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Two-dimensional materials-based
probabilistic synapses and reconfigurable
neurons formeasuring inference uncertainty
using Bayesian neural networks

Amritanand Sebastian1 , Rahul Pendurthi1, Azimkhan Kozhakhmetov2,
Nicholas Trainor2,3, Joshua A. Robinson2,4,5, Joan M. Redwing2,3,6 &
Saptarshi Das 1,2,6

Artificial neural networks have demonstrated superiority over traditional
computing architectures in tasks such as pattern classification and learning.
However, they do not measure uncertainty in predictions, and hence they can
make wrong predictions with high confidence, which can be detrimental for
many mission-critical applications. In contrast, Bayesian neural networks
(BNNs) naturally include such uncertainty in their model, as the weights are
represented by probability distributions (e.g. Gaussian distribution). Here we
introduce three-terminal memtransistors based on two-dimensional (2D)
materials, which can emulate both probabilistic synapses as well as reconfi-
gurable neurons. The cycle-to-cycle variation in the programming of the 2D
memtransistor is exploited to achieve Gaussian random number generator-
based synapses, whereas 2D memtransistor based integrated circuits are used
to obtain neurons with hyperbolic tangent and sigmoid activation functions.
Finally, memtransistor-based synapses and neurons are combined in a cross-
bar array architecture to realize a BNN accelerator for a data classification task.

Machine learning has seen unprecedented growth and success in recent
years owing to the development of artificial neural networks (ANNs). By
mimicking the biological neural architecture and employing deep
learning algorithms, ANNs have demonstrated notable advantages over
standard computing methods for tasks such as image classification,
facial recognition, data mining, weather forecasting, and stock market
prediction1–5. While ANNs offer high performance, especially in terms of
highprediction accuracy, theyoften suffer fromoverfittingdue to a lack
of generalization as they do not model uncertainty. Large datasets and
various regularization techniques are often required to reduce

overfitting in ANNs6. However, this can limit the use of ANN in appli-
cations where the data is scarce. In addition, uncertainty estimation is
important in applications like autonomous driving, and medical diag-
nostics, where machine learning must be complemented with
uncertainty-aware models or human intervention7,8. The integration of
probabilistic computingparadigmswithANNsallows regularization and
enables us to model uncertainty in predictions9–12. This is achieved in
Bayesian neural networks (BNNs) by incorporating Bayes theorem to
the traditional neural network scheme12,13. BNNs are capable of model-
ing uncertainty and avoiding overfitting, while working well with small
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datasets14. In fact, BNNs are extremely powerful as they represent an
ensemble model, which is equivalent to the combinations of numerous
ANNs, but with a small number of parameters. Unlike ANNs, where the
synaptic weights are point estimates (single-valued), in BNNs, the
weights (W ) are represented by probability distributions, as shown
in Fig. 1.

Over the years we have witnessed the development of neural
network accelerators aimed at improving the size, energy con-
sumption, and speed of neural networks, especially for edge com-
puting applications15–17. Since the training process in neural networks
is energy and resource intensive, these works typically rely on off-
chip training and on-chip inference. Hence, BNN accelerators have
alsomostly focused on implementing Bayesian inference on-chip18–23.
A crucial component of the BNN accelerator is an on-chip Gaussian
random number generator (GRNG)-based synapse that can sample
weights from a Gaussian distribution. In addition, a BNN requires a
circuit to implement a neuron, i.e., to perform the multiply and
accumulate (MAC) operation and the neural activation. BNN imple-
mentations based on Si complementary metal oxide semiconductor
(CMOS) and field-programmable gate array (FPGA) typically require
elaborate hardware for GRNGs, MAC operation, and the activation
function, rendering them area and energy inefficient18–20. Moreover,
these demonstrations are based on the von-Neumann architecture
with separatememory and logic units, requiring frequent shuttling of
data between the two. BNN accelerators based on emerging and non-
von Neumann memristive and spintronic synapses utilize cycle-to-
cycle variability in switching to generate Gaussian random numbers
(GRNs)21–23. However, these GRNG-based synapses are limited to
mean (μ) of 0 and standard deviation (σ) of 1 and require extensive
CMOS-based peripheral circuitry to obtain unrestricted μ and σ
values. For example, multiplication and addition operations are used
to transform N 0,1ð Þ to N μ,σð Þ = σ*N 0,1ð Þ+μ. Finally, two-terminal
memristors also lack the capability to emulate neurons for the acti-
vation functions. Therefore, energy and area efficient acceleration of
BNNs will benefit from a standalone hardware platform, which can
offer both neurosynaptic functionalities as well as programmable
stochasticity.

