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Abstract: In this study, lignosulfonate (LS) from the acid sulfite pulping of eucalypt wood was used
to synthesize LS-based polyurethanes (PUs) doped with multiwalled carbon nanotubes (MWCNTs)
within the range of 0.1–1.4% w/w, yielding a unique conducting copolymer composite, which
was employed as a sensitive material for all-solid-state potentiometric chemical sensors. LS-based
PUs doped with 1.0% w/w MWCNTs exhibited relevant electrical conductivity suitable for sensor
applications. The LS-based potentiometric sensor displayed a near-Nernstian or super-Nernstian
response to a wide range of transition metals, including Cu(II), Zn(II), Cd(II), Cr(III), Cr(VI), Hg(II),
and Ag(I) at pH 7 and Cr(VI) at pH 2. It also exhibited a redox response to the Fe(II)/(III) redox pair at
pH 2. Unlike other lignin-based potentiometric sensors in similar composite materials, this LS-based
flexible polymeric membrane did not show irreversible complexation with Hg(II). Only a weak
response toward ionic liquids, [C2mim]Cl and ChCl, was registered. Unlike LS-based composites
comprising MWCNTs, those doped with graphene oxide (GO), reduced GO (rGO), and graphite (Gr)
did not reveal the same electrical conductivity, even with loads up to 10% (w/w), in the polymer
composite. This fact is associated, at least partially, with the different filler dispersion abilities within
the polymeric matrix.

Keywords: lignosulfonate; potentiometric sensors; carbon nanotubes; conducting polymer; electrical
conductivity; transition metals; graphene; ionic liquid

1. Introduction

Due to an increase in industrial and human activities, the presence of heavy metal salts
such as lead (Pb), mercury (Hg), cadmium (Cd), chromium (Cr), zinc (Zn), and copper (Cu),
among others, in wastewater has led to an increasing accumulation of these chemicals in the
environment. Heavy metal ions are non-degradable, toxic, and harmful to aquatic life and
can cause many health problems as they accumulate in the human body through the food
chain. Considering environmental and health concerns, their removal from wastewaters is
imperative [1]. Therefore, their detection in aqueous systems is crucial. Electrochemical sen-
sors, such as potentiometric, amperometric, and conductometric sensors, are particularly
interesting for environmental water monitoring as they are suitable for the determination
of chemical species such as heavy metals, among others. They are user-friendly, well-
suited for miniaturization, have short response times, a wide dynamic range, low energy
consumption, low cost, ease of preparation, good sensitivity, and high selectivity [2–4].
However, some problems still need to be addressed, such as poor reproducibility and
stability and difficulties in analyzing complex matrices and real samples, and some ions
may act as ligands and poison the electrode (for instance, mercury) [4,5]. All-solid-state
potentiometric sensors are promising sensors for in situ water analysis [6]. They have been
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employed in numerous studies for the determination of metal ions in water and biological
samples (such as sweat) [3,4,7] and drug molecules in various biological samples (such
as blood serum and urine) [8]. Furthermore, the risk of toxic and other harmful effects
related to the use of other chemical species, such as, for instance, ionic liquids (ILs) and
their contribution to environmental pollution through release via wastewater effluents [9],
enhances the need for the development of sensors suitable for the detection of a wider
range of chemicals.

Conducting polymers (CPs) are an important class of organic multifunctional mate-
rials that exhibit specific physical and electrical properties. The possibility of fine-tuning
their optical and conducting properties makes them promising candidates for a wide range
of applications, including the fields of energy [10–12], electronics [13,14], catalysis [15], elec-
tromagnetic interference shielding [16–18], biomedicine [7,8], and sensors [3,7,8,12,19–22].
CPs usually exhibit relatively low conductivity (~10−8–10−3 S·m−1) in their pure state;
nonetheless, this property can be effectively enhanced to ~100–106 S·m−1 either by chem-
ical or electrochemical doping in the case of intrinsic CPs or by physical mixing with
other electro-conducting species such as metal or metal oxide nanoparticles, metal-organic
frameworks (MOFs), and carbon-based nanomaterials, among others [19,20,23]. According
to previous results, both phenomena have been observed in lignin-based polyurethanes
mixed with MWCNTs [24].

Carbon-based materials, such as carbon nanotubes (CNTs), graphene, carbon dots, and
porous carbon, have attracted scientific interest worldwide since these nanofillers exhibit
enhanced conductivity, high chemical stability, mechanical strength, and large surface
areas. Therefore, numerous studies have focused on the preparation of CP composites
using these carbon-based materials as nanofillers in order to improve their electrical
and mechanical properties but also to allow the production of small, lightweight, and
cost-effective composites for a variety of application fields, including electronics, energy,
automotive, and aerospace industries and sensors [19,23,25,26].

Graphite is one of the three naturally occurring allotropes of carbon and is a crystalline
material consisting of 2D-layered sp2-bonded carbon atoms arranged in a planar hexagonal
structure. Graphene consists of one atomic layer of graphite and exhibits extremely high
mechanical properties (1.1 TPa modulus), electrical conductivity (108 S·m−1), thermal
conductivity (5000 W·mK−1), and optical properties (98% transmittance) [26]. GO derives
from the oxidation of pristine graphene and, hence, is a 2D atomically thin layer of hexag-
onal sp2-bonded carbon atoms that comprises oxygen-based functional groups such as
hydroxyl (-OH), alkoxy (C-O-C), and carboxylic (-COOH) acids, among others. These
oxygen functionalities disrupt the sp2-conjugated backbone, causing a reduction of its elec-
trical conductivity. To restore its electrical conductivity, some oxygen functional groups in
GO can be partially reduced, yielding rGO [27]. CNTs are 1D conductive fillers due to their
high length-to-diameter ratio, consisting of a hexagonal arrangement of sp2-hybridized
carbon atoms, which may be shaped by rolling up a single sheet of graphene (single-
walled carbon nanotubes, SWCNTs) or by rolling up multiple sheets of graphene (multi-
walled carbon nanotubes, MWCNTs). CNTs present impressive electrical conductivities
(107–108 S·m−1) and mechanical properties (1 TPa modulus, 100 GPa strength) [26].

