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Ceramides, Autophagy, and Apoptosis Mechanisms of
Ventilator-induced Lung Injury and Potential Therapeutic Targets

Before the introduction of mechanical ventilation in the 1950s,
preterm infants often died after birth from severe respiratory
failure due to lung immaturity, surfactant deficiency, and the lack
of suitable ventilators to support small infants. Survival of preterm
infants dramatically improved with the introduction of continuous
positive airway pressure (1), recognition of the importance of
surfactant insufficiency in the pathobiology and treatment
of neonatal respiratory distress syndrome (2), and the use of
antenatal steroids (3). Although mechanical ventilation allowed
an increasing number of preterm infants to survive, it was soon
recognized that lung injury due in part to ventilator-induced lung
injury led to persistent mortality and late morbidities including
chronic lung disease, or bronchopulmonary dysplasia (BPD), as
originally described by Northway and colleagues (4). Overall,
advances in respiratory care over the past several decades,
including improved strategies for mechanical ventilation, have led

to dramatic advances in neonatal care and have been lifesaving for
countless babies.

Despite these achievements, the adverse effects of mechanical
ventilation on short- and long-term respiratory outcomes after
preterm birth persist. Data from the Neonatal Research Network in
2015 showed that 87% of extremely preterm infants (gestational age,
22–28 wk) who survived more than 12 hours were treated with
some form of mechanical ventilation (5). Although mechanical
ventilation is lifesaving and often unavoidable, its use is associated
with the development of BPD (6). Animal models show that even a
short duration of mechanical ventilation to a preterm lung injures
the lung and reduces the response to surfactant therapy (7). The
many efforts to limit lung injury include improving ventilator
strategies (8–10) such as volume-controlled ventilation (11, 12),
antenatal steroids (13), and surfactant (14). These strategies have
allowed many babies to avoid aggressive mechanical ventilation
and to even decrease the use of early mechanical ventilation. In
fact, rates of mechanical ventilation have dropped in the past 15
years (5). However, these advances have led to the survival of
infants at lower gestational ages and birthweights with continued
need for mechanical ventilation to survive. Hence, the rates of BPD
remain fixed at 40% (5). In addition, despite substantial increases
in the use of less-invasive ventilation after birth, there was no
significant decline in oxygen dependence at 36 weeks and no
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significant improvement in lung function in childhood over time
(15). Thus, a better understanding of the pathophysiology of
mechanical ventilation–induced newborn lung injury and potential
therapeutic interventions is desperately needed.

The “new BPD” seen today, 50 years after Northway and
colleagues’ study, consists of an arrest of lung development (16),
with defective alveolar septation and capillary formation (17, 18).
This arrest of alveolar septation is associated with lung cell
apoptosis in mechanically ventilated rodent models (19–21).
Past studies have suggested that the mechanism of alveolar type II
epithelial cell (AT-II) injury involves membrane lipid peroxidation,
suppressed proliferation, and excessive apoptosis (19, 22). These studies
also demonstrated that caspase 3–dependent AT-II cell apoptosis,
initiated by the apoptosis-associated gene Fas/FasL and transduced by
Bcl-2/Bax, is a key event in abnormal alveolar development seen in BPD
(19, 22). Previous work from Yeganeh and colleagues and others
demonstrated that the lung epithelial cell death seen with mechanical
ventilation is via the extrinsic and not the intrinsic apoptotic pathway
(23) and that autophagy may be an upstream regulator of apoptosis in
cell fate decisions (24, 25). Furthermore, a recent review
highlighted the observation that abnormal autophagy leading to
increased cell apoptosis can be triggered by oxidative stress
from reactive oxygen species (26). From this body of work, it is
clear that more targeted studies on key pathways promoting
autophagy will reveal new therapeutic targets to maintain
autophagy balance and limit apoptosis and cell death.