In this work, we introduce three-terminal memtransistor tech-
nology based on two-dimensional (2D) monolayer MoS2 and WSe2
offering all computational primitives needed for a BNN accelerator.
First, we realize an ultra-low power GRNG-based synapse by
exploiting the cycle-to-cycle variability in programming/erasing
operation in the MoS2 memtransistor. Next, using a circuit com-
prising of two memtransistors we achieve reconfigurable μ and σ.
Activation functions such as hyperbolic tangent (tanh) and sigmoid
are also realized using the integration of n-type MoS2 and V-doped p-
type WSe2 memtransistors. Finally, we demonstrate a crossbar array
architecture in order to implement on-chip BNN inference. Further-
more, the entire network is simulated using LTSpice and uncertainty
decomposition is performed to identify the various sources of
uncertainty.

Results
2D memtransistors
This 2D memtransistor has a back-gated geometry, where, Al2O3 is
used as the gate dielectric and TiN/Pt is used as the gate electrode (see
the “Methods” section and our earlier publications24–27for details on
fabrication). We have used monolayer MoS2

28,29 and V-doped WSe2
30

grown using metal organic chemical vapor deposition (MOCVD)
described in our previous reports as the channel materials. The choice
of 2Dmaterials ismotivatedby recent demonstrations highlighting the
technological viability of 2D materials28,31,32 and their wide-scale
adoption in brain-inspired computing33–42. The transfer character-
istics, i.e., drain current (IDS) versus gate-to-source voltage (VGS) for
drain-to-source voltage (VDS) of 1 V for 250 MoS2 memtransistor
demonstrating unipolar n-type behavior and the distribution of their
threshold voltage (VTH,n) are shown in Fig. 2a, b. The transfer char-
acteristics for 20 V-doped WSe2 memtransistors demonstrating uni-
polar p-type behavior is shown in Fig. 2c. Here the WSe2 is doped with
1.1% V to realize unipolar p-type characteristics30. Figure 2d shows the
distribution of the threshold voltage (VTH,p) for WSe2 memtransistors.
Here, the threshold voltages are extracted using the constant-current
method, at 0.1 nA µm−1. The device-to-device variation is seen to be low
in both cases.

The memtransistors offers analog and non-volatile charge-trap
memory. The memtransistor can be programmed i.e., the threshold
voltage of the device can be decreased by applying a program pulse to
the back-gate with a large negative voltage (VP). Figure 2e demon-
strates the post-programmed transfer characteristics of a MoS2
memtransistor for VDS = 0.1 V, measured after programming with dif-
ferent VP. Similarly, MoS2 memtransistor can be erased i.e., the
threshold voltage of the device can be increased by applying an erase
pulse to the back-gate with a large positive voltage (V E), as shown in
Supplementary Fig. 1b. A pulse duration (t) of 100 µs is used for both
programming and erasing. The dependence of programming and
erasing, on tP is shown in Supplementary Fig. 1c, d, respectively. The
non-volatile nature of the MoS2 memtransistor is shown in Fig. 2f,
where the retention characteristics for five different conductance
states are demonstrated for 2000 s. The characterization of memory
ofWSe2memtransistors is shown in Supplementary Fig. 2. Theworking
principle of this analog andnon-volatilememoryhasbeendescribed in
detail in our earlier report35.