Due to the continued depletion of finite fossil resources and the necessity to reduce
the dependence on this type of resource and their environmental impacts, alternative and
sustainable resources have been assessed as feedstock replacements, namely, biomass.
Biorefinery and circular economy concepts have become imperative in the industrial sector,
e.g., the pulp and paper industry. Thus, in order to improve the economic sustainability
of pulp mills, the valorization of the ensuing by-products has been directed towards new
added-value products to expand their economic profits. In particular, industrial (technical)
lignin has attracted worldwide attention as it is an abundant biodegradable and renewable
resource for the production of biofuels, chemicals, and polymeric materials, with the ad-
vantage that it does not compete with food stocks. Lignins have potential as adsorbents
for removing metals from water due to their acid sites, namely, carboxylic and phenolic
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groups [28–30], though the phenolic groups exhibit a higher affinity for metal ions than
the carboxylic ones [28]. In addition, other functional groups, such as nitrogen- and sulfur-
containing groups that may be present in the lignin structure, can also bind heavy metal
ions [29,30]. In fact, lignin modification with nitrogen- and sulfur-containing functional
groups has been used in the design and development of advanced adsorbents [29–32].
Among different technical lignins, lignosulfonate (LS) is the only abundant lignin source on
the market that can be considered potentially interesting for the production of conducting
composites. Being soluble in water and containing ionogenic (sulphonic) groups, LS is
an attractive candidate for use in conductive polymer matrices for sensor applications. In
previous studies, novel lignin-based sensing polymeric membranes have been developed
through covalent immobilization of the lignin inside a polymer matrix [5,24,33,34]. Fur-
thermore, the production of lignin-based PU membranes through co-polymerization of
different technical lignins, such as kraft lignin, LS, and organosolv lignin, with toluene
diisocyanate-terminated poly(propylene glycol) has been reported [33]. Moreover, lignin-
based PUs doped with MWCNTs allowed the increase of composite electrical conductivity
with a prospective application as ion-selective membranes for potentiometric chemical
sensors [5,34]. However, the ensuing lignin-based sensors displayed very low or no sensi-
tivity to all alkali, alkali-earth, and most transition metal cations ions. At the same time, the
sensor properties were strongly dependent on the lignin origin. Thus, some concomitants
of polyphenolic origin in kraft lignin imparted to this material sensitivity and selectivity to
Cu(II) [5]. Potentiometric sensors highly sensitive to Cr (VI) at pH 2 were obtained with
LS and organosolv lignin [34]. However, with regards to LS, no systematic studies have
been carried out on the effect of different types and loads of carbon-based fillers on the
conducting performance of CPs.

In this work, we prepare LS-based PU composite membranes sensors doped with
MWCNTs using the same synthesis methodology as in previous studies [5,24,33,34]. The
main goal is to assess the viability of using LS from the spent liquor of the acidic sulfite
pulping of eucalypt wood for potentiometric sensor applications. The conductive and
sensory properties of the CP based on LS are compared with those of the CP based on
eucalyptus kraft and kraft LignoBoost® lignin, organosolv lignin, and lignosulphonate
obtained under different cooking conditions [5,34]. In addition, various carbon nanofillers
such as graphene oxide (GO), reduced graphene oxide (rGO), and graphite (Gr) are used
to dope LS-based PU composite for comparison.

2. Materials and Methods
2.1. Materials and Reagents

Lignosulfonates (LS) from the industrial magnesium-based acidic sulfite pulping of
Eucalyptus globulus wood were supplied by Caima Company (Constância, Portugal) and
purified by dialysis against distilled water for 24 h. Purified LS contains 17.1% wt.% of
HSO3 groups and 2.4 wt.% of phenolic hydroxyl groups [35].

Poly(propylene glycol)-toluene diisocyanate copolymer (PPGDI, with average Mn
~2300 g·mol−1, DP ~34, and isocyanate content ~3.6 wt.%) and dibutyltin dilaurate (DBTDL)
were purchased from Sigma-Aldrich (Madrid, Spain). Multiwall carbon nanotubes (MWC-
NTs) Nanocyl-3150 (purity >95%, length 1–5 µm, and diameter 5–19 nm) were supplied
from Nanocyl, S.A. (Sambreville, Belgium). Graphene oxide (GO) and reduced graphene
oxide (rGO) were supplied by Graphenea (San Sebastián, Spain). Graphite was supplied
by Graphite Technologies, Lda (Oliveira de Azeméis, Portugal). All solvents and other
reagents, namely, 2-amino-2-(hydroxymethyl)-1,3-propanediol (Tris), potassium dichro-
mate, chromium(III) chloride hexahydrate, zinc(II) chloride, lead(II) nitrate, ammonia,
sodium nitrate, cadmium(II) nitrate, copper(II) chloride, silver(I) nitrate, potassium ferro-
cyanide(II), potassium ferricyanide(III), mercury(II) chloride, 1-ethyl-3-methylimidazolium
chloride, and choline chloride were of analytical grade and were purchased from either
Acros or Sigma-Aldrich Chem. Comp (Madrid, Spain).
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Polyaniline (PANI)-modified screen-printed electrodes (SPEs) with carbon work-
ing and auxiliary electrodes and a silver reference electrode were supplied by Metrohm
DropSens (Oviedo, Spain). All solutions for the potentiometric measurements were pre-
pared using ultrapure water (18 mΩ·cm−1).

