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Abstract: With the advent of big data and the popularity of black-box deep learning methods, it
is imperative to address the robustness of neural networks to noise and outliers. We propose the
use of Winsorization to recover model performances when the data may have outliers and other
aberrant observations. We provide a comparative analysis of several probabilistic artificial intelligence
and machine learning techniques for supervised learning case studies. Broadly, Winsorization is
a versatile technique for accounting for outliers in data. However, different probabilistic machine
learning techniques have different levels of efficiency when used on outlier-prone data, with or
without Winsorization. We notice that Gaussian processes are extremely vulnerable to outliers, while
deep learning techniques in general are more robust.

Keywords: Bayesian neural network; uncertainty quantification; variational Gaussian process; Win-
sorization; concrete dropout; flipout; mixture density networks

1. Introduction

Machine learning (ML) and artificial intelligence (AI) techniques have met astounding
success in different industries and research problems. Conventionally, these techniques
have the singular focus of improving prediction accuracy in complex data analysis prob-
lems. Despite the mass applicability and popularity of ML prediction methods, many
of the related architectures fail to account for the fact that in many large datasets, there
are potential outlying observations in both the target variable and the features. Unlike
classical statistical frameworks involving relatively small datasets with few features, it is
not possible in big data to carefully select and then either drop or modify observations in a
pre-processing step prior to the main data analysis. In any case, such ad hoc pre-processing
steps can lead to a violation of standard regularity conditions that are required for a proper
probabilistic analysis [1,2]. This is essentially a result of using the data twice, once for
outlier detection and then again for constructing the predictive model, whereby there is a
false sense of accuracy and precision for the second step. Similar issues have been noted in
the context of model selection and other problems also, see [3] and related literature for
deep theoretical discussions and results.

The problem of outliers in the data is exacerbated when such data are used with deep
learning (DL) or related black-box techniques that are supremely versatile. Because of the
inherent strengths of these techniques, they may yield excellent numeric summaries such
as mean squared errors even on data with outliers by simply overfitting near such aberrant
observations. Such aspects of DL fitting have been observed earlier and are of considerable
interest in studies on the properties of DL [4,5]. In essence, standard outlier detection
techniques such as studies on residuals are not operative owing to localized overfitting by
the DL architecture, and the use of robust model fitting procedures are not viable because
they scale poorly with data size or parameter size and hence pose extremely burdensome
computational requirements.
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In this paper, we propose a probabilistic Winsorization step on the training data,
to mitigate the adversarial effects of model learning on noisy and outlier-prone data.
Consider, for a moment, a numeric dataset on a single variable. In this case, the data
can be ordered, say, in an increasing order. Winsorization is a process where the highest
and lowest α-fraction of the observations are replaced by their nearest neighbors in the
remaining “central” (1− 2α)-fraction of the data. For example, if there are 100 observations
in an increasing order and if α = 0.05, we replace each of the smallest five values with the
sixth lowest value and each of the highest five values with the 95-the highest value. Thus,
the original data size remains intact, outliers are dropped from the data, human-centric
pre-processing of the data is not needed, and complex mathematical formulations and
optimizations are not required to ensure robustness. The value of α can be chosen using
a trade-off between efficiency and robustness, or some other criteria, and it is trivial to
generalize to the case where different fractions of observations are selected to be replaced
from the upper and lower tails. A minor generalization is achieved when some random
noise is added to each of the 2α replacement observations that are used in place of the
highest and lowest actual data or some other systematic transformations used on these.
The statistical properties of hyperparameter estimators, predictions, and inferences from
Winsorized data are not substantially different from the case where the upper and lower
α-fractions of the data are not used in model fitting, for example, as in the case of using
trimmed least squares instead of ordinary least squares. Very importantly for big data studies,
Winsorization in each variable leaves the database architecture and structure of data tensors
unaltered throughout, which leads to computational simplicity.

In this paper, several different probabilistic and Bayesian ML and AI methods are
studied—each of which derive their probabilistic nature from different aspects of a neural
network architecture. We primarily conduct thorough empirical studies on several datasets
in this project. For each probabilistic ML technique, we conduct a four-fold study of each
dataset. First, we use the data as it is, unaltered. Second, we introduce independent and
identically distributed Cauchy random variables in each of the target observation, thus
creating an extremely noisy target with potentially several outliers of different magnitudes.
The feature set is left intact. Third, we introduce independent and identically distributed
Cauchy random variables in each observation in each feature, but leave the target intact.
Fourth, we introduce independent and identically distributed Cauchy random variables
in each of the target observations as well as each observation of all the features. Thus,
the four versions of each dataset represent a (i) no noise scenario, (ii) a noise in target scenario,
(iii) a noise in features scenario, and (iv) a noise in target and features scenario. Then, we
analyze the dataset versions both as they are and when Winsorization is used to eliminate
outliers. The goal of this study is to understand how probabilistic outliers affect the results
from black-box ML techniques and how Winsorization may be used to greatly ameliorate
the problem.

The rest of this paper is organized as follows: In Section 2, we discuss the related
methods to introduce perturbations and train in the presence of adversarial noise. In
Section 3, we discuss the different Bayesian deep learning methods that are employed for
a comparative analysis. Section 4 outlines the experimental setup and results from the
experiments. We discuss our findings in Sections 5 and 6.

2. Related Literature

In several applications in computer vision, natural language processing and machine
perception, deep neural networks have achieved remarkable performance. However,
in the presence of even small perturbations in the training samples, the performance
deteriorates quickly [6–8]. This instability makes it imperative to study the robustness of
deep learning methods.

For instance, robustness analysis in domains such as natural language processing
(NLP) often focuses on introduction of adversarial examples [9] while training neural net-
works. These multi-scale adversarial perturbations range from character-level to sentence-
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level perturbations. Several studies [10,11] also compute forward gradients of input
sequences to guide the search for modifications that would introduce perturbation. Stud-
ies [10,12–15] on which a word’s addition or omission adversely affects model performance
have shed light on the importance of different words in recovering from the adversarial at-
tacks. Attacks based on gradient computation and insertion of perturbation in embedding
space are susceptible to vanishing or exploding gradient problems. While, there are several
black-box methods for adversarial attacks, their reproducibility in the NLP domain is also
known to be limited [9]. To overcome these adversarial attacks, either the adversarial exam-
ples are identified and separated from the training set or the model architecture is modified
to accommodate for the additional difficulty in learning. Adversarial example detection
relies on recognizing known words and treating perturbations as unknown words that
are not used for training [16,17]. Model modification based methods, on the other hand,
generally include the adversarial examples during training [18–20]. The way similarity
and dissimilarity are computed between adversarial examples and perturbation-free sam-
ples can also shed light on how can we optimally distinguish between the two. Through
clustering of the embeddings of input words, shared encoding among similar embeddings
can be used to differentiate the noise from the words [21]. Studies on constraining the
perturbation in input have helped in development of certifiable defenses [22–24]. This
certification can also be incorporated as an objective to create an adaptive regularizer that
enhances the robustness and stability of the model [25]. Several studies also focus on Inter-
val Bound Propagation (IBP) that propagate some verifiable input-output properties [26,27].
There is also evidence suggesting that overfitting on training data in overparameterized
regimes adversely affects the performance of neural networks in presence of adversarial
perturbations. The performance gains owing to all the adversarial training frameworks
can be achieved by early stopping as well [28].

Similar to the application in the NLP domain, perturbation-based robustness in deep
learning also utilizes adversarial training [29]. For a loss function of the form l(x, y; W),
E refers to the expectation value, where W is the weight vector parameterizing a neural
network, the optimization problem can be stated as follows [30]:

W∗ ∈ arg min
W

E[max
δ∈∆

l(x + δ, y; W)] (1)

where the perturbation is norm-bounded as, ∆ = {δ : ||δ|| ≤ ε}. For a worst case
perturbation problem, we want to find δ such that it maximizes the loss function, and we
also want to find the W array that minimizes the empirical risk.

Apart from artificially induced perturbations as listed above, there are several forms
of natural perturbations in real world data as well. While it is important to study the
synthetically generated perturbations to understand neural networks better, these are
limited in their applicability due to their norm-bound restrictions and dearth in real world
datasets, especially when data distribution shifts as it does in scenarios such as changing
weather conditions [30]. In computer vision as well, naturally occurring noise in the form
of blurring effects and distorted lights are less likely to be fully accounted for using norm-
bounded perturbations [31]. More recently, model-based robust optimization methods
are being employed to incorporate a natural variation that may take the form G(x, δ) and
may already be a part of the training examples in the form of blurring and distortion,
for instance. The objective, in this case, will be of the following form [30]:

min
W

E[max
δ∈∆

l(G(x, δ), y; W)] (2)

G(x, δ) is called the model of natural variation and can be non-linear in δ. The model
can be of encoder–decoder form as well allowing for learning an encoding for G.

Similar to perturbations, outliers can potentially contaminate any data analysis and
provide misleading results. A lot of the recent attention has been placed on removing the
outliers by truncating or trimming them. While this omission may be useful in removing the
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influence of extreme values, it still leads to a loss of information. Alternatively, the dataset
can be “clipped” or “Winsorized” by replacing the extreme values with more central
samples. Winsorization aids in managing the adverse effects of outliers in the data by
clipping the extreme values. There have been several studies into efficiency and bias
comparisons of Winsorized mean estimators [32,33] and Winsorized regression [34] where
the residuals are Winsorized. Due to its simplicity, Winsorization may hold more appeal
as compared to other robust regression techniques. There are also studies that attribute
instability caused by perturbations not just as a shortcoming of model deep learning
frameworks but also an attribute of adversarial training examples and the data itself.
Outliers and perturbations in data make it difficult for the model to learn as the model
regards both the clean samples and perturbed samples as equally important for training at
the start of the learning process [35,36]. Winsorization as a data treatment addresses this
concern and focuses on eliminating the outliers before the training begins. This way the
association between target and features is preserved for the model to learn.

While the quantiles and median of error taken from the observed target might be
robust towards outliers and make it favorable to incorporate in the learning objective,
these functions are not differentiable, making them an intractable choice for gradient based
learning. Recent advances in the space of robust neural networks learning include the
use of M-averaging functions over the mean in the empirical risk estimation [37]. As an
approximation of quantiles, a differentiable parametric family of M-average functions can
be used such that they satisfy certain differentiability constraints and can act as surrogate
for quantiles of loss, independent of outliers.

Winsorization has been used on regression problems using deterministic neural net-
works [38,39]. Asymptotic properties of trimmed and Winsorized M and Z estimators
have been investigated and trimmed M-estimators have been used for robust estimation in
neural networks [40]. As opposed to trimming or Winsorization of residuals, we seek to
understand Winsorization as a treatment method on the training dataset. The aim of our
study is to understand the effect of Winsorization on perturbed input data that are used to
train probabilistic neural networks and investigate if Winsorization can aid in producing
stable prediction results in probabilistic neural networks.

3. Methodology

We now briefly discuss the different probabilistic machine learning methods we study
in this paper.

3.1. Exact Gaussian Processes

One of the most prominent and relatively simpler technique to use in prediction and
inference in the presence of unknown functional relations between variables is the Gaussian
Process (GP) modeling approach. This is a Bayesian approach which models unknown
functions as Gaussian stochastic processes, that is, the evaluation of the unknown function
on any finite collection of points in the feature space is assigned a multivariate Gaussian
prior, and a posterior prediction is obtained by coupling the observed data with this prior.
GP modeling is a non-parameteric regression approach with uncertainty quantification.
GP regression can be fully specified using a mean and a covariance function that can be
used to define a Gaussian probability distribution from which the predictions are drawn.
GP is adept at capturing non-linear relations between the feature set and the prediction
function using a non-linear covariance function kernel. A function f : X → R is modeled
as a Gaussian Process with mean function m and covariance function k and can be written
as follows [41]:

f ∼ GP(m(x), k(x)), (3)

if for any finite integer k ≥ 1 and any collection of points x1, x2, . . . , xk ∈ X , the k-
dimensional random variable

(
f (x1), . . . , f (xk)

)
has a multivariate Gaussian distribution

with mean
(
µ(x1), . . . , µ(xk)

)
and a covariance matrix Σ whose (i, j)-th element is k(xi, xj).
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If f are the function values for the training set and f∗ is the set of function values on
the test set X∗ ⊂ X , the joint distribution can be specified as follows:[

f
f∗

]
∼ N (

[
µ
µ∗

]
,
[

Σ Σ∗
ΣT
∗ Σ∗∗

]
). (4)

Here, Σ∗ represents the train-test set covariance while Σ∗∗ represents the test set
covariance. The conditional distribution of f∗ given f is as follows:

f∗|f ∼ N (µ∗ + ΣT
∗Σ−1(f− µ), Σ∗∗ − ΣT

∗Σ−1Σ∗) (5)

More often than not, the mean function m and covariance function k involve hy-
perparameters, θ, that are tuned by maximizing the logarithm of marginal likelihood.
The marginal likelihood gives us the probability of observing the data samples given
hyperparameter values and is of the following form:

log p(y|x, θ) = −1
2

log|Σ| − 1
2
(y− µ)TΣ−1(y− µ)− n

2
log(2π). (6)

Partial derivatives of Equation (6) give us the gradient estimate update rules for the
hyperparameters of the mean and covariance functions whose values can be calculated
using an iterative numerical optimization technique. The exact GP has been proven to be
very successful in several empirical use cases. Depending on the different kernel functions,
the definition and shape of similarity that is encoded through the kernel function can
be changed. Exact GP, however, becomes intractable for extremely big datasets as the
computation cost scales by O(n3), while storage scales by O(n2) as n, the number of
training samples, increases [41]. Therefore, several approximation methods have been
devised recently to improve the scalability of Gaussian processes.