Gaussian random number generator-based synapse
We have demonstrated Gaussian synapses for a probabilistic neural
network in our prior work, where the synapses were realized by
mimicking theGaussian function33. However, BNN accelerators require
GRNGs and they typically rely on techniques such as cumulative den-
sity function inversion, central limit theorem (CLT)-based approx-
imation, and the Wallace method to sample standard GRNs18–20. These
methods typically require linear feedback shift registers, multipliers,
and adders, involving numerous transistors to implement the GRNGs,
rendering them area and energy inefficient. In contrast, here we use
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Fig. 1 | Comparison of an artificial neural network (ANN) and a Bayesian neural
network (BNN). Schematic of a an ANN and b a BNN. The synapses of ANN are

represented by single-valuedweights while the synapses of a BNN is representedby
probability distributions.
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cycle-to-cycle variation in the programmability of our MoS2 mem-
transistor to generate GRNs. While cycle-to-cycle variation is undesir-
able for traditional computing, it canbe exploited to reduce the design
complexity of a BNN accelerator21,22,43. To demonstrate the effect of
programming on variation, we use dynamic programming on 40MoS2
memtransistors, where we measure the transfer characteristics with
different VGS sweep ranges. To evaluate the effect of VP (V E), the
maximum positive (negative) VGS is fixed at +2 V (−2 V), while the
maximum negative (positive) VGS is stepped from −3 to −13 V (3 to 13
V). As shown in Fig. 2g, high VP and V E (±13 V) increases the device-to-
device variation (post programming/erasing). High VP and V E (beyond
±7 V) results in significant VTH shift (see Supplementary Fig. 3), while
also increasing σVTH

, as shown in Fig. 2h. This increase in device-to-
device variation for high VP and V E is also accompanied by an increase
in the cycle-to-cycle variation.

To utilize the cycle-to-cycle variation, the gate of a MoS2 mem-
transistor is subjected to successive erase-program-read pulse cycles
with V E = 13 V, VP = −13 V, and read voltage (VR) of 0 V as shown in
Fig. 3a. The corresponding VDS valueswere 0, 0 and0.1 V, respectively.
The conductance (G) of the memtransistor, measured at each read
step, is shown in Fig. 3b for 200 cycles. As evident from the histogram
shown in Fig. 3c,G follows a Gaussian distribution, with mean, μG = 3.5
nS and, standard deviation, σG = 0.9 nS. The quantile-quantile (Q-Q)
plot ofG further confirms the Gaussian distribution. The quantiles ofG
(represented using circles) areplotted against the theoretical quantiles
from aGaussian distribution as shown in Fig. 3d. As expected, it closely
follows a straight line. Note that the slope of theQ-Qplot represents σG

and G corresponding to quantile 0 represents μG. Further character-
ization of 2Dmemtransitor-basedGRNGhas beendone in our previous
report44. Here, the random distributions are observed as an effect of
random nature of charge trapping which is typically observed in
charge-trapmemorydevices45,46. Hence, thesememtransistors canalso
be replaced with standard three-terminal charge-trap flash memories
such as TaN-Al2O3-Si3N4-SiO2-Si (TANOS) and Si-SiO2-Si3N4-SiO2-Si

(SONOS)47–49. Nevertheless, MoS2memtransistors are used to generate
a physical random variable that samples analog conductance values
from a Gaussian distribution, i.e., G ~NðμG,σGÞ. Moreover, the MoS2
memtransistor can be used as a synapse, which scales the input by its
synaptic weight. If input is applied as voltage to the drain terminal of
the memtransistor, the output current is scaled by G, i.e., IDS =G:VDS,
as shown in Fig. 3a. Therefore, by combining the cycle-to-cycle varia-
tion in G with the synaptic functionality of the memtransistor, we are
able to realize a GRNG-based synapse. To implement a BNN accel-
erator, it’s important to tune both μG and σG of the GRNG-based
synapse independently. μG and σG can be tuned by modulating VP in
the erase-program-read pulse cycle, as shown in Fig. 3e. However, μG

and σG are found to be coupled, and the coefficient of variation
(Cv = μG=σG) depends on VP, as shown in Fig. 3f. A similar trend is seen
in μG, σG and Cv as a function of V E, as shown in Supplementary Fig. 4.