2.2. LS-Based PU Polymer Synthesis

The polycondensation reaction of purified LS with isocyanate was carried out as
described previously [5,24,33,34,36], with some adjustments. For all syntheses, the amounts
of LS and PPGDI were chosen in order to obtain an NCO/OH ratio of 1.5. Firstly, LS was
ground using an agate mortar and pestle and then mixed with MWCNTs (without grinding).
In a typical trial, LS powder (500 mg) or a mixture of LS powder with a certain proportion
of MWCNT (0.1, 0.2, 0.5, 0.8, 1.0, and 1.4% w/w in relation to the total mass of the mixture,
i.e., LS and PPGDI) was placed in a 25 mL jacketed glass reactor equipped with an overhead
mechanical stirrer and a heated circulating water bath. Then, PPGDI (4 mL, d 1.05 g·cm−3)
was added, and the mixture was stirred for 45–60 min at 60 ◦C under a nitrogen atmosphere
to obtain a homogeneous viscous mixture. Then, DBTDL (ca. 2% w/w in relation to the
PPGDI) was added. The homogeneous mixture was stirred for a further 5–10 min until it
started to thicken. At this point, the mixture was removed from the reactor and poured
into a flat PTFE mold. The films were cured for 4 h at 60 ◦C. The LS-based PU films
obtained were submitted to chemical, thermo-mechanical, and electrical characterization.
The sensors were prepared by placing a thin layer of the LS-based polymer on the working
electrode of SPE. The sensors were cured for 4 days at room temperature. At least three
parallel sensors of the same composition were prepared.

2.3. Polymer Characterization

LS-based polymer films were characterized by Fourier transform mid-infrared spec-
troscopy (FT-MIR) using an FTIR System Spectrum BX instrument (PerkinElmer, Waltham,
MA, USA), coupled with a universal ATR sampling accessory, in absorbance mode from
4000 to 500 cm−1 with a 4 cm−1 resolution. Samples were analyzed as such, 128 scans were
averaged, and all spectra were baseline-corrected for further analysis.

Dynamic mechanical analysis (DMA) of the polymer films was carried out using a
Tritec 2000 DMA instrument (Triton Technology, Leicestershire, UK). A rectangular piece
of LS-based polymer or corresponding composites with dimensions of 30 × 5 mm2 was
mounted in tension geometry and then submitted to a temperature scan using a constant
heating rate of 2 ◦C·min−1, from −100 ◦C up to 60 ◦C ((before starting the run, an initial
static force was applied (1 N) to guarantee that the sample remains under a net tensile
force). The displacement was 0.010 mm, and the frequency of deformation (oscillating
frequency) was alternated between 1 and 10 Hz as the temperature was increased. The
glass transition temperature, Tg, of the polymers was determined from the maximum
value of the peak in tan δ, the damping factor, which is defined as the ratio of loss to
storage modulus.

Thermogravimetric analysis (TGA) of the samples was carried out using a Setsys
Evolution 1750 TGA-DSC thermogravimetric analyzer (Setaram, Caluire, France) equipped
with a DSC plate rod accessory. Samples were analyzed from room temperature up to
800 ◦C at a heating rate of 10 ◦C·min−1 under nitrogen gas and a flow rate of 200 mL·min−1

using an alumina crucible.
SEM images of lignin and lignin-based polyurethanes were recorded using a Hi-

tachi S-4100 microscope (Hitachi, Tokyo, Japan) on the gold-coated samples, applying an
acceleration voltage of 5 kV.

DC electrical conductivity was measured at temperatures between −110 and 100 ◦C
using a 617 Keithley electrometer (Keithley Instruments GmbH, Munich, Germany). Elec-
trical contacts were made by painting LS-based polymer or corresponding composite films
on both sides with silver paste, simulating a parallel plate capacitor with a surface area of
about 1 cm2 and 1 mm distance between electrodes.
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Dielectric measurements for frequencies between 100 and 1 MHz were carried out
using an Agilent 4294A precision impedance analyzer (Agilent, Santa Clara, CA, USA)
at temperatures between −82 and 108 ◦C under a helium atmosphere. Electrical contacts
were made by placing the LS-based polymer or corresponding composite films between
two electrodes, simulating a parallel plate capacitor with a surface area of about 1 cm2 and
distance between electrodes of 1 mm.

2.4. Potentiometric Measurements

Potentiometric chemical sensors were prepared by depositing a thin layer of LS-based
PU doped with 1% w/w MWCNTs (before curing) on the surface of PANI-SPE. Then the
polymer was cured at room temperature in a desiccator for 4 days before use.

Electrochemical measurements were carried out in the following galvanic cell:
Ag|AgCl, KClsat|sample|polymer membrane|PANI|carbon.
Electromotive force values, Emf, were measured vs. a Ag/AgCl reference electrode

with a precision of 0.1 mV using a custom-made multichannel voltmeter, with high in-
put impedance, connected to the PC for data acquisition and processing. Calibration
measurements were made in the solutions of zinc nitrate, cadmium nitrate, lead nitrate,
copper(II) chloride, mercury(II) chloride, silver nitrate, chromium(III) chloride, potassium
dichromate, potassium ferrocyanide, and potassium ferricyanide in the concentration range
1.0 × 10−7–1.0 × 10−2 M. Tris buffer solution with a concentration of 1 mM and pH 7,
adjusted by addition of hydrochloric acid, was used as a supporting electrolyte. Redox
response was studied in the solutions of two redox pairs, Cr(III)/Cr(VI) and Fe(CN)6

3−/4−,
at pH 2 on the background of 0.01 M HCl, and at pH 7 on the background of 1 mM Tris
buffer solution. Total concentration was 1 mM for both pairs, with the ratio of oxidized to
reduced form varying from 0.01 to 100. The parameters of the Nernst equation, i.e., the
slope of electrode function and standard potential, were calculated using linear regression
and averaged over replicated calibration runs for each ion.

Sensor selectivity was estimated using the matched potential method (MPM) at pH 7
on the background of Tris buffer solution. At least 3 replicated measurements were run for
each ion.