3.2. Variational Gaussian Processes

Exact Gaussian processes models are capable of utilizing high-dimensional feature
sets for the modeling response. However, with increasing sample sizes in the wake of the
advent of big data, the computational burden involved in defining the kernel function
may increase in a super-linear way and as a function of the sample size. Therefore, it
may be of interest to explore a more sparse kernel function [42,43] that can be defined in a
more efficient manner, such as in case of Variational Gaussian Processes (VGP). Variational
inference [44–46] also improves the efficiency in approximating the posterior predictive
function. In this paper, we use a variational Gaussian process approach that renders the
output of a deterministic deep neural network (DNN) as probabilistic.

Based on the mean field variation inference theory and use of hidden variables to
encode representations from the observational data to obtain the posterior conditional
distribution [47], a practical method utilizing sparser covariance structure is proposed
to obtain a variational Gaussian process framework for big data [45]. Let u represent
a vector of function values at a subset of samples Z = {zi}m

i=1 from x called inducing
variables. These inducing variables can be utilized to create a model that is consistent with
the application of stochastic variational inference [47].

Marginalizing the inducing variables in the work [48], the lower bound on log p(y|x)
can be obtained as follows [45]:

L = logN (y|, 0, KnmK−1
mmKmn + β−1I)− 1

2
β tr(K̃) (7)

where β is the precision of the original probability distribution of response conditioned
on function f. Inducing variables u perform the role of global variables in applying a
stochastic variational inference to a Gaussian process model. These are used to further
lower the bound on p(y|x). The updated lower bound becomes the following:
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L′ =
n

∑
i
{logN (yi|kT

i K−1
mmm, β−1)− 1

2
βk̃i,i −

1
2

tr(SΛi)} − KL[q(u)||p(u))]. (8)

The partial derivatives of L′ provide us with estimates for the kernel hyperparameters
and the noise precision β. Furthermore, a stochastic gradient estimate can be performed
to obtain the optimal values for the variational parameters. The factorization of L′ en-
ables performing stochastic gradient methods on q(u) and also the use of non-Gaussian
likelihoods for inference.

3.3. Concrete Dropout

Unlike the conventional use of dropout [49] to improve generalization power by
sampling neurons during training, we can derive an empirical predictive distribution
by using the layer-wise dropout relaxation during the testing process [50,51] where the
variance of the predictive distribution is generated by randomly dropping neurons at test
time using the optimal dropout rate. The optimal dropout rate can be found either by a
grid-search over dropout probabilities [50], which can be prohibitive when computational
resources are constrained. In this work [50], dropout is used to obtain an approximation to
a probabilistic deep Gaussian process [52].

Similar to an L2 regularization objective for dropout, variational parameters vector θi
for each layer i can be regularized to achieve a model that reduces the Kullback–Leibler
(KL) divergence of the weight distribution with the true Bayesian posterior as follows:

FGP−MC ∝ KL[q(W|θ)||P(W)]−Eq(W|θ)[logP(D|W)]

∝ l2

2τN ∑L
i (pi||θi||22 + ||mi||22)−

1
τN ∑N

n logp(yn|xn, W)

where mi refers to the bias terms in each hidden layer i, pi is the dropout probability, l is
length-scale, and τ is the precision hyperparameter.

Alternatively, a more efficient way of learning pi instead of doing a grid search is
by setting layer-wise dropout rates as trainable and by learning them via the standard
backpropagation process along with other neural network parameters. This method
is called concrete dropout [51]. Similar to the KL divergence term in the grid-search
scenario [50], the KL divergence term for the dropout rate estimation by variational free
energy optimization may also include the variational parameters, thus:

KL[q(W|θ)||P(W)] ∝
l2(1− p)

2
||θ||2 − KH(p) (9)

where K is the dimension of weight vector for each layer andH(p) is the entropy of dropout
probability, which is a Bernoulli random variable in this case:

H(p) = −plog(p)− (1− p)log(1− p). (10)

Moreover, a concrete relaxation of dropout masks makes it possible to obtain the
optimal dropout probability value for each layer by pathwise derivative estimation [51].
If u ∼ Uni f (0, 1) and t is a temperature value, then the concrete distribution random
variable will be of the following form:

z̃ = sigmoid(
1
t
(log p− log(1− p) + log u− log(1− u))) (11)

Concrete dropout does not require a lot of additional compute as compared to a
standard dropout implementation and is more efficient than a grid-search to find optimal
dropout probability value.



Entropy 2021, 23, 1546 7 of 48

3.4. Flipout Estimator

Historically, there have been several advances in the field of regularization to over-
come overfitting [49,53–56]. Some of these methods include Gaussian perturbations [57]
and DropConnect [58] as methodologies for perturbing weights for regularization. Inter-
estingly, while these methods were originally formulated for regularizing artificial neural
networks (ANNs), the resulting stochasticity in weights also allows for the quantification
of uncertainty in weights to some extent. Bayesian neural networks have been created by
perturbing the weights in different hidden layers and trained using variational inference
after applying reparameterization trick as elucidated in [59] that makes use of Bayes by
backprop possible [60]. For an unknown weight parameter Wij for ith layer and jth node, Wij

is drawn from N (µij, log(1 + exp(Σij))
2), where θij = (µij, Σij) are variational posterior

parameters that are trained via standard backpropagation. This is often done through the
introduction of a non-parametric noise distribution, ε ∼ N (0, 1), that is then scaled and
shifted as follows:

W = µ + log(1 + exp(Σ))� ε. (12)

Here, using log(1 + exp(Σ)) ensures that this term remain positive and differentiable.
Variational free energy [57,61–64] is minimized to estimate the parameters θ of the weight
distribution such that the Kullback–Leibler (KL) divergence with the true weights posterior
is minimized [57,60]. Similar to previous work on weight-based uncertainty [60], the
objective function remains as follows:

FFlipout = KL[q(W|θ)||P(W)]−Eq(W|θ)[logP(D|W)], (13)

which intends to minimize the negative log likelihood based on the data and the complexity
cost of fully encoding the functional relation as a very complex W. This cost not only
optimizes for the best weights for predicting our target but also optimizes for the simplest
weight representation that we can get. The cost wants to reduce the number of bits
required to transmit weights to a receiver, and this is the complexity cost of the weights
and the second component of the loss function wants to minimize the number of bits
required to transmit the errors in the model. These additive costs are together called
compression cost [60] or minimum description length [57]. Through this cost function, we
can ensure that the weight distribution is not too complex and does not overfit. Another
form of Equation (13) uses an approximate cost function for complexity cost that makes
the computation more efficient. Introduction of the perturbation ensures that the gradient
estimates of the cost are unbiased [60]. Monte Carlo samples of W are drawn from the
variation posterior distribution can be used for calculating the approximate cost.

In a similar fashion, adding parametric noise to weights has also aided in efficient
exploration of optimal agent policies in reinforcement learning [65–67]. Depending on
the network size, Gaussian noise added to the weights may be either independently used
or factorized as well [67]. This means that for p inputs to a layer and q outputs, adding
independent Gaussian noise to each weight will yield (p + 1)q noise variables, while using
factorized Gaussian noise would lead to individual noise weights for the noise and for the
outputs such that only p + q noise variables are employed for a hidden layer. However,
having the same Gaussian perturbation for a mini-batch may lead to some correlation in
gradients and lead to high variance in the gradient estimates [68].

the flipout gradient estimation technique [68] can be used to de-correlate the gradient
estimates. Like all the previously proposed methods, flipout also has a base noise that
affects the 4W where the base noise is drawn from a unit Gaussian distribution. This
is similar to the previous weight based uncertainty [60]. Any other method that uses
weight perturbation for weight-based uncertainty can be used as the method to obtain
the gradient estimates that can be further de-correlated using flipout. Let the gradient
estimates obtained from any of the previous work be 4Ŵ. 4Ŵ in a mini-batch are still
correlated. In order to de-correlate, we make use of randomly drawn sign matrices. If rn
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and sn are two random vectors drawn from ±1 uniformly, the flipout perturbation can be
given as follows:

4Wn = 4Ŵ� rnsT
n . (14)

Here, the n subscript represents each training example in a mini-batch. These ad-
ditional matrix multiplications with sign matrices have been shown to decorrelate the
gradient estimates and lead to variance reduction. Therefore, the convergence to optimal
variational parameter values happens earlier. However, having the additional matrix
multiplication with the sign matrices also leads to higher computational cost which may
be offset by parallelizing computations through evolution strategies, similar to the ones
used in reinforcement learning [66,69,70]. Similar to [57], evidence lower bound (ELBO)
is optimized to obtain estimates for θ as is done in Equation (13). Through empirical
evidence, it has been shown that flipout is able to reduce the variance in stochastic gradient
estimates [68]. However, it is also stated that as compared to vanilla implementation of
Bayes by backprop, flipout is 60 times more computationally expensive [68].

3.5. Mixture Density Networks

A mixture density network [71] allows for the response distribution to be a mixture of
distributions, essentially allowing for multiple distributions to weigh in with varied degrees
such that the response is multimodal. The parameters of each of these distributions are
estimated using a fully connected artificial neural network. For solving inverse problems
that often involve one-to-many mappings or for estimating multimodal distributions,
a mixture density network (MDN) proves to be an effective regime. The conditional
probability of obtaining a response value by mixing k Gaussian components can be given
as follows [72]:

p(y|x) = ∑
k

πk(x)N (y|µk(x), σ2
k (x)). (15)

Here, for each Gaussian component k, the parameters πk, µk, and σ2
k are estimated via

a neural network with k outputs. πk is the contribution of the kth mixing component, µk,
and σk are the mean and standard deviation of the Gaussian distribution that decide the
mixing component’s density distribution. In addition, since σ2

k depends on the input x, this
is considered a heteroscedastic model. If W represents the weight vector that specifies the
neural network, Equation (15) can be written as follows:

p(y|x) = ∑
k

πk(x, W)N (y|µk(x, W), σ2
k (x, W)). (16)

The weights W can be estimated by minimizing the negative logarithm of likelihood
which will be our loss function that we will optimize for. The loss function is of the
following form [72]:

FMDN = −∑
i

log{∑
k

πk(xi, W)N (yi|µk(xi, W), σ2
k (xi, W))}. (17)

Minimizing Equation (17) gives us the conditional density function of the response.
Varying the number of mixing components k may also be an additional tuning hyperpa-
rameter as it decides the number of modalities in the dataset.

3.6. Winsorization

In Winsorization, the extreme values are replaced with more centrally located represen-
tative values. The samples within the first α percentile are replaced with the αth percentile
sample, and the samples beyond the 1− α percentile are replaced with (1− α)th percentile
value. This is similar to clipping that is used in gradient vanishing/explosion problems.
By bounding the dataset to exclude the outliers, the adverse effects of perturbations on the
training are attenuated.
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For a given input random variable X, the values in n training examples can be written
in the form of ordered statistics as below:

X(1) ≤ X(2) ≤ . . . ≤ X(αn) . . . ≤ X((1−α)n) . . . ≤ X(n−1) ≤ X(n). (18)

After Winsorization, the sequence will be modified as follows to include more of
centrally located samples:

X(α) ≤ . . . ≤ X(α) ≤ . . . ≤ X(1−α) ≤ . . . ≤ X(1−α). (19)

As a methodology for limiting the effect of outliers, Winsorization can be applied on
the training dataset for more robust learning in probabilistic neural networks. To test for
robustness, we induce artificial perturbations in the training and validation set in features
and targets by adding standard Cauchy noise. The model performance is evaluated on an
untouched test set with no perturbation and a test set with perturbations. Winsorizing the
training data ensures that the model is able to learn on more central values in feature and
response space.