Figure 4a shows the design of our GRNG-based synapse with
independent control over its μ and σ, using twoMoS2memtransistors,
T+ and T�. While prior demonstrations rely on additional mathema-
tical manipulations of the generated GRNs to establish control over
their μ and σ, we are able to achieve it without any additional manip-
ulations or circuitry21–23,43. It is common practice in neural network
accelerators to use two devices per synapse in order to map both
positive and negative weights49. Here, the input to the synapse, V in is
applied as +V in and -V in to T+ and T�, respectively, as shown in Fig. 4a.
The current at the output node (Iout) is then given by sum of currents
through T+ and T� i.e., IT+

and IT�
, according to the Kirchhoff’s cur-

rent law (KCL) given by Eq. 1.

Iout = IT+
+ IT�

=G+ :V in � G�:V in = ðG+ � G�Þ:V in =Geff :V in ð1Þ

Here G+ and G� are the conductance of T+ and T� respectively
and Geff is the effective conductance of the synapse. While the con-
ductance of a device is always positive, by modulating G+ and G�,
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Fig. 2 | Programmable memtransistors. a Device-to-device variation in the
transfer characteristics, i.e., drain current (IDS) versus gate-to-source voltage (VGS)
for drain-to-source voltage (VDS) of 1 V for 250 MoS2 memtransistors, demon-
strating unipolar n-type transport. Distribution of b threshold voltage (VTH,n)
extracted from 250 MoS2 memtransistors. c Device-to-device variation in the
transfer characteristics for 20 V-doped WSe2 memtransistors, demonstrating uni-
polar p-type transport. Distribution of d threshold voltage (VTH,p) extracted from
20WSe2memtransistors. The correspondingmeans (μ) and standarddeviations (σ)
are denoted in the inset. Memtransistors offers analog and non-volatile memory,

where their threshold voltage can be adjusted by applying a programming pulse to
the back gate. e Transfer characteristics of a post-programmed MoS2 memtran-
sistor obtained by applying negative programming voltages (VP) of different
amplitudes for pulse duration (t) of 100 μs. f Analog retention characteristics, i.e.,
post-programmed IDS versus time measured at VGS = 0 V, for five different states.
gThe impact of programming/erasing on device-to-device variation, demonstrated
using different VGS sweep ranges. h σVTH,n

as a function of VP and erasing voltage
(VE) applied during VGS sweeps. An increase in variation is seen for high VP/V E.
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using VG+
and VG�

(by applying different VP), we can obtain both
positive and negative Geff . To control μGeff

and σGeff
, T+ is subjected to

successive erase-program-read pulse cycles, while T� is programmed
to a given state and subsequently only read, using the waveforms
shown in Fig. 4b. This results in G+ being drawn from a Gaussian
distribution, with μG+

= 5 nS and σG+
= 0:49 nS i.e., G+ ~N 5,0:49ð Þ nS

and G� having a constant value of ≈ 8.89 nS, as shown in Fig. 4c. Geff is
expected to be drawn from a distribution with σGeff

= σG+
and

μGeff
=μG+

-G�. This is confirmed by our measurements as shown in
Fig. 4c, Geff ~N �3:9,0:49ð Þ nS. Note that, G� is not perfectly constant
due to the presence of random telegraph fluctuations. However, the
fluctuations were found to have a standard deviation of 0.06 nS,
making its contribution negligible. The histograms and Q-Q plots of
G + ,G�, and Geff are shown in Supplementary Fig. 5. Figure 4d shows
the independent control of μGeff

for constant σGeff
using the GRNG-

based synapse. Here, T+ is subjected to the same erase-program-read
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-
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T