3. Results and Discussion

LS-based flexible copolymers were obtained by the reaction of LS (Mw = 4130 Da)
as a macromonomer bearing hydroxyl groups with PPDGI (Mn = 2300 g·mol−1) as a
co-macromonomer comprising isocyanate groups and also acting as the solvent for LS,
maintaining the recommended NCO/OH ratio of 1.5 [5,24,33,34]. The conducting carbon
nanofillers, in particular MWCNTs, were introduced jointly with lignin before the syn-
thesis, taking into account the excellent dispersant capability of the former [33,34]. The
obtained materials were characterized and analyzed for their electrical conductivity and
sensor properties.

3.1. Characterization of LS-Based PUs

The reaction of LS and PPDGI with the formation of PU was confirmed by FTIR
spectroscopy. Figure 1 shows the FTIR spectra of purified LS and LS-based PU without
(LS-PU) or with 1% w/w MWCNTs (LS-PU-CNT) taken as an example. The formation of
PU is confirmed by the absence of the band at ca. 2270 cm−1, assigned to the isocyanate
group (-NCO) in PPDGI, and the appearance of signals characteristic for urethane (–O–
(C=O)–NH–) moieties at 1722, 1370 and 1220 cm−1, assigned to C=O, O–CO, and C-N
stretching, respectively [33,37,38]. Furthermore, the significant decrease in the relative
intensity of the OH band around 3350 cm−1 in the spectra of both LS-based PUs indicates
that a relevant amount of LS hydroxyl groups was consumed during the polymerization
reaction with the isocyanate groups. The characteristic aromatic bands of LS at 1598, 1510,
and 1425 cm−1 [39–46] decreased substantially in the LS-based PU due to the relatively
low LS content (ca. 20% w/w). The most abundant signals in the LS-based PU spectrum, at
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1086 and 2860 cm−1, belong to C–O and CH2 vibrations, respectively, in polyether bridges
connecting lignin macromolecules (for more details, see Table S1 in the Supplementary
Materials). Although no significant spectral differences were found between LS-PU and
LS-PU-CNT, the slightly greater abundance of free hydroxyl moieties at ca. 3350 cm−1 in
LS-PU-CNT can be explained by the strong interaction of MWCNTs and lignin [33,34], thus
hindering, to a certain degree, their reaction with PPDGI.
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Figure 1. FTIR-ATR spectra of LS, LS-based PU (LS-PU), and LS-based PU doped with 1% w/w
MWCNTs (LS-PU-CNT).

The glass transition temperature (Tg) of LS-based PUs was assessed by DMA. Both LS-
based PUs, undoped and doped with 1% w/w MWCNTs, exhibited similar low Tg values,
−33 ± 1 ◦C and −32 ± 1 ◦C, respectively, as depicted in Figure 2. This relaxation peak
relates to the soft domains of the polymeric composites [38]. The addition of MWCNTs (1%
w/w) did not affect the viscoelastic properties of the polymer. The negative values of Tg
indicate that these materials can be used for the fabrication of self-plasticizing membranes
for potentiometric chemical sensors.

Typical TGA curves of LS and LS-based PUs, undoped and doped with 1% w/w of
MWCNTs, are depicted in Figure 3. LS revealed less thermal stability than the correspond-
ing PU. The weight loss, with a maximum loss at around 120 ◦C, is related to moisture
release followed by the degradation of functional groups and the release of low molecular
mass products at temperatures as high as 200 ◦C (e.g., SO2 from sulphonic groups) [47,48].
Char formation begins at ca. 400 ◦C. Both LS-based PU polymers (undoped and doped
with MWCNTs) exhibited improved thermal stability compared to LS since the degradation
starts at ca. 275 ◦C (Figure 3). Additionally, LS-based PU samples exhibited a two-stage
degradation process, which corresponds to the thermal decomposition of the hard and
soft segments, respectively [38,49]. Hard segments include the thermally weaker urethane
moieties, where the maximum rate of weight loss occurred at 298 ◦C. Soft segments are
essentially associated with the polyether moieties from the PPGDI co-macromonomer,
where the maximum rate of weight loss occurred at 380 ◦C. The thermal degradation
profile of both LS-based PU polymers (undoped and doped with MWCNTs) is similar since
the amount of MWCNTs (1% w/w) is too low to cause a significant change in the thermal
behavior of the doped LS-based PU, at least under an inert gas atmosphere.
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3.2. DC and AC Electrical Conductivity of LS-Based PU Polymer Doped with MWCNTs

The DC electrical conductivity of undoped LS-based PU polymer and the various LS-
based PU polymer composites doped with variable amounts of MWCNTs was measured
at room temperature, as depicted in Figure 4. Noteworthy is the fact that neat LS-based
PU polymer is not a completely insulating material, exhibiting low electrical conductivity
mostly due to the presence of LS in the polymeric matrix. This might be due to the
mixed type electrical conductivity associated with the presence of π-conjugated aromatic
moieties and of ionogenic functional groups such as carboxyl and sulphonic groups in
lignosulfonates [50]. The incorporation of MWCNTs resulted in an increase in the electrical
conductivity of PU-based LS composites in the order of magnitude 106, from 7.2 × 10−12

in undoped polymer to 7.1 × 10−6 S·m−1 in polymer doped with 1.4% w/w MWCNTs
(Figure 4). However, the observed conductivity curve as a function of MWCNT content
in the composite did not fit the percolation theory model generally applied to composites
doped with carbon nanotubes [25,51,52].