Sphingolipids, essential constituents of plasma membranes,
are associated with lung inflammation, apoptosis, inhibition of
surfactant protein B expression, as well as remodeling of the
airway epithelium and vascular endothelium (27). Together with
vascular growth factors, sphingolipids have emerged as vital
components of lung alveolarization during development and are
important determinants of lung responses to damage and repair.
The lungs of infants who have died with BPD show evidence of
reduced lung expression of vascular endothelial growth factor
(17). Sphingolipids coupled with vascular endothelial growth
factor signaling are important mediators of alveolar-capillary
development, which may be impacted in infants with BPD
(28, 29).

In this issue of the Journal, Yeganeh and colleagues (pp.
760–772) provide exciting new mechanistic information about
ventilation-induced autophagy/apoptosis-related newborn lung injury
(30). They explored the relationship between ceramide production,
autophagy, and apoptosis in mechanical ventilation–induced
epithelial cell death using in vivo mechanical ventilation rat model
and in vitro cell stretch experiments. They report that mechanical
ventilation increased pulmonary ceramide production that
triggered autophagy and subsequent extrinsic apoptosis of lung
epithelial cells. In addition, they show that prevention of ceramide
generation by SMPD1, a sphingomyelinase, prevented autophagy-
mediated cell death in mechanically ventilated newborn rats. This
work is exciting, as it reveals a potential novel therapeutic target for
the treatment of ventilation-induced lung injury in newborn
infants with respiratory failure. The current findings extend the
current mechanistic understanding of mechanical ventilation–induced
cell death in newborn lungs by exposing ceramides as an upstream
regulator of autophagy leading to increased apoptosis.

Altered ceramide content contributes to the pathology of
abnormal lung development and respiratory diseases. Previous work

by this group demonstrated elevated levels of ceramide in the tracheal
aspirates of preterm infants who required mechanical ventilation in
the first week of life, suggesting that ceramide concentration may be a
useful early biomarker for the development of BPD (31). Although
therapeutic targeting of ceramides for the prevention of oxidative
and mechanical stretch injury is very exciting, much work will be
needed to find the appropriate balance of pathologic and physiologic
apoptosis in postnatal lung development and disease. In addition, the
development of selective agents to control autophagy will take much
investigation, but efforts by Yeganeh and colleagues and other
investigative groups have some promising leads (30). Such
mechanistic insights into the pathogenesis of mechanical
ventilation–related lung injury are of the upmost importance, given
the increasing numbers of babies at the edge of viability who are at
the highest risk of respiratory failure needing mechanical ventilation
during their newborn course. n
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Activating Leptin Receptors in the Central Nervous System Using
Intranasal Leptin
A Novel Therapeutic Target for Sleep-disordered Breathing

In addition to serving as a tissue for energy storage, adipose tissue
has become a well-recognized endocrine organ that secretes a variety
of adipokines with important pleiotropic functions. One of these
adipokines is leptin, discovered in 1994 by Zhang and colleagues
(1). Much of the research on leptin has focused on its role on
metabolism, particularly in central nervous system regulation of
energy homeostasis and obesity, as well as its peripheral effects
on obesity-related cardiometabolic diseases. The excess adiposity
in obese humans leads to high circulating levels of leptin.

Paradoxically, despite leptin’s well-described effects on suppressing
appetite and increasing energy expenditure, these individuals
remain obese, reflecting a state of leptin resistance (2). A few
years after its discovery, it became evident that leptin has a
significant effect on ventilation and control of breathing (3, 4).
At the central nervous system level, leptin increases the
hypercapnic ventilatory response. Yet, severely obese patients
afflicted with obesity hypoventilation syndrome (OHS) continue
to hypoventilate despite having high circulating levels of leptin,
in line with leptin resistance. Further evidence in support of
leptin resistance at the central nervous system level comes from
experiments in which parenterally administered recombinant
leptin was shown to be largely ineffective in reducing weight in
the vast majority of obese individuals (5). For leptin to affect
the respiratory center and increase minute ventilation, it has
to first cross the blood–brain barrier (BBB). One proposed
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