Fig. 4 | GRNG-based synapse andmodified tanhactivation function. aSchematic
of theGRNG-based synapse. The input to the synapse,V in is applied as+V in and -V in

to the memtransistors, T+ and T� with conductance G+ and G� (modulated using
VG+

and VG�
), respectively. The effective conductance of this synapse is given by

Geff =G+ � G�, allowing positive and negative conductance. b Waveform applied
to the synapse to generate GRNs with independent control over μ and σ. c G+ , -G�
andGeff of the synapse sampled 300 times, where T+ controls σ and T� controls μ:
GRNG-based synapse showing d independent control of μGeff

for constant σGeff
and

e independent control of σGeff
for constant μGeff

. f Linear scaling of the synaptic
output (Iout) distribution as the function of V in. g Schematic of circuit for the
modified tanh activation function using a n-type MoS2 memtransistor (T1) and a
V-dopedp-typeWSe2memtransistor (T2), where the input voltage (VS) is applied to
the gate terminal of T1 and T2. h The transfer characteristics of the circuit (solid
line) i.e., output voltage (VO) versus VS, closelymodels the tanh activation function
(dotted line).
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Fig. 3 | Gaussian random number generator (GRNG) using MoS2 memtransis-
tor. a Schematic of a MoS2 memtransistor used as a GRNG. To generate gaussian
random numbers (GRNs), the gate of a MoS2 memtransistor is subjected to an
erase-program-read pulse cycle 200 times with V E of 13 V, VP of −13 V, and read
voltage (VR) of 0V, while the drain is subjected toV in of 0, 0 and0.1 V, respectively.
b The corresponding conductance (G) of the MoS2 memtransistor measured at
each read step, demonstrating random fluctuations in G. c Histogram

demonstrating thatG follows a Gaussian distribution, with μG = 3.5 nS and σG = 0.9
nS. d The quantile-quantile (Q-Q) plot of G, confirming its Gaussian distribution.
The quantiles of G (represented using circles) are plotted against the theoretical
quantiles from a Gaussian distribution, which follows the straight line expected for
a Gaussian distribution. e Dependence of μG and σG and the corresponding
f coefficient of variation (Cv) on VP. Here, VP is changed in the erase-program-read
pulse cycle. μG and σG are seen to be coupled.
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cycle, to obtain constant σGeff
, whereas T� is programmed to different

states (usingVP) to tuneμGeff
. Figure 4e shows the independent control

of σGeff
for constant μGeff

. In order to modulate σGeff
, σG+

is changed by
applying different erase-program-read cycles (different VP) to T+ .
Since this leads to an unfavorable change in μG+

, T� is reprogrammed
to account for the change in μG+

, to maintain a constant μGeff
. In a

synapse, the distribution of Iout is expected to scale linearlywith V in, as
given by Eq. 2.

Iout =Geff :V in =NðμGeff
,σGeff

Þ:V in =NðμGeff
:V in,σGeff

:V inÞ=NðμIout
, σIout

Þ
ð2Þ

This is demonstrated in Fig. 4f, where μIout
and σIout

show linear
dependence with respect to V in. The output characteristics of a MoS2
memtransistor is shown in Supplementary Fig. 6 for positive and
negativeVDS.While the current is highly non-linear and asymmetric for
large ±VDS values, it is seen to be sufficiently linear and symmetric
between ±0:1 V. Hence, we limit themaximumV in to 0.1 V. The lowV in

allowsus tooperate the synapsewith extremely low currents, as shown
in Fig. 4f, offering significant energy efficiency. Overall, we demon-
strate independent control over μGeff

and σGeff
to implement a GRNG-

based synapse with just two MoS2 memtransistors resulting in sig-
nificant area and energy efficiency. Supplementary Fig. 7 demonstrates
the stability of analog random number generation for numerous ana-
log states for a total of 20,000 cycles. In addition, it demonstrates that
both μ and σ increase as a function of VDS and ∣VP∣, retaining the
synaptic behavior for 20,000 cycles. Also, as cycle-to-cycle variation is
used for random number generation, Supplementary Fig. 7 also
represents that MoS2 memtransistor has an endurance of at least
20,000 cycles. Higher endurance is desired for BNNs and this can be
achieved through further optimization of MoS2 memtransistors.