Unlike other PU-based composites produced from kraft or organosolv lignins [34],
which show a sharp percolation threshold at low concentrations of MWCNTs (0.2–0.7%
w/w), the LS-based PU did not reveal that feature, and the increase in conductivity with
the addition of MWCNTs was not exponential (Figure 4). The plausible explanation for this
conductivity behavior could be the greater aggregation of polar LS in the PPDGI copolymer
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in comparison with the non-polar kraft and organosolv lignins. LS also has a molecular
weight 2–3 times greater than kraft lignin, which makes it difficult to dissolve. In fact,
the TEM image of a thick film of LS-based PU doped with 1% MWCNT showed large LS
aggregates (Figure S1, Supplementary Materials).
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tion (0%, 0.1%, 0.2%, 0.5%, 0.8%, 1%, 1.2%, and 1.4% w/w) in LS-based PU.

Since lignin, including LS, is a dispersant of MWCNTs, its dissolution in co-macromo-
nomer (PPDGI) is a crucial factor affecting the percolation phenomena that could com-
promise the formation of a continuous conductive network within the composite matrix.
In fact, MWCNTs bind readily to LS, as can be seen from SEM images of the LS powder
mixed with 1% w/w MWCNTs (before adding the co-macromonomer PPGDI), thus form-
ing bundles with a highly entangled structure (Figure 5). The inhomogeneous distribution
of LS in the copolymer (final composite after curing) could negatively affect the long-range
connectivity between the bound conductive elements within the LS-based polymeric network
structure, thus reducing the electrical conductivity of the ensuing composite. In addition,
the composite doped with MWCNTs revealed a more porous structure due to the more
intensive bubble formation during the synthesis, which also negatively affected percolation
conductivity (Figure S2, Supplementary Materials). These bubbles are trapped within the
composite matrix, disrupting the conductivity path, i.e., the long-range connectivity between
the conductive elements, hindering and even interrupting conductivity, which may also
contribute to explaining why the composites do not display a common percolation behavior.
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Alternating current conductivity, σAC, of LS-based PU polymers undoped and doped
with different amounts of MWCNTs and the temperature effect on σAC variation as a
function of frequency for LS-based PU polymer composites doped with 1% w/w MWCNTs
are shown in Figure 6. At first glance, the frequency dependence of AC conductivity can
be divided into two discrete domains. At low frequencies (<1 kHz), AC conductivity is
nearly constant and independent of the frequency, and its value comes close to the value
of DC conductivity. However, in some cases, a very small slope is noticeable, especially
for undoped LS-based PUs and LS-based PUs doped with 0.1% w/w MWCNTs. The
frequency region of constant conductivity extends to higher frequencies with increasing
concentrations of MWCNTs. Above a certain frequency, AC conductivity increases with
increasing frequency. Hence, at higher frequencies, total AC conductivity, σAC(ω), is
frequency-dependent, and its increase obeys a power law (known as the Jonscher universal
power law [53]) given by Equation (1):

σAC(ω) =σDC + Aωs. (1)

where ω is the angular frequency (ω = 2πf, where f is the frequency), σDC is the independent
frequency (DC) conductivity at ω→0, A is a constant dependent on temperature T, and s is
an exponent dependent on both frequency and temperature, with values in the range 0–1.
This power law is characteristic of disordered materials in which the conductivity is due to
the hopping of charge carriers between localized states [54]. It is also presumed that A and
s values are interrelated and have a mechanistic origin in terms of underlying disordered
microscopic structures [55]. In fact, within the range of −13 to 107 ◦C, corresponding to the
viscoelasticity interval, the straight-line correlation between Log A and s has been observed
(Figure S3, Supplementary Materials). Within the same temperature range, almost constant
log A/s values (nearly 20) were registered while analyzing the log A/s vs. T dependency
from the universal Jonscher equation (σAC = Aωs). Similar behavior was observed
previously with epoxy polymeric formulations doped with MWCNTs and assigned to
the unchanged composite morphology of the polymer-MWCNT network when charge
carriers migration was affected exclusively by conformational rearrangements of disor-
dered microscopic structures [55]. Additionally, at lower frequencies, AC conductivity is
temperature-dependent, evidencing that the conductivity is a thermally activated process.
The activation energy was assessed from the known Arrhenius equation while analyzing
the plot ln σAC vs. 1/T in the temperature range of −13 to 107 ◦C [5]. The relatively low
activation energy for σAC at ω→0 of the PU composite containing 1% MWCNTs (0.13 eV),
when compared with that of the undoped PU composite (0.59 eV), clearly indicated the
significant interaction between MWCNT and LS. This feature was similar to those observed
previously with PUs doped with MWCNTs using kraft and organosolv lignins synthesized
under the same conditions [5,34]. This fact supports the idea about similar conductivity
mechanisms in all these lignin-based PUs doped with MWCNTs [5,34] despite no clear
percolation threshold being observed with LS (Figure 4).

The real and imaginary parts of the dielectric permittivity, ε′ and ε′′, respectively, of
LS-based PUs undoped and doped with different amounts of MWCNTs are presented in
Figure 7 in the frequency range of 100 Hz to 1 MHz. Both real and imaginary parts of
dielectric permittivity decrease with increasing frequency, especially the imaginary part,
which is highly frequency-dependent. This behavior is probably due to the interfacial
polarization effect on the polymeric composites, attributed to the accumulation of polarized
charges from the difference in conductivities and permittivities of the constituents of the
LS-based PU polymer composite (i.e., the polymer matrix and the CNTs) [56]. Additionally,
at the same frequency, both ε′ and ε” increase with the increase in the amount of MWCNTs,
which is attributed to an increase in the density of the MWCNT network [56]. Another
remark from the ε” plot (Figure 7b) is that a relaxation process (in the shape of a broad
peak) appears at higher frequencies and higher MWCNT contents (though a slight peak
for the composite with 0.2% w/w MWCNTs is also observed). This relaxation process
moves towards higher frequencies in accordance with an increase in MWCNT content in
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the composite. The peak of the highest concentration (1.4% w/w MWCNTs) is not visible
since it falls outside the frequency window range. Further experiments are still necessary
to fully understand the dielectric relaxation mechanisms of these composites.
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function of frequency, at T = 77 ◦C for LS-based polymer undoped and doped with different amounts
of MWCNTs.