In the presence of outliers, we have the following:

sup |Y− Ŷ| ≥ sup |Y− ŶW | (20)

where ŶW = f (XW , Y) or ŶW = f (X, YW) or ŶW = f (XW , YW). Here, f is the learned
neural network based estimator for the response Y based on the input X. In the training
dataset, if either the input space or the response space are clipped, it affects the learning of
the neural network model.

4. Results

The performance of the models are evaluated on five datasets. Apart from comparing
the performance of different probabilistic modeling methods, the experiments also provide
insights into the use of Winsorization in the training stage of neural network modeling.

4.1. Datasets
4.1.1. Precision Agriculture Case Study: Crop Yield Prediction in the US Midwest

Historically, process-based biophysical models and classical statistical models have
been employed for crop yield prediction. Process-based models [73–77] study physiological
and physical processes to simulate crop yield. Often, simpler statistical models [75,78,79]
are used owing to their straightforward reporting of goodness of fit metrics. Many of
these models may be constrained by their strict and often unrealistic assumptions to con-
trol multi-collinearity and spatio-temporal dependence [80]. Additionally, process-based
and simple statistical models often miss or exclude non-linear terms, which may prevent
them for being useful for yield predictions under extreme climatic conditions. Machine
learning methods present the opportunity to model agricultural data using more com-
plex architectures, using fewer assumptions, and on larger datasets. Artificial neural
networks [81–89], linear regression [87,88,90–93], tree-based models [87,92–98], and sup-
port vector machines [98–100] are some of the most used machine learning
algorithms [101,102] for crop yield modeling. In particular, ANNs have been used for
tasks such as species recognition, weed detection, or crop quality assessment in [81–89]
and elsewhere, using a variety of complex features including satellite data.

In applications of statistical machine learning modeling to climate sciences and pre-
cision agriculture, it is important to incorporate spatio-temporal dependencies between
multiple samples. Spatial and spatio-temporal statistical models may be used to capture
such dependencies explicitly but are very sensitive to the stringent assumptions made for
such models, and the computations do not scale with data size in these cases. Ignoring pos-
sible non-linear, complex functional relations might lead to considerable over-estimation
of the uncertainty in prediction and a loss of statistical power for feature selection and



Entropy 2021, 23, 1546 10 of 48

risk bounds, which has severe consequences for downstream industries such as that of
crop insurance. More alarmingly, under-estimating uncertainty may lead to misleadingly
narrow uncertainty bounds that may be centered at an inaccurate and biased estimate.
In view of these issues, this work focuses on using easily available within-season me-
teorological variables for rapid and efficient usability and ensures that ANNs capturing
non-linear functional components are used to tackle all of the above listed concerns. Several
probabilistic modeling techniques are explored in this section.

Studying the effect of variations in weather on human crop yield is important in
mitigating production and economic losses in agrarian economies. This observed effect
is conspicuous and well studied in [103,104]. Extreme weather events in the US midwest
affect crop yields, food price hikes, and can lead to production losses—the effect being
as high as 75% for some Minnesota counties [103]. Formulating data-driven methods is
imperative for more efficient planning in precision agriculture and for public policy. In view
of this, our experiments are performed on a climate dataset comprising of county-level
end-of-year crop yields in the Midwest USA and daily meteorological variable readings.
The data include daily maximum temperature readings, minimum temperature readings,
and average precipitation readings. These help us in gauging how the end-of-year yield
changes in a county depending on the climatological features and location. The feature set
includes daily maximum temperature readings (365 features), daily minimum temperature
readings (365 features), daily average precipitation readings (365 features), longitude and
latitude (2 features), and cosine and sine transformation of these location coordinates
(4 features). The meteorological data are from the PSL public dataset [105], and the corn
crop yield data are from the USDA public dataset [106]. The dataset is limited to Minnesota
and Illinois for clarity of presentation.

4.1.2. California Housing Data

The California housing data [107] are a well-known public dataset. The response
or target variable is the median house value for different California districts collected
in the 1990 U.S Census. There are eight features including median income of the block,
median house age, average number of rooms, spatial coordinates, and population in the
block, where a block is the smallest geographical unit in the Census. Algorithmic bias
can unduly affect the model performance of predictive models. Especially, there may be
confounding variables that lead to the model favoring certain sections of the population,
and it is imperative to understand the extent of influence of this bias. Using probabilistic
deep learning models ensures that the some transparency is lent to the black-box model in
making predictions.

4.1.3. Data on Forest Fires in Portugal

The dataset on forest fires [108] contain information on the area burned by forest
fires in Portugal using meteorological data. The response variable is a scaled burned
area variable. The features include spatial coordinates, temperature, humidity, rain, wind,
information from the Fire Weather Index (FWI) system, and time-based variables. Many
times, the burned area is an estimate based on surveying methods. It is also possible that
the feature values such as humidity and temperature are often measured in a metropolitan
location instead of at the center of the forest area. These may make our estimates more
biased due to lack of accurate feature information. Skewed observed target values and
noisy data can have critical implications on the human lives and wildlife that are affected
by wild fires each year. Obtaining uncertainty estimates will allow policy makers to analyze
all probable prediction scenarios.

4.1.4. Mauna Loa CO2 Data

This dataset consists of time series atmospheric CO2 concentration variations data as
collected by NOAA at Mauna Loa, Hawaii [109]. The data consists of monthly atmospheric
CO2 concentration readings from the year 1958 through August 2021. Climate change has
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severe implications on the green house gas concentration in the environment. Bayesian
deep learning methods enable the revision of our known knowledge and provide better
forecasts for climate-change-driven planning.

4.1.5. Data on Genomics of Drug Sensitivity in Cancer

Genomics of Drug Sensitivity in Cancer (GDSC) [110,111] study involves studying the
sensitivity of cancer cells to anti-cancer drug as affected by the gene expressions of different
patients. The GDSC database from which the data is derived curates over thousands of
genetically characterized human cancer cells and information about biomarkers.

Each cancer patient responds differently to anti-cancer drug treatment. The objective
is to explore therapeutic biomarkers that may be used in identifying patients that are more
likely to respond to anti-cancer drug treatment. In precision oncology, we are interested in
providing the correct drug treatment to the right cancer patients based on these biomarkers
of drug sensitivity.

In the dataset, the response variable is the sensitivity to YM155 (Sepantronium bro-
mide) as the natural logarithm of the fitted IC50 and the feature information consists of
expression of 238 genes. The dataset samples are drawn from 4 cancer types and 148 cell
lines. Precision in medicine can improve human mortality and uncertainty-guided model
inference can lead to more reliable research outcomes in healthcare.

4.2. Architecture

We use a fully-connected deterministic neural network as the baseline model. It has 14
layers and ReLU activation for the first 13 layers. The number of hidden layers are 52, 250,
300, 450, 202, 452, 50, 300, 200, 52, 400, 350, 450, and 450 and 1 for the output layer. This
network is chosen via Bayesian optimization. This involves using expected improvement
as a surrogate acquisition function. This function is the objective function for neural
network hyperparameter optimization. Over several trials using the surrogate function
with different hyperparameter sets, we choose the model with optimal hyperparameter
set, and this chosen hyperparameter set can be expected to accurately correspond with the
maximized original objective function. The expected improvement for (xi, yi)

n
i=1 samples

and [a]+ = max(0, a) is given by:

Expected Improvementn(x) = En[[ f (x)− f ∗n ]
+].

More information about Bayesian hyperparameter tuning can be found in [112].
Concrete Dropout. One of the Bayesian neural networks we experiment with imple-

ments the concrete dropout methodology on all layers. The dropout rate is learned during
the training stage, and the contribution of different hidden neurons is varied by dropping
neurons during the testing stage. Mean and variance of prediction distribution are the
outputs of the neural network. The ELBO function is modified to include the concrete
relaxation for dropout rate. This allows for a more efficient search for optimal dropout rate
and probabilistic model training as opposed to Monte Carlo dropout learning based on
grid search.

Variational Gaussian processes (VGP). Another implementation uses a variational Gaus-
sian process to estimate the target. The first 14 layers learn weights in a deterministic
manner. The VGP learns the posterior predictive distribution of the target and receives
its input from the sequence of fourteen fully connected layers. Instead of full covariance
we use a sparser representation using inducing variables. An RBF kernel is used with
amplitude and lengthscale hyperparameters. The method [45] is different from previous
variational GP implementations in that the inducing variables and the kernel hyperparam-
eters are jointly optimized using gradient descent-based updates.

Flipout Gradient Estimator. In the flipout implementation, gradients in all 14 layers are
estimated using the flipout method [68]. The KL divergence of the bias and kernel surrogate
posteriors and priors are minimized during training. Flipout enables variance reduction
in the gradient estimates by minimizing the KL divergence of the weights’ variational
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posterior with the prior on the weights. Apart from minimizing the complexity cost, we are
interested in improving the expected logarithm of the likelihood of observing the data when
the weights are sampled from the variational posterior distribution. The objective function
comprises of both these terms and is called the compression cost. The gradient estimates
are taken with respect to an approximate version of the variational free energy cost where
the weight values are sampled using Monte Carlo sampling from the variational posterior.

Mixture Density Networks. Here, the mixture components are estimated via the fully
connected neural network. The estimated parameters are used to estimate the response
using Gaussian mixture models. The mixing coefficients as well as the mean and variance
of the Gaussian components’ density are estimated using the neural network. The gradient
estimates of the negative log likelihood function are used to update the parameter values.

Evaluation Metrics

For training purposes, the datasets are split into training, validation, and test sets,
which comprise of 70%, 10%, and 20% of the data. Since all the experiments essentially
relate to regression problems, we use mean squared error as our metric of comparison. We
also report the median absolute error which provides insight into the model performance
in presence of outliers. The total time for training one instance of the model is reported.
We also report the coefficient of determination and the total number of parameters in the
network architecture. Apart from the methodology-based change in number of model
parameters, the number of parameters also vary depending on the number of input features
for the different datasets. The effects of adding artificial perturbations to the dataset and
using Winsorization to mitigate the effect of the noise is also studied. The evaluation
metrics are reported for different sites for noise and for different degrees of Winsorization.
The effect is tested on a test set that is free from noise (original, untouched test set) and
a test set that has standard Cauchy noise at different sites, the same way as the train-
ing/validation data sets (contaminated test set). Relative efficiencies are also evaluated
to compare the Winsorized results relative to the non-Winsorized prediction results. We
compare the efficiencies for different sites of contamination using standard Cauchy noise
and at different degrees of Winsorzation.

4.3. Results
4.3.1. Crop Yield Estimation

Table 1 outlines the results of crop yield prediction based on conventional determin-
istic learning methods with the exception of a shallow concrete dropout model. First,
we implement a LASSO [113] regression approach, which imitates the generalized lin-
ear regression models that are popularly used in many of the related domain science
outlets. The regularization coefficient at 0.0781 is learned adaptively through fivefold
cross validation. Based on the LASSO regularization and resampling inference on deep,
semi-parametric modeling (not shown here), we can infer a strong negative correlation
between agricultural yields and harvest-period precipitation. Next, we use a random forest
model with 100 trees and a max depth of 100 per tree. Next, a support vector regression
with a radial-basis kernel and C = 10 and a margin of error ε = 0.1 is learned. To enable
comparison with [79], we also fit a support vector model of 8th degree, with C = 1.0.
A shallow ANN model using three layers, with concrete dropout, is also fitted to the data.
The deterministic deep ANN architecture is then used, which results in the best MSE and
R2 values on test data.

