiments were acquired using
a microscope instead of a probe-based CLE. In the future, we plan to create a system that
can assist decision making while viewing the CLE in real time.

5. Conclusions

We proposed a colorectal neoplasm classification system that uses a deep learning
model with data augmentation and transfer learning to effectively identify neoplasm,
inflammation, and normal tissue in confocal microscopy images. The proposed method
outperforms the classification accuracy of experienced endoscopists, as well as the accuracy
of the three machine learning-based methods. We expect that the proposed deep learning-
based method is feasible and capable of assisting endoscopists in decision making with
high precision for colorectal neoplasm classification.
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