Carbon nanotubes are considered to be the most promising reinforcement fillers
used to improve the mechanical, electrical, and thermal properties of polymers [25]. In
this particular study, when only small amounts of MWCNTs were used in the polymer
matrix, electrical conductivity improvement was achieved, thus making these composites
suitable for sensor applications. The synthesis of an LS-based PU composite doped with
1.4% w/w MWCNTs was a challenge since the mixture was very viscous, and it was very
difficult to prepare the films by molding, which led to composites with highly irregular
surfaces. Therefore, and considering the conductivity results, the LS-based PU composite
containing 1% w/w MWCNTs was the formulation chosen for potential application as a
potentiometric sensor.
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3.3. Sensor Properties of the LS-Based PU Polymer Membrane Composite Doped with 1% w/w
MWCNTs

Potentiometric measurements for a sensitivity assessment of an LS-based PU compos-
ite membrane sensor doped with 1% w/w MWCNTs were carried out using 1 mM Tris
buffer solution at pH 7. The measurements revealed no response to Na+, NH4+, and Pb(II)
but had a response to Cu(II), Cd(II), Zn(II), Cr(VI), Cr(III), and Ag(I) (Figure 8). Response
slopes towards studied ions were calculated based on the Nernst equation (Equation (2)) at
a working temperature of 25 ◦C:

E = E0 ± RT
ziF

logai. (2)

where E is measured potential (EMF of the electrochemical cell), E0 is standard potential, R
is the gas constant, T is the temperature in K, F is the Faraday constant, ai is the activity
of the studied cation, and zi is the charge of the ion. A concentration variation by a factor
of 10 should give rise to a potential variation of ca. 59 mV for single-charged ions, but,
for double-charged ions, it should be around 30 mV, and, in the case of triple charged
ions, the slope value should be around 20 mV. Response slopes of the LS-based PU doped
with a 1% w/w MWCNT electrode towards different ions at pH 7 and 2 are depicted in
Figures 8 and 9, respectively, and the detection limits and linear ranges are presented in
Table S2 (Supplementary Materials). The detection limit of the sensor was determined
from the intersection of two extrapolated segments of the calibration plots according to
IUPAC recommendations [57].
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at pH 7 (mean values of at least three calibrations with their respective standard deviations).

The sensor exhibits a low response to Cd(II) (with a slope of 20.3 ± 2.5 mV) and a
near-Nernstian response towards Zn(II) (with a slope of 27.2 ± 0.7 mV) and Ag(I) (with a
slope of 62.1 ± 15.5 mV). For other cations such as Cu(II) and Hg(II), the super-Nernstian
responses were obtained at pH 7 (Figure S4, Supplementary Materials). Responses to
mercury and silver ions are associated with high standard deviations, as after the first
calibration measurement in the solutions of these ions, the slopes of the electrode decreased.
Furthermore, some decrease of the sensor response slopes was observed in the solutions
of copper and zinc after sensor exposure to mercury and silver, indicating an eventual
partially irreversible interaction of the polymer membrane with these ions. At the same
time, no drastic, irreversible complexation with Hg(II) ions was detected, compared with
other lignin-based sensor membranes of the same polymer composite [5,33,34].

Considering that at pH 7, the predominant species of Cr(III) is Cr(OH)2
+, the sensor

response to this ion is slightly above the theoretical one, i.e., 68 mV/pX instead of the
expected 59 mV/pX. No response to Cr(III) was observed at pH 2, which is in agreement
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with the literature data of Cr(III) adsorption by different sorbents and is attributed to
sorbent surface protonation at acidic pH, resulting in the electrostatic repulsion of the
positively charged Cr(III) species [58].

Response of the LS-based sensor to Cr(VI) at pH 7 corresponds to the theoretical
response to a single-charged cation, although Cr(VI) is present at this pH as two anionic
species, HCrO4

− and CrO4
2− [59]. At pH 2, the dominant Cr(VI) species are Cr2O7

2−

and HCrO4
−, with their ratio depending on the total Cr(VI) concentration [58]. The LS-

based sensor response to Cr(VI) at pH 2 is about 45 mV/pX. A similar cationic response
to Cr(VI) was observed for lignin-based sensors in the previous study [34] as well as for
the chromate-selective sensor with a different type of membrane material—chalcogenide
glass [60]. The sensitivity of both chalcogenide- and lignin-based sensors is pH-dependent,
and, in the case of the previously studied lignin-based sensors, it was observed only at
pH 2, while the LS-based sensor responded at both pH 7 and 2. It was hypothesized that
the response mechanism of both chalcogenide glass and lignin-based electrodes is based
on the combination of ion exchange and charge transfer, although no detailed mechanistic
studies of the Cr(VI)-selective sensors’ response mechanism have been done.

Based on these findings, the LS-based sensor was expected to possess redox sensitivity,
and the response of the sensor was evaluated in the solutions of two redox couples, ferro-
ferricyanide Fe(CN)6

3−/4− and Cr(III)/Cr(VI), at pH 7 and pH 2. Response slopes were
calculated by Equation (3):

E = E0 − RT
zF

log
( a

b

)
. (3)

where a and b are the activities of the reduced and oxidized ions, respectively.
No redox response was obtained at pH 7; however, at pH 2, the sensor displayed

response to both pairs (Figure 9). The sensor exhibited a near-theoretical response to the
pair Fe(CN)6

3−/4−, with a slope of −53.8 ± 3.2 mV, and a super-Nernstian response to the
pair Cr(III)/Cr(VI), with a slope of −29.6 ± 8.3 mV.