Table 2 reports the probabilistic frameworks that were tested on crop yield estimation
problem. The results include variations of flipout based and MDN based networks. Apart
from experiments with flipout gradient estimation on all layers, we also try the gradient
estimation technique on specific layers in neural network. The flipout implementation on
“early 5 layers” focuses on applying the estimation technique only on the first 5 layers of
the model. Similarly, “mid 5 layers” focuses on applying flipout on the middle 5 layers
while “final 5 layers” focuses on applying the method to the final 5 layers closer to the
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output. Flipout estimation for all layers not only leads to more number of floating point
operations per second but also fails to estimate optimal parameters that may improve
predictive performance. By applying flipout on subset of layers, we allow for the network
to estimate the output in a more efficient manner and still retain the probabilistic behavior
of the model (and the unbiased gradient estimates in the presence of weight perturbations).
Figure 1 displays the prediction results for the flipout experiments. The colder counties in
Minnesota have lower yield while warmer counties in Illinois have higher yields. For these
relatively colder counties and relatively warmer counties, the model is still unable to
accurately predict crop yield. This is visible in the lower left-hand-side tail of prediction
in Minnesota result sub-plots and the upper right-hand-side tail of predictions in Illinois
sub-plots. Similarly, variational GP is unable to achieve the same level of performance
as exact GP. In the MDN, we vary the number of mixing components. As we increase
the number of components, we add enough complexity to model multiple geographical
regions using different mixing densities such that the multiple modalities of the data are
sufficiently captured. This helps in improving the performance in terms of the test mean
squared error and coefficient of determination. Figure 2 shows us the different predictions
results on a geographical map. Flipout and VGP-based predictions are unable to cover
the full range of the observed target. In Figure 3 as well, the prediction results can be
noted by state. Bayesian neural network methods have lower predictive performance
on Minnesota as opposed to Illinois. Epistemic uncertainty is higher for the concrete
dropout and exact GP and lower for the mixture density network variants. While our
inadequate knowledge about the best dataset and predictive model for supervised learning
is displayed in the epistemic uncertainty, more discussion sources of uncertainties can be
found in Appendix C.

Table 1. Comparison of different machine learning models on the test data.

Model Test MSE R2

Linear Regression ( Lasso) 2.3432 0.7205
Random Forest 2.1113 0.7481

Support Vector Regression (rbf kernel) 2.3 0.7246
Support Vector Regression (polynomial kernel, degree: 8) 4.2943 0.4878

Concrete Dropout, 3-layer ANN 3.0001 0.6379
Neural Network 1.9224 0.7684

Table 2. Probabilistic methods: Crop yield estimation.

Model Test MSE R2 Run Time Test Median
Absolute Error

Number of
Parameters

Concrete Dropout 2.33 0.62 19 s 1.09 1,106,952
Variation GP 51.09 −7.38 75 s 6.50 1,108,167

Flipout 10,349 −15,544 464 s 73.63 2,213,872
Flipout (early 5 layers) 2.72 0.47 215 s 1.30 1,481,959
Flipout (mid 5 layers) 2.53 0.60 166 s 0.75 1,309,563
Flipout (final 5 layers) 2.70 0.31 232 s 0.85 1,635,316
MDN (2 components) 2.95 0.66 56 s 1.01 1,108,748
MDN (3 components) 2.24 0.69 52 s 0.73 1,110,107
MDN (4 components) 2.15 0.71 54 s 0.71 1,111,466

Exact GP 2.22 0.69 3.6 s 0.69 2
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(a) Flipout on first 5 layers, Minnesota state results (b) Flipout on first 5 layers, Illinois state results

(c) Flipout on middle 5 layers, Minnesota state results (d) Flipout on middle 5 layers, Illinois state results

(e) Flipout on last 5 layers, Minnesota state results (f) Flipout on last 5 layers, Illinois state results

Figure 1. Crop yield predictions. X-axis shows arbitrary county indices which are sorted by the observed yield in ascending
order. Y-axis represents the yield value. Black points are the observed yield. Navy blue line is the mean prediction and light
blue points are the predictions in several individual runs.
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(a) Flipout (b) VGP (c) Exact GP

(d) Concrete Dropout (e) MDN (f)

(g) Observed Yield

Figure 2. Crop yield predictions for Minnesota and Illinois. Sub-plot (f) shows us the legend. Darker blue shade represents
lower yield predictions and lighter shade represents higher yield predictions. Methods for better predictive performance
(concrete dropout, mixture density network, and exact gp) are able to correctly predict the whole range of observed yield.
Flipout and VGP-based Bayesian neural networks are unable to predict well especially in Minnesota counties.
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(a) MDN MN (b) MDN IL

(c) MDN 4 components MN (d) MDN 4 components IL

(e) Concrete Dropout MN (f) Concrete Dropout IL

(g) Exact GP MN (h) Exact GP IL

Figure 3. Crop yield predictions. X-axis shows arbitrary county indices which are sorted by the observed yield in ascending
order. Y-axis represents the yield value. Black points are the observed yield. Navy blue line is the mean prediction and
epistemic uncertainty estimates is shown in turquoise.
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Winsorization Results
Experiments to test the effectiveness of Winsorization in removing Cauchy noise from

the data are performed. In four different variations, we add standard Cauchy noise to (a)
target, (b) features, (c) target and features, (d) neither target nor features in the training and
the validation set. We experiment with two scenarios—when the test set contains no Cauchy
noise in none of the four variations listed before and when the test set contains Cauchy
noise according to the first three variations listed before. We compute the mean squared
error, median absolute error, mean absolute error, and the coefficient of determination
as our evaluation metrics. Table 3 shows the values of the metric before Winsorization
as MSE, Median AE, MAE, and R2, respectively. The metric values after Winsorization
are shown as MSEW , Median AEW , MAEW , and R2

W . For each noise site variation, an
optimal Winsorization limit that minimizes the mean MSEW is chosen to be displayed.
The untouched test set is more similar to the central data distribution in the training set.
With the exception of exact GP, the model performance on the test set unconditionally
improves when the training and validation sets are Winsorized. In the contaminated test
set, there is no apparent trend in model performance as Winsorization is applied. This
is consistent with the fact that the model is training to learn the noise as well, increasing
the coefficient of determination and reducing MSE values in the contaminated case as
compared to the untouched test set case.

Figure 4 displays the Test MSEW values on the untouched test set after Winsorizing
the training and validation data set. The figure showcases results when perturbation is
added to separate noise sites. Figure 4e,f show the results from Figure 4c,d only for the
test MSE range 0 to 10. It is evident that, in general, the presence of noise using some
degree of Winsorization in the training and validation set improves the model performance
as opposed to when Winsorization is not used. The benefits of Winsorization are not
clear when there is no artificial perturbation in the data. The marginal improvement in
Figure 4a could be the result of the removal of naturally occurring outliers. The benefits
of Winsorization are more apparent in Figure 4b–d. In addition, while exact GP was the
best performing model before the addition of noise, the performance degrades after the
addition of noise, especially when added to the feature set. Mixture Density networks
perform relatively better for all the noisy cases. Probabilistic neural network models are
able to overcome the effects of perturbation in features at relatively lower Winsorization
levels but require a higher degree of winsorization to reach the optimal Winsorization
limits for achieving the best test MSE.

(a) MSE for noise-free case (b) MSE for noise in target

Figure 4. Cont.
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(c) MSE for noise in features (d) MSE for noise in target and features

(e) MSE for noise in features, y axis between 0 and 10 (f) MSE for noise in target and features, y axis between 0 and 10

Figure 4. Winsorization results from 0 to 25 percentile limits on crop yield dataset. Mean Squared Error is shown on the
y-axis and the Winsorization limits are shown on the x-axis. Different lines represent different methods: Concrete dropout is
shown as blue dashed line, exact GP is shown as green dotted line, mixture density network with 2 components is shown in
red solid line, and mixture density network with 4 components is shown in magenta dashed-dotted line. As Winsorization
limit increases on the training set, the model performance in terms of mean squared error for the untouched test set is
shown in the sub-plots.
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Table 3. Winsorization results on test set for crop yield dataset.

Noise Site Optimal Limit Model MSE MSEW R2 R2
W Median AE Median AEW MAE MAEW

None 0.1 Concrete Dropout 3.25 2.63 0.55 0.64 1.55 1.16 1.51 1.33
None 0.1 Exact GP 2.21 2.21 0.69 0.69 0.69 0.69 1.13 1.13
None 0.1 MDN 2.72 2.46 0.63 0.66 1.05 0.72 1.28 1.15
None 0.1 MDN (4) 2.61 2.14 0.64 0.70 0.91 0.50 1.19 1.01

Untouched Test Set
Target 0.25 Concrete Dropout 22.27 6.02 −2.02 0.18 4.37 1.55 4.16 1.97
Target 0.25 Exact GP 12.94 6.31 −0.75 0.14 1.74 1.26 2.45 1.89
Target 0.25 MDN 9.29 3.49 −0.26 0.52 1.49 1.40 2.25 1.56
Target 0.25 MDN (4) 13.84 6.15 −0.87 0.17 2.44 1.12 2.91 1.79

Features 0.15 Concrete Dropout 6.15 3.69 0.16 0.50 1.98 1.26 2.07 1.52
Features 0.15 Exact GP 72.27 72.27 −8.79 −8.79 8.6 8.6 8.05 8.05
Features 0.15 MDN 4.78 2.67 0.35 0.63 1.87 0.98 1.86 1.32
Features 0.15 MDN (4) 72.27 2.34 −8.79 0.68 8.60 0.96 8.05 1.21

Target and Features 0.25 Concrete Dropout 112.62 6.03 −14.26 0.18 9.93 1.17 10.33 1.82
Target and Features 0.25 Exact GP 72.27 72.27 −8.79 −8.79 8.60 8.60 8.05 8.05
Target and Features 0.25 MDN 35.55 8.88 −3.81 −0.20 5.44 2.48 5.52 2.46
Target and Features 0.25 MDN (4) 72.27 7.42 −8.79 −0.01 8.60 1.31 8.05 1.98

Contaminated Test Set
Target 0.25 Concrete Dropout 2.85 3.04 0.61 0.58 1.37 1.47 1.40 1.49
Target 0.25 Exact GP 2.21 2.91 0.69 0.60 0.69 1.49 1.13 1.46
Target 0.25 MDN 3.05 2.73 0.58 0.62 1.49 1.69 1.44 1.44
Target 0.25 MDN (4) 2.37 2.93 0.67 0.60 0.81 0.95 1.14 1.32

Features 0.05 Concrete Dropout 2.51 2.27 0.65 0.69 1.19 1.08 1.33 1.17
Features 0.05 Exact GP 2.21 2.39 0.69 0.68 1.13 1.23 0.62 0.61
Features 0.05 MDN 2.39 2.71 0.67 0.63 0.70 1.02 1.09 1.28
Features 0.05 MDN (4) 2.47 2.55 0.66 0.65 1.02 0.84 1.18 1.26

Target and Features 0.25 Concrete Dropout 3.08 3.38 0.58 0.54 1.35 1.64 1.52 1.58
Target and Features 0.25 Exact GP 2.21 5.89 0.69 0.20 0.69 1.98 1.13 2.12
Target and Features 0.25 MDN 2.60 2.09 0.64 0.71 0.87 1.23 1.20 1.20
Target and Features 0.25 MDN (4) 4.12 2.69 0.44 0.63 1.44 1.07 1.63 1.36
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4.3.2. California Housing Data

For the California house price dataset, Table 4 shows the results for different proba-
bilistic models. Similar to the previous case study, the variational GP and flipout gradient
estimations in the presence of weight perturbation are unable to perform well. The mix-
ture density network with two mixing components is able to perform well, but exact GP
provides the best performance in the absence of any noise.

Table 4. Probabilistic methods: California house prices.

Model Test MSE R2 Run Time Test Median
Absolute Error

Number of
Parameters

Concrete Dropout 0.44 0.63 28 s 0.26 1,050,168
Variational GP 1.74 −2.39 36 s 0.71 1,050,143

Exact GP 0.28 0.69 73.34 s 0.21 2
Flipout 0.64 −0.54 392 s 0.45 2,100,304

MDN (2 components) 0.31 0.66 52 s 0.23 1,051,964

Figure 5 shows the Test MSEW on the untouched test data as the degree of Winsoriza-
tion on the training and validation sets are varied. Similar to the results obtained in the
previous case study, there is no apparent certain improvement with varying Winsorization
limits in test MSEW when there is no noise in the data. When Winsorization limit is in-
creased from 0 to 1 percentile and 5 percentile, we notice improvement in the performance
for the probabilistic neural network models. The mixture density network is able to perform
marginally better than exact GP when the Winsorization limit is 5 percentile. Beyond the
5 percentile mark, we notice that mixture density network with 2 mixing components are
able to perform better than exact GP when the Winsorization limit is 15 percentile and
20 percentile. As noise is added to the features, the model performance for concrete dropout
and mixture density network (with four components) improves from the pre-Winsorization
case. It is visible in Figure 5b,d,f, that as the degree of Winsorization increases in the train-
ing/validation sets, the model performance of most probabilistic neural network models
increases. In Figure 5c,e as the Winsorization limit increases from 0 to 1 percentile, we see
the most model performance improvement. While the model performance continues to
improve with the increasing Winsorization limit for the concrete dropout Bayesian neural
network, we are unable to notice the same for other models. We notice that noise adversely
affects exact GP’s performance.

In Table 5, the model evaluation metrics are provided on the untouched and con-
taminated test sets before and after Winsorization is applied. The optimal Winsorization
results are shown. We notice similar trends as the previous cases study results. The optimal
Winsorization limit is usually well below the 25 percentile threshold for the case when
we introduce noise in the features before model training. For the untouched test set case,
the model performance improves for all models including exact GP.
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(a) MSE for noise free case (b) MSE for noise in target

(c) MSE for noise in features (d) MSE for noise in target and features

(e) MSE for noise in features; y-axis between 0 and 1.2 (f) MSE for noise in target; y axis between 0 and 21

Figure 5. Winsorization results from 0 to 25 percentile limits on California housing dataset. Mean Squared Error is shown
on the y-axis and the Winsorization limits are shown on the x-axis. Different lines represent different methods: Concrete
dropout is shown as blue dashed line, exact GP is shown as green dotted line, mixture density network with 2 components
is shown in red solid line, and mixture density network with 4 components is shown in magenta dashed-dotted line.
As Winsorization limit increases in the training dataset, the model performance in terms of mean squared error for the
untouched test set is shown in the picture.
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Table 5. Winsorization results on test set for the California Housing dataset.

Noise Site Optimal Limit Model MSE MSEW R2 R2
W Median AE Median AEW MAE MAEW

None 0.05 Concrete Dropout 0.35 0.30 0.62 0.67 0.25 0.24 0.38 0.36
None 0.05 Exact GP 0.30 0.30 0.67 0.67 0.20 0.20 0.34 0.34
None 0.05 MDN 0.35 0.32 0.62 0.65 0.23 0.22 0.36 0.35
None 0.05 MDN (4) 0.31 0.29 0.66 0.68 0.18 0.20 0.33 0.34

Untouched Test Set
Target 0.25 Concrete Dropout 3.91 2.65 −3.18 −1.84 0.80 1.58 1.26 1.51
Target 0.25 Exact GP 5.72 2.18 −5.12 −1.33 1.97 1.32 2.18 1.34
Target 0.25 MDN 134.64 2.29 −142.85 −1.44 2.45 1.15 6.89 1.27
Target 0.25 MDN (4) 22.29 2.18 −22.82 −1.33 1.45 1.33 2.56 1.32

Features 0.1 Concrete Dropout 0.66 0.59 0.28 0.36 0.56 0.40 0.64 0.57
Features 0.1 Exact GP 0.67 0.62 0.27 0.33 0.56 0.42 0.62 0.55
Features 0.1 MDN 0.82 0.67 0.12 0.28 0.51 0.45 0.67 0.58
Features 0.1 MDN (4) 5.72 0.61 −5.12 0.34 1.97 0.36 2.18 0.54

Target and Features 0.25 Concrete Dropout 23.10 2.21 −23.68 −1.37 4.55 1.43 4.48 1.33
Target and Features 0.25 Exact GP 4.77 2.47 −4.10 −1.64 2.07 1.53 2.01 1.42
Target and Features 0.25 MDN 12.47 2.82 −12.32 −2.01 2.32 1.31 2.84 1.37
Target and Features 0.25 MDN (4) 5.72 3.09 −5.12 −2.31 1.97 1.18 2.18 1.36

Contaminated Test Set
Target 0.25 Concrete Dropout 0.31 0.60 0.65 0.35 0.23 0.40 0.36 0.55
Target 0.25 Exact GP 0.30 0.57 0.67 0.38 0.20 0.37 0.34 0.51
Target 0.25 MDN 0.32 0.58 0.65 0.37 0.19 0.36 0.33 0.53
Target 0.25 MDN (4) 0.32 0.56 0.65 0.39 0.17 0.35 0.32 0.52

Features 0.01 Concrete Dropout 0.28 0.33 0.69 0.64 0.23 0.27 0.34 0.37
Features 0.01 Exact GP 0.30 0.30 0.67 0.67 0.20 0.20 0.34 0.34
Features 0.01 MDN 0.32 0.27 0.65 0.71 0.20 0.21 0.35 0.33
Features 0.01 MDN (4) 0.33 0.30 0.64 0.67 0.21 0.22 0.35 0.34

Target and Features 0.25 Concrete Dropout 0.30 0.38 0.67 0.59 0.22 0.33 0.34 0.44
Target and Features 0.25 Exact GP 0.30 0.60 0.67 0.35 0.20 0.39 0.34 0.54
Target and Features 0.25 MDN 0.31 1.41 0.66 −0.51 0.21 0.60 0.34 0.80
Target and Features 0.25 MDN (4) 0.35 1.37 0.62 −0.41 0.19 0.63 0.34 0.81
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4.3.3. Mauna Loa CO2 Data

The CO2 concentration in the atmosphere increases as a function of time, measured
in months and years. A naive fitting on the CO2 concentration as response will lead to
sub-optimal training. The model performance results and the Winsorization results on
unadjusted responses are given in Appendix B. We therefore adjust for the long-term linear
trend and monthly seasonal trend in CO2 concentration. Therefore the response, CO2
concentration, can be decomposed as follows:

Yi,k = µi + µi,k + f (X′i,k) (21)

where µi is the linear long term trend for the ith observation. This component can be fit as a
linear regression model on Xi. µi,k is the seasonal mean for the ith observation and f (X′i)
is the non-parametric fitting on the residuals using a probabilistic neural network. Here,
X′i,k = Yi,k − µi − µi,k. In addition, the linear long-term trend can be fit using the original
features as follows:

µi = Xiβ (22)

where the β̂ estimator can be obtained by ordinary least squared for this dataset. Using
this semi-parameteric model allows for the non-parameteric component of the model to
focus on fitting to the more complex relationships without having to accommodate for the
linear long term trend and the monthly seasonal trend. Table 6 shows the performance
results for various probabilistic methods on the Mauna CO2 concentration dataset. Flipout
is unable to converge to a representative posterior predictive distribution. Variational
GP performs slightly better. Concrete dropout, mixture density networks, and Gaussian
processes perform the best where MDN has slightly faster training time.

Table 6. Probabilistic methods: Mauna CO2 concentration.

Model Test MSE R2 Run Time Test Median Absolute Error

Concrete Dropout 3.24 0.82 25 s 0.99
VGP 18.44 −0.04 3 s 31.45

Exact GP 0.08 0.99 34 s 0.17
MDN 0.42 0.97 23 s 0.38

Flipout 19.68 −0.85 4 s 211.83

Figure 6 show the Test MSEW on the untouched test set as the Winsorization limits
on the training and validation set are increased from 0 to 25 percentile. In the noise-free
case, as the degree of Winsorization is increased, test set MSE remains the same for the
exact GP and changes marginally for MDN with 2 components and concrete dropout.
For the case when noise is introduced in features, test MSE increases with the increasing
degree of Winsorization. This may be due the fact that the feature set dimension is one
and adding perturbations greater than feature values to all training examples adversely
impairs the models from learning. When the noise is added at least to the target, there
is a decline in untouched test set MSE. In the case, where there is noise only in target,
the MDN performance improves drastically. The exact GP remains unchanged while
concrete dropout improves marginally. For the case where there is noise in both target and
feature, the exact GP remain the same throughout while the model performance for other
models only improves to a certain point, even at a higher degree of Winsorization.



Entropy 2021, 23, 1546 24 of 48

(a) MSE for noise-free case (b) MSE for noise in target

(c) MSE for noise in features (d) MSE for noise in target and features

(e) MSE for noise in target; y axis 0 to 50

Figure 6. Winsorization results from 0 to 25 percentile limits on Mauna dataset. Mean Squared Error is shown on the y-axis
and the Winsorization limits are shown on the x-axis. Different lines represent different methods: Concrete dropout is
shown as blue dashed line, exact GP is shown as green dotted line, mixture density network with 2 components is shown in
red solid line, and mixture density network with 4 components is shown in magenta dashed-dotted line. As Winsorization
limit increases in the training set, the model performance in terms of mean squared error in the untouched test set is shown
in the sub-plots.

Table 7 displays the change in model performance. Similar to previous data sets,
the model performance improves with Winsorization for the untouched test set while
it does not for the contaminated test set. For the untouched test set case, while there
is a Winsorization limit for which most methods see an improvement in performance,
the model performance improves only slightly for the concrete dropout case.The optimal
limit remains high for all noise cases on the untouched test set.
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Table 7. Winsorization results on test set for the Mauna CO2 dataset.

Noise Site Optimal Limit Model MSE MSEW R2 R2
W Median AE Median AEW MAE MAEW

None 0.2 Concrete Dropout 3.16 3.28 0.82 0.81 1.03 1.46 1.35 1.52
None 0.2 Exact GP 0.08 0.08 0.99 0.99 0.17 0.17 0.22 0.22
None 0.2 MDN 0.77 0.38 0.95 0.98 0.50 0.31 0.67 0.46
None 0.2 MDN (4) 0.42 1.55 0.97 0.91 0.33 0.57 0.47 0.88

Untouched Test Set
Target 0.25 Concrete Dropout 27.89 9.71 −0.54 0.46 5.24 2.84 4.84 2.80
Target 0.25 Exact GP 18.08 18.08 −0.001 −0.001 3.15 3.15 3.58 3.58
Target 0.25 MDN 263.51 13.34 −13.58 0.26 3.37 3.12 8.24 3.14
Target 0.25 MDN (4) 107.36 7.35 −4.94 0.59 5.59 2.49 6.92 2.43

Features 0.25 Concrete Dropout 18.18 18.19 −0.006 −0.007 2.97 2.95 3.53 3.53
Features 0.25 Exact GP 18.06 18.06 −0.003 −0.0003 3.15 3.15 3.57 3.57
Features 0.25 MDN 18.76 19.68 −0.03 −0.08 3.20 2.98 3.60 3.65
Features 0.25 MDN (4) 20.19 20.82 −0.11 −0.15 2.88 3.09 3.64 3.75

Target & Features 0.25 Concrete Dropout 25.33 18.99 −0.40 −0.05 5.33 4.17 4.61 3.92
Target & Features 0.25 Exact GP 18.06 20.89 −3e−3 −0.002 3.15 3.15 3.57 3.58
Target & Features 0.25 MDN 30.60 20.89 −0.69 −0.15 4.66 4.13 4.72 4.12
Target & Features 0.25 MDN (4) 30.94 20.01 −0.71 −0.11 4.72 3.98 4.75 3.93

Contaminated Test Set
Target 0.05 Concrete Dropout 3.13 2.95 0.82 0.83 0.87 0.98 1.27 1.27
Target 0.05 Exact GP 0.08 0.15 0.99 0.99 0.17 0.17 0.22 0.26
Target 0.05 MDN 0.70 0.82 0.96 0.95 0.48 0.49 0.64 0.68
Target 0.05 MDN (4) 1.77 0.49 0.90 0.97 0.42 0.35 0.84 0.51

Features 0.05 Concrete Dropout 3.46 3.21 0.80 0.82 0.89 1.11 1.34 1.37
Features 0.05 Exact GP 0.08 1.65 0.99 0.90 0.17 0.19 0.22 0.59
Features 0.05 MDN 1.03 1.14 0.94 0.93 0.45 0.49 0.68 0.74
Features 0.05 MDN (4) 0.80 4.21 0.95 0.76 0.47 0.78 0.63 1.33

Target and Features 0.01 Concrete Dropout 3.48 3.51 0.80 0.80 1.18 0.93 1.42 1.36
Target and Features 0.01 Exact GP 0.08 0.13 0.99 0.99 0.17 0.17 0.22 0.24
Target and Features 0.01 MDN 0.44 0.43 0.97 0.98 0.41 0.34 0.50 0.43
Target and Features 0.01 MDN (4) 3.46 6.33 0.80 0.64 0.95 1.56 1.29 1.87
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4.4. Forest Fires Data

Table 8 compares the model performance without any noise in the dataset and without
Winsorization in the training and validation set. The forest fires dataset is a challenging
dataset for all methods. None of the methods are able to achieve reasonable model perfor-
mance on this dataset, suggesting that there is a need for exploring more methodologies
and architectures in further work. Among the methods that were tested, similar trends
as before were noticed. Flipout is the most expensive and takes more time. Exact GP and
MDN achieve the best model performance and run time. VGP performs slightly worse and
takes more time to train than MDN and Concrete dropout.