Sensor responses in the individual solutions of ferrum and ferrocyanide at pH 7 and 2
are depicted in Figures 8 and 9, respectively. The sensor response to Fe(CN)6

3− did not
depend on pH and was ca. 19 mV/pX. The sensor displayed a similarly low response of
ca. 17 mV/pX to Fe(CN)6

4− at pH 7, while at pH 2, a super-Nernstian anionic response
of −72 mV/pX was observed. This response may be attributed to the combination of ion
exchange and charge transfer processes involving the complexation of ferricyanide, with
the functional groups of LS protonated at acidic pH and their subsequent oxidation.

With the aim to expand the applicability of lignin-based potentiometric sensors, the
response of the LS-based PU sensor doped with 1% w/w MWCNTs towards ionic liquids
(IL), 1-ethyl-3-methylimidazolium chloride ([C2mim]Cl) and choline chloride (ChCl), was
examined (Figure S5, Supplementary Materials). These substances are widely used for
different “green” syntheses and biomass fractionation purposes, whose presence in aquatic
environments could be hazardous [9]. The measurements were carried out in Tris solution
at pH 7. Although the sensor did detect both ILs, the sensitivity was relatively low, giving
rise to response slopes of 12.0± 3.8 and 7.3± 0.4 mV for [C2mim]Cl and ChCl, respectively.
The low response of the sensor may probably be due to steric hindrance from the structure
of the ILs. However, further studies are required to evaluate the response mechanism of
these potentiometric sensors to such types of compounds.

Since the LS-based sensor displayed a theoretical or even super-Nernstian response
to several of the studied ions, the choice of the target ion, known as the primary ion, was
not an obvious one for the determination of potentiometric selectivity. Taking into account
the high and reproducible response to Cr(VI) and to facilitate a comparison with the
previously obtained results for other types of lignin, this ion was considered the primary
ion for the selectivity study. The matched potential method (MPM) was used for selectivity
determination. Accordingly, the selectivity coefficient (Kpot

A,B) is defined as the activity
(concentration) ratio of the primary ion A (aA

′ − aA) and the interfering ion B (aB), which
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give the same potential change in a reference solution (this one containing a fixed activity
of primary ions aA) [57,61], and is expressed by Equation (4):

Kpot
A,B= (a ′A−aA

)
/aB (4)

where Kpot
A,B is the selectivity coefficient, aA and aB are the activities of the primary ion A

and the interfering ion B, respectively. The selectivity coefficient represents a numerical
measure of the electrode membrane’s ability to discriminate the primary ion A (target
ion) in the presence of the interfering ion B. A solution of 1.0 × 10−4 M of Cr (VI) in Tris
1 mM at pH 7 was used as the background. For the calculation of selectivity coefficients,
∆E = 20.0 mV was applied. The calculated values of selectivity coefficients are summarized
in Table 1. The LS-based sensor displays low selectivity to Cr(VI) in the presence of most
of the studied ions and is more selective to Cd(II) and especially to Ag(I) than to Cr(VI).
However, in practice, selectivity to Ag(I) ions might not be necessary as they are rarely
present in the analyzed samples.
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Table 1. Selectivity coefficients, Kpot
A,B, of the LS-based sensor towards Cr(VI), determined using the

matched potential method (mean values of at least three values).

Interferent Ion Kpot
A,B

Zn(II) 0.29 ± 0.08
Cd(II) 1.49 ± 0.41
Cu(II) 0.40 ± 0.15
Cr(III) 0.53 ± 0.28
Hg(II) 0.54 ± 0.11
Ag(I) 2.66 ± 0.62
Fe(III) 0.50 ± 0.26
Fe(II) 0.65 ± 0.14

These results show that this LS-based sensor displays sensitivity and low selectivity
to several transition metal cations as well as a redox response. This behavior differs
remarkably from the one observed for the other lignin-based sensors [5,33,34]. Sensors
based on LignoBoost® kraft lignin displayed a Nernstian response and high selectivity
to Cu(II) and quite low or even no response to other cations except Hg(II), with which it
interacted irreversibly, resulting in the loss of the electrode function [5]. Sensors based on
kraft, organosolv, and lignosulphonate displayed sensitivity and selectivity to Cr(VI), redox
sensitivity to the Cr(VI)/Cr(III) redox couple, and low sensitivity to transition metal cations
such as Cu(II) and Pb(II), with higher responses observed for the LS-based sensor [34].
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Furthermore, the three aforementioned sensors neither responded to nor were affected
by the exposure to Hg(II). The reason for such disparity of the sensing properties can be
attributed to the difference in chemical structure and composition between lignins obtained
from different cooking processes, i.e., kraft lignin and LS, or isolation procedures, such as
conventional kraft and LignoBoost® kraft, and LS used previously and in this study [5,62].
LS contains phenolic groups with lower pKa than those in kraft lignin due to the strong
electron-withdrawing moieties on the side chain (sulphonic groups at the benzylic carbon
and conjugated double bonds) [63]. In addition to the sulphonic groups, the LS structures
with phenolic hydroxyls have a high capacity for chelation of metal cations, thus acting
as ionophores. This induces the formation of stable coordination complexes with a wide
range of transition metal cations, influencing the sensing mechanism

Other metal-sensitive sensors based on different polymeric membrane ion-selective
electrodes incorporating ionophores, sensitive to different cations, have been widely re-
ported in the literature [64–88]. Most of these sensors exhibit a near-Nernstian or Nernstian
response to the different cations studied. The super-Nernstian behavior displayed by
the LS-based PU membrane is probably due to the presence of strong anionic sites in
the composite [89], e.g., inherent for the LS sulfonic acid groups. Hence, this work puts
in evidence the decisive role of the lignin’s nature in the response of the corresponding
potentiometric sensors.