Table 8. Probabilistic methods: Forest fires.

Model Test MSE R2 Run Time Test Median Absolute Error

Concrete Dropout 12.93 −0.11 100 s 3.25
Flipout 2015.67 −192.80 1162 s 3.66

VGP 21.93 −0.73 372 s 3.71
Exact GP 14.66 −0.19 4 s 3.46

MDN 21.44 −0.74 95 s 3.52

Figure 7 shows the change the model performance on the forest fires dataset when
the training and validation datasets are Winsorized. In the noise-free case, there is no
affect on the exact GP performance as the degree of Winsorization is increased. MDN
performance remains worse than Concrete dropout and exact GP despite the changing
Winsorization limits. For other cases, where noise is introduced, we notice that some degree
of Winsorization helps improve model performance as opposed to the no Winsorization
case, especially when there is noise in the response variable. In the cases where noise is
introduced, Concrete dropout and exact GP are able to achieve the lowest Test MSEW .

(a) MSE for noise-free case (b) MSE for noise in target

(c) MSE for noise in features (d) MSE for noise in target and features

Figure 7. Cont.
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(e) MSE for noise in target; y-axis between 0 and 50 (f) MSE for noise in features; y-axis between 0 and 40

(g) MSE for noise in target and features; y-axis between 0 and 40

Figure 7. Winsorization results from 0 to 25 percentile limits on forest fires dataset. Mean Squared Error is shown on the
y-axis and the Winsorization limits are shown on the x-axis. Different lines represent different methods: Concrete dropout is
shown as blue dashed line, exact GP is shown as green dotted line, mixture density network with 2 components is shown in
red solid line, and mixture density network with 4 components is shown in magenta dashed-dotted line. As Winsorization
limit increases in the training set, the model performance in terms of Mean Squared Error in the untouched test set is show
in the sub-plots.

Table 9 showcases similar trends as the previous datasets. The model performance im-
proves with Winsorization on the untouched test set and there is no definite improvement
for the contaminated test set. The optimal Winsorization limit for noise in the features case
is low, similar to all datasets.
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Table 9. Winsorization results on test set for forest fires dataset.

Noise Site Optimal Limit Model MSE MSEW R2 R2
W Median AE Median AEW MAE MAEW

None 0.01 Concrete Dropout 14.10 12.85 −0.15 −0.04 3.39 3.25 3.40 3.22
None 0.01 Exact GP 14.75 14.75 −0.2 −0.20 3.51 3.51 3.39 3.39
None 0.01 MDN 26.24 25.71 −1.14 −1.09 3.76 3.57 4.28 4.03
None 0.01 MDN (4) 24.97 26.74 −1.03 −1.18 3.91 3.83 4.05 4.17

Untouched Test Set
Target 0.25 Concrete Dropout 55.19 16.95 −3.51 −0.38 4.86 2.96 5.98 3.51
Target 0.25 Exact GP 55.73 18.78 −3.55 −0.53 3.84 3.04 5.34 3.66
Target 0.25 MDN 94.78 31.60 −6.73 −1.57 5.27 3.99 6.99 4.70
Target 0.25 MDN (4) 273.36 29.05 −21.31 −1.37 5.16 4.21 8.55 4.62

Features 0.15 Concrete Dropout 13.61 16.39 −0.11 −0.33 2.97 2.68 3.41 3.31
Features 0.15 Exact GP 12.56 17.15 −0.02 −0.40 3.16 3.51 3.29 3.62
Features 0.15 MDN 12.59 21.26 −0.02 −0.73 3.23 3.39 3.08 3.75
Features 0.15 MDN (4) 165.53 23.41 −12.51 −0.91 11.18 3.56 12.38 3.91

Target and Features 0.25 Concrete Dropout 51.78 19.42 −3.22 −0.58 6.57 3.40 6.04 3.77
Target and Features 0.25 Exact GP 70.21 21.73 −4.73 −0.77 6.55 3.95 7.06 8.06
Target and Features 0.25 MDN 165.53 21.39 −12.51 −0.74 11.18 3.42 12.38 3.71
Target and Features 0.25 MDN (4) 23.44 22.49 −0.91 −0.65 3.89 3.55 4.01 3.81

Contaminated Test Set
Target 0.25 Concrete Dropout 13.68 12.95 −0.11 −0.05 3.33 3.04 3.36 3.23
Target 0.25 Exact GP 14.75 14.91 −0.20 −0.21 3.50 3.41 3.39 3.45
Target 0.25 MDN 23.89 14.91 −0.95 −0.84 3.72 3.41 4.06 3.45
Target 0.25 MDN (4) 22.49 20.38 −0.83 −0.66 3.74 3.11 3.93 3.68

Features 0.05 Concrete Dropout 14.23 14.71 −0.16 −0.20 3.10 3.16 3.40 3.37
Features 0.05 Exact GP 14.75 15.80 −0.65 −0.29 3.50 3.43 3.39 3.45
Features 0.05 MDN 20.30 23.54 −0.65 −0.92 3.05 3.72 3.64 4.02
Features 0.05 MDN (4) 27.00 29.38 −1.20 −1.39 4.01 3.85 4.25 4.40

Target and Features 0.25 Concrete Dropout 13.78 46.52 −0.12 −2.79 3.29 5.17 3.37 5.73
Target and Features 0.25 Exact GP 14.75 39.99 −0.20 −2.26 3.50 4.08 3.39 4.08
Target and Features 0.25 MDN 25.54 202.67 −1.08 −15.54 3.85 7.58 4.21 10.52
Target and Features 0.25 MDN (4) 21.82 221.33 −0.78 −17.06 3.91 8.15 3.94 11.31
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GDSC Data

As can be seen in Table 10, the GDSC dataset also proves to be a difficult dataset for the
probabilistic models studied in this work. Among the models that were tested, VGP is able
to achieve the best model performance followed by MDN with two mixing components.

Table 10. Probabilistic methods: GDSC.

Model Test MSE R2 Run Time Test Median Absolute Error

Concrete Dropout 7.77 −0.10 32 s 1.46
Exact GP 15.59 −1.25 3.8 s 3.75

MDN 7.78 −0.13 119 s 1.26
Flipout 80.67 −26.07 970 s 5.95

VGP 6.15 0.08 295 s 1.46

Figure 8 shows the model performance on the untouched test set, and the Winsoriza-
tion limit is varied on the training and validation set. Apart from the noise in the target
case, all cases show no definite improvement in model performance as the Winsorization
limit is increased. For the noise in target case, the model performance improves as the
degree of Winsorization is increased. However, in all cases, the exact GP performance is
not affected by the varying Winsorization limits.

(a) MSE for noise-free case (b) MSE for noise in target

(c) MSE for noise in features (d) MSE for noise in target and features

Figure 8. Winsorization results from 0 to 25 percentile limits on GDSC dataset. Mean Squared Error
is shown on the y-axis and the Winsorization limits are shown on the x-axis. Different lines represent
different methods: Concrete dropout is shown as blue dashed line, exact GP is shown as green
dotted line, mixture density network with 2 components is shown in red solid line, and mixture
density network with 4 components is shown in magenta dashed-dotted line. As Winsorization limit
increases in the training set, the model performance in terms of mean squared error in the untouched
test set is shown in the sub-plots.

Table 11 shows us the model performance on the untouched test set and the contam-
inated test set for the optimal degree of Winsorization for different noise sites. For the
untouched test set case, we notice marginal improvement in model performance for all
probabilistic neural networks. For the contaminated test set case, we notice that the model
performance improves or remains the same for concrete dropout and exact GP. For the mix-
ture density networks, performance improvements are noticed for only a subset of cases.
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Table 11. Winsorization results on test set for the GDSC dataset.

Noise Site Optimal Limit Model MSE MSEW R2 R2
W Median AE Median AEW MAE MAEW

None 0.05 Concrete Dropout 7.49 7.49 −0.08 −0.08 2.57 2.35 2.36 2.40
None 0.05 Exact GP 15.59 15.59 −1.25 −1.25 3.75 3.75 3.40 3.40
None 0.05 MDN 7.99 7.11 −0.15 −0.02 1.64 1.60 2.12 2.11
None 0.05 MDN (4) 7.71 6.76 −0.11 0.02 1.73 1.62 2.06 1.98

Untouched Test Set
Target 0.25 Concrete Dropout 16.38 11.89 −1.37 −0.72 3.88 3.51 3.48 2.97
Target 0.25 Exact GP 15.59 15.59 −1.25 −1.25 3.75 3.75 3.40 3.40
Target 0.25 MDN 24.82 9.85 −2.59 −0.42 2.08 2.03 3.36 2.43
Target 0.25 MDN (4) 20.86 10.32 −2.01 −0.49 2.91 2.80 3.58 2.79

Features 0.2 Concrete Dropout 8.08 7.58 −0.16 −0.09 2.46 2.50 2.51 2.45
Features 0.2 Exact GP 15.59 15.59 −1.25 −1.25 3.75 3.75 3.40 3.40
Features 0.2 MDN 9.34 7.11 −0.35 −0.03 1.44 1.95 2.33 2.22
Features 0.2 MDN (4) 6.11 8.78 0.11 −0.27 1.57 2.26 2.00 2.54

Target and Features 0.25 Concrete Dropout 12.65 13.18 −0.83 −0.90 3.54 3.69 3.08 3.15
Target and Features 0.25 Exact GP 15.59 15.59 −1.25 −1.25 3.75 3.75 3.40 3.40
Target and Features 0.25 MDN 11.26 10.95 −0.63 −0.58 3.25 3.28 2.96 2.69
Target and Features 0.25 MDN (4) 15.59 15.13 −1.25 −1.19 3.75 3.51 3.40 3.37

Contaminated Test Set
Target 0.25 Concrete Dropout 7.55 5.99 −0.09 0.13 2.31 2.19 2.32 2.12
Target 0.25 Exact GP 15.59 15.59 −1.25 −1.25 3.75 3.75 3.40 3.40
Target 0.25 MDN 12.23 6.67 −0.77 0.03 2.14 1.68 2.78 2.08
Target 0.25 MDN (4) 5.96 6.36 0.13 0.07 1.49 1.93 1.84 2.16

Features 0.25 Concrete Dropout 7.79 7.61 −0.12 −0.10 2.52 2.43 2.40 2.41
Features 0.25 Exact GP 15.59 8.70 −1.25 −0.26 3.75 2.55 3.40 2.54
Features 0.25 MDN 7.99 8.14 −0.15 −0.17 2.08 1.99 2.37 2.34
Features 0.25 MDN (4) 10.77 20.3 −0.55 −1.94 2.09 2.42 2.77 3.52

Target and Features 0.25 Concrete Dropout 7.22 6.71 −0.04 0.02 2.41 1.95 2.33 2.22
Target and Features 0.25 Exact GP 15.59 7.18 −1.25 −0.03 3.75 2.29 3.4 2.38
Target and Features 0.25 MDN 5.24 7.45 0.24 −0.07 1.76 1.62 1.95 2.11
Target and Features 0.25 MDN (4) 9.03 7.32 −0.30 −0.05 1.95 2.53 2.44 2.40
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5. Discussion

Winsorization of the noise site in the presence of noise is able to aid in mitigating the
adverse effects of outliers on the model performance for probabilistic neural networks.
This can also be elucidated by measuring the relative efficiency (RE) of the Winsorized
model performance with the pre-Winsorized model performance. RE can act as a metric
that concisely conveys the impact of Winsorization on the test MSE. Figure 9 shows the
logarithm of RE values, where RE is computed as follows:

REW (Relative Efficiency) =
Test MSE

Test MSEW
(23)

An RE value of one represents the same level of MSE while an RE value greater than
one signifies model improvement with Winsorization. In most cases, Winsorization leads
to an improvement in model performance. In the crop yield dataset, where we suspect that
there are natural variations in the data apart from artificial noise that may be interfering
with the models’ ability to learn effectively, the RE values are always greater than one for all
the noisy cases, barring exact GP. Exact GP is able to retain the same level of performance
as pre-Winsorised learning when the noise is introduced in features but has improved
performance when the noise is introduced in target. In other datasets as well, exact GP is
not always able to see drastic model performance improvement. For more difficult datasets
such as crop yield, GDSC, and forest fires, exact GP is not always the best performing in
the presence of noise. For all datasets, the model performance is able to improve with
Winsorization, especially when the noise site is target, especially at higher degrees of
Winsorization. We see similar results when the noise site is target and features. The results
on GDSC dataset are not indicative of definite improvement with the Winsorization of
the training and validation data. On the other hand, the crop yield dataset shows the
most improvement for all noise sites. This might be due to the fact that the architecture
of the underlying fully connected neural network is optimized for the crop yield dataset
using hyperparameter search by Bayesian optimization. Therefore, it may be meaningful
in future work to investigate the effects of changing the architecture to be more suited for
particular datasets.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 9. Cont.
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(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

Figure 9. Relative efficiencies (REs) of Winsorized MSE with non-Winsorized MSE for different noise sites. The black dashed
line represents an RE of one. RE values greater than one represent improvement in performance with Winsorized training
and validation data and vice versa. (a) RE for noise free case in crop yield data. (b) RE for noise in target in crop yield data.
(c) RE for noise in features in crop yield data. (d) RE for noise in target and features in crop yield data. (e) RE for noise free
case in California data. (f) RE for noise in target in California data. (g) RE for noise in features in California data. (h) RE for
noise in target and features in California data. (i) RE for noise free case in GDSC data. (j) RE for noise in target in GDSC
data. (k) RE for noise in features in GDSC data. (l) RE for noise in target and features in GDSC data. (m) RE for noise free
case in forest fires data. (n) RE for noise in target in forest fires data. (o) RE for noise in features in forest fires data. (p) RE
for noise in target and features in forest fires data. (q) RE for noise free case in Mauna data. (r) RE for noise in target in
Mauna data. (s) RE for noise in features in Mauna data. (t) RE for noise in target and features in Mauna data.

We can also compare the Winsorized results in the noisy cases with the noise free,
non-Winsorized results. The case where there is contamination only in feature set allows
for comparison of MSE on target variable in contaminated data with noise-free data.
In Figure 10, the black dashed line is the unattainable gold standard of achieving the
same results as the noise-free training in the presence of noise. Our objective is to come
as close to it as possible. In the results shown here, we make the comparison for crop
yield dataset, which has optimized architecture design and the most stable of all data use
cases presented here. In Figure 10a, it is shown that lower degree of Winsorization in
the training and validation datasets helps improve performance over noise free data for
the probabilistic neural networks. As the degree of Winsorization increases, the loss of
information adversely affects the exact GP performance. Figure 10b displays the relative
efficiencies on the untouched dataset for the noise in features case as well. For all the neural
networks, the relative efficiency increases as we Winsorize the training and validation
datasets. For exact GP, the relative efficiency does not change as Winsorization limit is
increased. However, the model performance as indicated by relative efficiency does not
remain at the same level as in the noise-free, non-Winsorized scenario. The neural networks
are able to recover similar level of performance as the noise-free, non-Winsorized case.
However, a higher degree of Winsorization lead to a loss of information that adversely
affects the model performance for all probabilistic neural networks. For the untouched test
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set, the RE for feature noise site as compared to the RE when noise site is target (not shown
here) indicate that for different datasets, Winsorization helps the most when the noise is in
the feature itself. The RE results on feature noise site (not shown here) indicate that a lower
degree of Winsorization (up to 10 percentile in our experiment results) aids in recovering
the original model performance.

(a) RE for noise in feature case in contaminated test set (b) RE for noise in feature case in untouched test set

Figure 10. Crop yield dataset result: Relative Efficiencies (RE) comparing performance of Winsorized results with standard
Cauchy noise in the features with original performance on noise free data without Winsorization. Black dashed line
represents RE of one. REs above one represent improvement in performance due to Winsorization on contaminated data.

Figure 11 shows the average model performance over all noise sites (feature, target,
and both feature and target) for different Winsorization limits on the untouched test set.
The median absolute error and mean squared error are scaled by the maximum value of the
respective metrics for each dataset. The mean and variance of the metrics are mentioned in
the legend for reference. We notice a general trend of model improvement up to a certain
limit. We also notice that GDSC is unable to achieve model performance improvement.
For the more challenging datasets, it may be material to optimize the architecture to obtain
more stable models for further experimentation.

(a) Average Median Absolute Error (b) Average Mean Squared Error (c) Average Coefficient of Determination

Figure 11. Summarizing Winsorization results: The subplots show average of evaluation metrics over all methodologies
used for cases when artificial perturbation is introduced in the datasets. The MSE and Median AE plot legends also convey
the mean and standard error of the evaluation metric in the respective sub-plots for each dataset.
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Similar to comparison of model performance in terms of the mean squared error,
the uncertainty of different probabilistic models can also be compared. Figure 12 shows
how uncertainty in prediction changes as the degree of Winsorization is increased. While
exact GP uncertainty estimates are mildly affected by change in Winsorization limits, there
are discernible slight changes in uncertainty for other methods. As noise is added to
target, the uncertainty estimates increase for a subset of datasets. For the datasets where
this is visible in the pre-Winsorization uncertainty estimate values, with Winsorization,
uncertainty estimates drop to a lower level as the degree of Winsorization is increased.
Adding noise in features does not heavily influence the uncertainty estimates. Even in
cases where there is noise in target and features, we can see a decrease in uncertainty
estimates as the training and validation data are Winsorized. However, the erratic behavior
of uncertainty estimates for mixture density networks requires further investigation into
the source of volatility.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 12. Cont.
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(q) (r) (s) (t)

Figure 12. Apart from predictive performance in terms of accurate prediction, the precision can also be compared in terms of
uncertainty estimates. On the y-axis, we measure the average standard error in prediction. (a) Uncertainty estimate for noise
free case in crop yield data. (b) Uncertainty estimate for noise in target in crop yield data. (c) Uncertainty estimate for noise
in features in crop yield data. (d) Uncertainty estimate for noise in target and features in crop yield data. (e) Uncertainty
estimate for noise free case in California data. (f) Uncertainty estimate for noise in target in California data. (g) Uncertainty
estimate for noise in features in California data. (h) Uncertainty estimate for noise in target and features in California data.
(i) Uncertainty estimate for noise free case in GDSC data. (j) RE for noise in target in GDSC data. (k) Uncertainty estimate
for noise in features in GDSC data. (l) Uncertainty estimate for noise in target and features in GDSC data. (m) Uncertainty
estimate for noise free case in forest fires data. (n) Uncertainty estimate for noise in target in forest fires data. (o) Uncertainty
estimate for noise in features in forest fires data. (p) Uncertainty estimate for noise in target and features in forest fires
data. (q) Uncertainty estimate for noise free case in Mauna data. (r) Uncertainty estimate for noise in target in Mauna data.
(s) Uncertainty estimate for noise in features in Mauna data. (t) Uncertainty estimate for noise in target and features in
Mauna data.

6. Conclusions

We compare different probabilistic neural networks in terms of model performance
and time taken for training. Among the different methods that we employ, VGP based
neural network, flipout, and concrete dropout solely rely on variational free energy for
learning the variational posterior distribution (optimizing variational hyperparameters).
MDN uses the negative log likelihood for estimating parameters that define response dis-
tribution. Exact GP also depends on optimizing for the marginal log likelihood to estimate
the hyperparameters. In terms of the model performance, we see varied results for the
different methods on different datasets. In general, when the flipout gradient estimation is
used for all layers, the model performance and training time are adversely affected. The ad-
ditional matrix computations in flipout make it more expensive. Recent literature also
sheds light on the heave-tailed distribution of deep Gaussian processes [114,115]. Further
experimentation on methods such as concrete dropout that try to provide approximation of
deep Gaussian processes can be conducted to understand the properties of the predictive
distribution arising from the implementation of such methods.

We experimented with the use of Winsorization to make probabilistic deep learning
models more robust against outliers. Over several data sets, we obtained several model
performance results for different noise sites and degrees of Winsorization. Through the
results that we observed on the untouched test dataset, we are able to observe the effects
of introducing noise and Winsorization on the training and validation dataset. Using
an untouched test set enables an easy comparison with the original performance of the
models on noise-free, pre-Winsorized datasets. We also obtained model performance
results on noisy test set data. This helps us in exploring more realistic use cases where it is
known that the whole data set is contaminated from noise or perturbations. For our case
study on the crop yield dataset, it is shown that in the presence of noise in the features,
Winsorization helps the models in recovering model performance, both when tested on
untouched test set, and contaminated test set. Noise in the dataset drastically degrades
the Exact GP performance. It further worsens by the loss of information as the degree of
Winsorization increases.

We notice that for several experiments, Winsorization produces unfavorable results
due to a loss of information. This much has been noticed for linear regression prob-
lems [116] as well. It has been shown that the Winsorization of the features and response
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increases the Mean Squared Error of the regression and also increases the variance in the
estimates of the coefficients. As we have seen in the noise-free scenario in our experiments,
this is not always the case for the Bayesian neural networks. Through the results shown
in contaminated test data case, we see that the models learn the noise along with other
signals in the data, as is evident from MSE values and coefficient of determination on
the pre-Winsorized data. Winsorization is unable to improve the performance as the i.i.d.
Cauchy perturbations degrade the quality of training that happens for the neural networks.
On the other hand, the untouched test set does not have the artificial perturbations in the
hold-out set, enabling us a direct comparison of the evaluation metric results with the
noise-free dataset results. For most cases, Winsorization in the training and validation
dataset clearly improves the ability of neural networks to learn the more centrally located
values in the dataset. The performance change on the untouched test set suggests that a
lower degree of Winsorization on the dataset might be beneficial in training. Meanwhile,
the evaluation results on the contaminated test set may point towards the non-existence of
universally stable neural networks in today’s deep learning frameworks that can withstand
any perturbations [36]. These results also follow the deeper cause of the instability—the
functional relation between the input and target are often based on correlations existing in
the observed, real-world data. These functional relations are often brittle and disrupted by
the perturbations. From the model’s perspective, the noisy and non-noisy samples in the
data are potentially equally important for learning effectively at the start of the training
process. These perturbations are learned by models, and often several models that learn
independently on the same data learn the adversarial perturbations the same way. This
perturbation learning can be transferred from one model to another, where each is trained
independently. This is called adversarial transferability [35]. Similar to our results, this
is proven on image classification problems where the evaluation metric results on the
untouched test set yields improved accuracy. This suggests that robustness as a challenge
is not only tied to the training of the models but is also a property of the dataset, making
treatments such as Winsorization amenable to more effective learning.

Despite the vast literature focusing on the robustness of neural networks against
adversarial attacks, producing a robust framework is still a daunting problem. It is therefore
meaningful to study the effects of Winsorization on the instability that perturbations cause
in neural network training. Instead of introducing perturbations to all samples in the data,
as we did in our experiments, studying the effects of the sparser addition of perturbations
to certain samples or certain features may be closer to the experimental setups in the current
studies. In our study, we saw that Winsorization on the feature set in the presence of noise
aided in obtaining good evaluation results. Choosing a Winsorization limit more adaptively
for individual features may enable more effective learning as certain features may be more
prone to instability arising from perturbations than the other features. A comparative
analysis of the effects of Winsorization with other methodologies to deal with noise and
outliers would also provide insights into the relative efficacy of these methods [35,117].

It is also a well-known result that training for several epochs does not adversely affect
the generalization capabilities of neural networks, especially in overparameterized regimes.
The same has been proven to not be true when training robust networks that deal against
adversarial attacks. In fact, it has been shown that early stopping during the learning
process can be more beneficial than several of the adversarial training algorithms that have
been proposed to deal with adversarial examples. It would be interesting to explore how
tuning the number of epochs for early stopping in our experimental setup would change
the results.
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Appendix A. Loss Functions for Mixture Density Networks

Apart from experimenting with different probabilistic models and data treatments, we
can also focus on how training is affected in presence of noise when different loss functions
are used. We can experiment with different loss functions depending on how they measure
distance differently and how the model learning is affected by perturbations in all samples
as noise site is varied. In our vanilla implementation of mixture density networks, we use
the negative log likelihood for guiding the training of the model. We define the different
loss functions that we use in our experiments in Appendix A.1. On the crop yield dataset,
over 100 repetitions, we average the loss function values as shown in Table A1.