The sensitivity of the LS-based polymeric sensor to redox potential and Cr(VI) was ex-
plained previously by the substructures with free phenolic hydroxyl groups involved in the
eventual reversible hydroquinone/quinone type redox couples, favoring the complexation
of Cr(VI) and its subsequent reduction to Cr(III) [34]. However, the high sensitivity of the
LS-based sensor to several transition metals such as Zn, Cd, and Cu, found in the present
work, was not registered in our previous study with another LS sample [34]. This behavior
could be explained by the structural differences in LS samples induced by variations in
eucalypt wood cooking conditions [35]. The LS sample used in this study was isolated from
spent liquor after a more severe cooking process to produce dissolving pulp. The resulting
LS was more condensed and richer in tannins (e.g., catechin, gallic and ellagic acids) than
that used in the previous work [34]. Apparently, concomitant substructures, with two
or three vicinal hydroxyl groups belonging to these polyphenolic concomitants, chelate
easily with transition metal cations [90]. The effect of the presence of tannins on sensing
properties can be corroborated by comparing the sensing behavior of polymers based
on eucalyptus kraft lignins isolated by the conventional procedure and the LignoBoost®

process [5]. The latter had a higher content of total hydroxyl groups and a higher relative
content of phenolic hydroxyl groups and concomitant tannins, which imparted to this
material metal chelating properties; thus, the resulting sensor displayed high sensitivity
to Cu(II) and no redox response. Indeed, the nature of the lignin used in the polymeric
formulation of composites is decisive for the potentiometric sensor response, which is
defined by the interplay between different functional groups and their concentrations.

3.4. DC Electrical Conductivity of LS-Based PU Polymer Membrane Composite Doped with Other
Carbon Nanofillers

Considering the interesting sensing results obtained with MWCNTs as nanofillers
in the composite with LS, the impact of other carbon nanofillers was evaluated, namely,
graphene oxide (GO), reduced GO (rGO) and graphite (Gr), using similar LS-based PU
formulations. The electrical conductivity of a composite occurs mostly as a result of the
formation of a consistent network of nanofillers. SEM images of the LS mixture with 1%
w/w GO, rGO, and Gr show different distribution patterns of nanofillers, as depicted
in Figures 5 and 10. As already mentioned, MWCNTs are highly entangled in a bundle
structure with LS (Figure 5). In contrast, both GO and rGO are disoriented and mostly
wrinkled and folded into a fuzzy structure (Figure 10). Finally, the graphite sheets are
scattered randomly among LS particles (Figure 10). The entanglement and wrinkling of
the nanofillers among LS particles may indicate that during the processing conditions,
under mechanical stirring, these were not able to completely orient within the powder
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mixture [91]. This could explain the inappropriate distribution of nanofillers, failing to yield
a conductive network within the composite matrix and affecting the electrical conductivity
of the ensuing composites.
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The impact of different carbon nanofillers with various concentrations on the DC
electrical conductivity of LS-based PU polymer composites was examined, and the results
are depicted in Figure 11. The highest MWCNT concentration of 1.4% w/w gave rise to
almost 106-fold higher electrical conductivity than the other nanofillers with the same
concentration in the PU composite. Therefore, much larger amounts of GO, rGO, and
Gr were required (up to 10% w/w) to achieve a visible increase in the conductivity of an
LS-based PU composite material. The reason for this behavior is most probably due to
the much higher aspect ratio of the MWCNT rods, which is more favorable to the creation
of a continuous conductive network within the polymer matrix. Therefore, significantly
improved electrical conductivity was obtained for smaller MWCNT loadings compared to
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the GO, rGO, and graphite samples at the same concentrations. In the case of the graphene
sheets, the lack of conductivity improvement is probably due to the limited possibility of
having GO, rGO, or graphite contact points and, thus, limited conduction [91].
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4. Conclusions

Unlike PU composites based on kraft or organosolv lignins, MWCNT-doped LS-
based PUs did not display a common percolation behavior due to the specificity of LS
dissolution in the co-macromonomer used for the synthesis (PPGDI). Nevertheless, LS-
based PUs doped with ≥ 1% w/w multiwall carbon nanotubes (MWCNTs) displayed
relevant electrical conductivity suitable for sensor applications. Among examined carbon
nanofillers within the range of 0–10% w/w (multiwall nanotubes, graphene oxides, and
graphite), only MWCNTs provided significantly improved electrical conductivity to LS-
based PU films suitable for sensing applications. Applied as a potentiometric sensor,
MWCNT-doped LS-based PUs showed sensitivity to Cu(II), Zn(II), Cd(II), Cr(III), Cr(VI),
Hg(II), and Ag(I) at pH 7 and exhibited a response to the Cr(VI)/Cr(III) redox pair at
pH 2. The highest selectivity in solution at pH 7 was observed for Cd(II) and especially
for Ag(I) ions. It is suggested that LS obtained from the same wood but under different
cooking conditions and containing polyphenolic concomitants can exhibit distinct sensing
performance due to the presence of corresponding structural units with chelating vicinal
phenolic hydroxyls. The LS-based conducting polymer revealed a weak but not negligible
response toward ionic liquids, [C2mim]Cl and ChCl. An additional study is necessary to
find the sensitivity of the obtained sensor membranes to different classes of potentially
hazardous compounds for their reliable detection in solutions.
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.3390/ma14185331/s1, Figure S1: TEM image of the LS-based PU film doped with 1% w/w MWCNTs,
Figure S2: SEM images of the cross-section of LS-based PU films, Figure S3: −Log A versus s and
log A/s versus T plots of LS-based PU film doped with 1% w/w of MWCNTs, Figure S4: Calibration
curves of the LS-based PU composite membrane sensor doped with 1% w/w MWCNTs towards four
selected cations, Figure S5: Chemical structure of the ILs studied: (a) 1-ethyl-3-methylimidazolium
chloride and (b) choline chloride. Table S1: Assignment of bands in FTIR-ATR spectra of purified LS
from eucalyptus thick sulfite pulping liquor and LS-based PUs undoped (LS-PU) and doped with
1% w/w MWCNTs (LS-PU-CNT), Table S2: Sensitivity characteristics of the LS-based PU membrane
sensor doped with 1% w/w MWCNTs at pH 7.
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