Appendix A.1. Loss Function Definitions

Appendix A.1.1. Negative Log Likelihood

FNLL =
−1
N

log(likelihood× prior) (A1)

=
−1
N

log(P(y|x, W)p(W))

FNLL ≈
−1
N ∑

i
log(∑

k
πk(xi, W)N (yi|muk(xi, W), σ2

k (xi, W))) (A2)

Appendix A.1.2. KL Divergence

FKL = ∑
i

yi (logyi − log(∑
k

πk(xi, W)N (yi|µk(xi, W), σ2
k (xi, W)))) (A3)

Appendix A.1.3. Heteroscedastic Loss

FHL = ∑
i

exp(−log(var))(yi −mean)2 + log(var) (A4)

= ∑
i

exp(−log(∑
k

πkσ2
k + ∑

k
πkµ2

k − (∑
k

πkµk)
2))+

(yi −∑
k

πkµk)
2+

log((∑
k

πkσ2
k + ∑

k
πkµ2

k − (∑
k

πkµk)
2)

where each µk, πk, σk depend on x and W.

Appendix A.1.4. Logarithm of Cos h

FLC = ∑
i

log(
exp(Zi) + exp(−Zi)

2
) (A5)

where Zi = yi −∑k πk(xi, W)N (yi|µk(xi, W), σ2
k (xi, W)).



Entropy 2021, 23, 1546 38 of 48

Appendix A.2. Experiment Results

As can be seen, the negative log likelihood loss function is adversely affected by
Cauchy noise. Other loss functions seem to be more robust against noise, as is shown
in the mean squared error values. However, several of these loss functions focus on
minimising the distance of the observed response with the realizations of the conditional
mean predictive distribution instead of learning a complex posterior predictive distribution.
Therefore, changing the loss function will require more careful analysis into which loss
functions are able to preserve the complexity of the conditional target distribution.

Table A1. MDN 4 components, different loss functions.

Loss NLL
(Default) MSE LC NLL + LC HL NLL + KL Median AE

MSE (Noise-free) 2.88 2.73 2.38 4.07 2.51 2.50 4.77

MSE (Cauchy in
features) 72.27 3.69 3.83 58.14 3.97 72.27 4.51

MSE (Cauchy in target) 23.19 422.82 7.20 10.41 10.45 60.58 5.73
MSE (Cauchy in target

and features) 35.92 14.32 9.17 72.27 7.81 39.92 5.39

Appendix B. Adjusting for Long-Term Trend and Seasonality in the Mauna CO2
Dataset

As addressed in the main text in Section 4, Mauna CO2 atmospheric concentration
is a time-series dataset that can be adjusted for the long-term trend and the seasonal
trends. This adjustment becomes even more necessary when the perturbations that we
are introducing are i.i.d Cauchy that can easily exacerbate model performance when the
feature set is only one dimensional. Meanwhile, the main results are adjusted for these
time series components, and we present the results before adjustment as follows.

Before Adjustment
In Table A2, it can be seen that flipout is unable to converge to a representative

posterior predictive distribution and takes the most time to train the model. Variational
GP performs relatively well and has relatively shorter run time for model training. The
dropout regularization in concrete dropout adversely affects the learning due to the low
dimensionality of the feature set. Mixture density networks and Gaussian processes
perform the best where MDN has slightly faster training time.

Table A2. Probabilistic methods: Mauna CO2 concentration.

Model Test MSE R2 Run Time Test Median Absolute Error

Concrete Dropout 1318 −0.60 23 s 25
VGP 69 0.62 60 s 4.48

Exact GP 1.41 0.99 34 s 0.97
MDN 10.79 0.98 16 s 2.67

Flipout 1899 −12.9 225 s 29.74

Figure A1 show the Test MSEW on the untouched test set as the Winsorization limits
on the training and validation test are increased from 0 to 25 percentile. For all noise
sites, including the case when there is no noise in the training and validation set, the
probabilistic models are unable to perform consistently as Winsorization limits change.
Exact GP produces the best test mean squared error values while concrete dropout always
performs worse than other methods. Even before introducing noise, the concrete dropout
and mixture density network (four mixing components) are unable to perform well. In the
noise-free case, as the Winsorization limit is increased to 1 percentile, the mixture density
network with two components and the mixture density network with four components
have drastically different performance. When we introduce noise, we notice the same kind
of instability in the mixture density networks for all noise cases.
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(a) MSE for noise free case (b) MSE for noise in target

(c) MSE for noise in features (d) MSE for noise in target and features

Figure A1. Winsorization results from 0 to 25 percentile limits on Mauna dataset. Mean Squared Error is shown on the
y-axis and the Winsorization limits are shown on the x-axis. Different lines represent different methods: Concrete dropout is
shown as blue dashed line, exact GP is shown as green dotted line, mixture density network with 2 components is shown in
red solid line, and mixture density network with 4 components is shown in magenta dashed-dotted line. As Winsorization
limit increases in the training set, the model performance in terms of Mean Squared Error in the untouched test set is shown
in the sub-plots.

Table A3 displays the change in the model performance. Similar to previous data
sets, the model performance improves with Winsorization for the untouched test set while
it does not for the contaminated test set. For the untouched test set case, while there is
a Winsorization limit for which most methods see an improvement in performance, the
model performance improves only slightly for the concrete dropout case. The optimal
Winsorization limit for the case when the noise is introduced in features is also higher than
it was for the previous datasets.
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Table A3. Winsorization results on test set for Mauna CO2 dataset.

Noise Site Optimal Limit Model MSE MSEW R2 R2
W Median AE Median AEW MAE MAEW

None 0.05 Concrete Dropout 1.26 × 106 1.28 × 106 −140.24 −141.94 349.94 352.14 354.61 356.74
None 0.05 Exact GP 1.88 1.88 0.99 0.99 1.06 1.06 1.12 1.12
None 0.05 MDN 10.07 91.06 0.98 0.89 2.49 6.20 2.68 7.59
None 0.05 MDN (4) 1.24 × 106 8.48 −128.89 0.99 343.47 2.15 352.04 2.41

Untouched Test Set
Target 0.01 Concrete Dropout 1.27 × 106 1.25 × 106 −141.10 −139.14 350.95 348.62 355.69 353.23
Target 0.01 Exact GP 1.28 × 106 21.31 −142.01 0.97 352.15 1.76 356.83 1.76
Target 0.01 MDN 2 × 105 24.40 −24.31 0.97 91.41 3.49 116.75 3.97
Target 0.01 MDN (4) 1.28 × 106 12.81 −142.01 0.98 352.14 2.44 356.83 2.89

Features 0.2 Concrete Dropout 1.27 × 106 1.25 × 106 −140.93 −139.08 350.74 348.55 355.48 353.14
Features 0.2 Exact GP 792.49 940.82 0.11 −0.04 18.76 19.01 22.22 23.77
Features 0.2 MDN 546.45 851.44 0.39 0.05 14.90 23.47 18.5 24.85
Features 0.2 MDN (4) 1.28 × 10−6 827.14 −142.01 0.07 352.14 22.46 356.83 23.77

Target and Features 0.1 Concrete Dropout 1.27 × 106 1.26 × 106 −141.21 −140.01 351.28 349.29 355.82 354.31
Target and Features 0.1 Exact GP 947.30 763.98 −0.05 0.14 21.21 20.13 24.36 22.34
Target and Features 0.1 MDN 1.28 × 106 886.47 −142.01 0.01 352.15 23.63 356.83 25.3
Target and Features 0.1 MDN (4) 1.28 × 106 1.28 × 106 −142.01 −137.05 352.14 352.14 356.83 356.83

Contaminated Test Set
Target 0.01 Concrete Dropout 1.25 × 106 1.27 × 106 −138.70 −141.29 348.10 351.31 352.65 355.93
Target 0.01 Exact GP 1.88 2.11 0.99 0.99 1.07 1.11 1.12 1.17
Target 0.01 MDN 101.57 6.25 0.88 0.99 9.37 1.67 9.38 1.97
Target 0.01 MDN (4) 8450.96 6.79 −8.42 0.99 88.47 1.71 87.14 2.06

Features 0.25 Concrete Dropout 1.27 × 106 1.23 × 106 −140.90 −127.07 350.82 349.42 355.44 354.32
Features 0.25 Exact GP 1.88 803.73 0.99 0.10 1.06 2.72 1.12 15.17
Features 0.25 MDN 313.79 723.44 0.65 0.19 12.66 8.97 14.33 18.65
Features 0.25 MDN (4) 1.28 × 106 503.59 −142.01 0.43 352.14 10.78 356.83 16.60

Target and Features 0.01 Concrete Dropout 1.25 × 106 1.27 × 106 −138.93 −141.44 348.23 351.39 352.96 356.11
Target and Features 0.01 Exact GP 1.88 3.26 0.99 0.99 1.06 1.11 1.12 1.27
Target and Features 0.01 MDN 22.92 1410.19 0.97 −0.57 3.58 36.79 3.90 36.80
Target and Features 0.01 MDN (4) 5.13 9.55 0.99 0.98 1.83 1.94 1.90 2.44
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Appendix C. Aleatoric Uncertainty

Due to increasing relevance of uncertainty quantification, it is imperative to make a dis-
tinction between the sources of uncertainty. The recent literature in machine
learning [51,118,119] also notes the difference in the source. The two types of uncertainty
that we measure and show are epistemic and aleatoric uncertainty. Epistemic uncertainty
arises due to inadequate knowledge about the optimal model to solve the task. It may
arise due to insufficient data or due to an imperfect model structure. Adding more data
or improving the model architecture can help mitigate this type of uncertainty, which is
why it is reducible. Opposed to this, aleatoric uncertainty is the irreducible uncertainty.
This type of uncertainty arises due to the stochastic behavior of the model rather than any
insufficiency. In decision-making theory [120], epistemic uncertainty relates more to the
inherent confidence of an event occurring while aleatoric uncertainty relates more to the
understanding of the distributional behavior of outcomes. However, depending on the
context and use case, the sources of uncertainty in the model may be defined differently. In
our supervised learning case, epistemic uncertainty reduces with an increase in the amount
of training data. In probabilistic models that are usually models over functions, epistemic
uncertainty can be captured by the range of possible predictive functions. Aleatoric un-
certainty can be explained by the amount of noise in the data [51], which does not change
when the size of the training data set is varied. For a probabilistic deep learning model,
epistemic uncertainty is measured as the variation in the function realizations for fixed
input set, and the aleatoric uncertainty is measured through the model standard error,
which can be estimated differently depending on the model that is being used. On the crop
yield dataset, the epistemic and aleatoric uncertainties are computed and shown. Figure 3
shows the one standard deviation of epistemic uncertainty measured over 100 realizations
for the fixed input data while the following figure, Figure A2, displays the one standard
deviation of the aleatoric uncertainty. For Illinois counties, uncertainty is higher—except
when measuring the epistemic uncertainty for exact GP implementation. For reference,
Figure A3 shows the point predictions as well. The dispersion in the point predictions is
closely evinced in the aleotoric uncertainty plots in Figure A2 as well. Concrete dropout
results in Minnesota show higher uncertainty and variation as opposed to the mixture den-
sity results while exact GP uncertainty is very low. In Illinois, the dispersion in prediction
is higher for concrete dropout and lowest for exact GP.

(a) MDN MN (b) MDN IL

Figure A2. Cont.
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(c) MDN 4 components MN (d) MDN 4 components IL

(e) Concrete Dropout MN (f) Concrete Dropout IL

(g) Exact GP MN (h) Exact GP IL

Figure A2. Crop yield predictions. X-axis shows arbitrary county indices which are sorted by the observed yield in
ascending order. Y-axis represents the yield value. Black points are the observed yield. Navy blue line is the mean
prediction, and aleatoric uncertainty estimates are shown in turquoise.
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(a) MDN MN (b) MDN IL

(c) MDN 4 components MN (d) MDN 4 components IL

(e) Concrete Dropout MN (f) Concrete Dropout IL

(g) Exact GP MN (h) Exact GP IL

Figure A3. Crop yield predictions. X-axis shows arbitrary county indices which are sorted by the observed yield in
ascending order. Y-axis represents the yield value. Black points are the observed yield. Navy blue line is the mean prediction
and point predictions are shown in turquoise.
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