Neurons with modified hyperbolic tangent activation function
The hardware for activation function in neural accelerators is generally
realized using standard CMOS-based analog and digital components,
and hence these implementations do not utilize the advantages offered
by emerging materials49. Moreover, hyperbolic tangent (tanh) and sig-
moid functions are highly non-linear, significantly complicating their
hardware demonstration50. We demonstrate a circuit for a modified
tanh (m-tanh) activation function using a n-type MoS2 memtransistor
(T1) and a V-doped p-typeWSe2memtransistor (T2) as shown in Fig. 4g.
The transfer function of the circuit i.e., output voltage (VO) versus input
voltage (V S) closely follows the tanh activation function as shown in
Fig. 4h. The maximum of the m-tanh activation function is determined
by the drain voltage (VDD). Here, V S is applied to the gate of T1 and T2.
T1 and T2 are programmed to ensure that the m-tanh function passes
through theorigin.Note thatwhenV S =−2V, T1 operates in theoff-state
and T2 operates in the on-state, resulting in VO = �VDD, whereas for
V S = 2 V, T1 operates in theon-state andbecomesmore conductive than
T2, which results in VO = VDD. While this output characteristics is well-
known49,51, to the best of our knowledge it has not been used to
implement activation functions, as the activation functions are typically
implemented using look-up-tables49. In addition, modified sigmoid
activation function can be realized by applying 0V to the drain terminal
of T1, as shown in Supplementary Fig. 8.

Crossbar array architecture
The crossbar array architecture is routinely used in neural network
accelerators to perform the MAC operation of a neuron. Figure 5a
shows the circuit used to implement a portion of a BNN shown in
Fig. 5b, where M = 4 input neurons are connected to N = 1 output
neuron. Each input neuron is multiplied with their corresponding
synaptic weight distributions and the resultants are summed at the
output neuron (MACoperation). The resultant of theMACoperation is
passed through the m-tanh activation function, to obtain the output.

To implement this on circuit, as shown in Fig. 5a, the conductance
distribution of a synapse in the ith row, jth column and kth layer (GðkÞ

ij ),
given by the combination of GðkÞ

ij +
and GðkÞ

ij�
is modulated using V ðkÞ

Gj +
and

V ðkÞ
Gj�

lines. Inputs to ith row and kth layer are applied as voltages (±V ðkÞ
i ).

The current through the jth column, due to these synapses is then given
by the dot product of V ðkÞ

i and GðkÞ
ij , according to KCL. To obtain a

voltage proportional to this dot product, we use a sense transistor, as
shown in Fig. 5a. The voltage-drop (V ðkÞ

Sj ) across this sense transistor is
given by Eq. 3.

V kð Þ
Sj =

PM

i= 1
V kð Þ

i G kð Þ
ij

G kð Þ
Sj +

PM

i= 1
G kð Þ
ij

ð3Þ

Here, GðkÞ
Sj is the conductance of the sense transistor, and is modu-

lated using V ðkÞ
sense. Using V ðkÞ

Sj allows us to seamlessly integrate the
circuit for m-tanh activation function into the crossbar array as
shown in Fig. 5a, to obtain the corresponding output (V ðkÞ

Oj ). There
are some non-idealities which are also accounted for. First, the
synaptic weight distribution (W ðkÞ

ij ) is mapped to the crossbar array
by using a conductance scaling factor (α) to obtained GðkÞ

ij . Second,
the denominator of V ðkÞ

Sj (Eq. 3) presents a non-ideality, which can be
expressed as the product of α and a non-ideality factor (γðkÞ). By
mapping the input (x kð Þ

i ) to V ðkÞ
i , using γ kð Þ as the scaling factor, ideal

V ðkÞ
Sj and V kð Þ

Oj can be obtained as shown in Eq. 4.

V kð Þ
Sj =

PM

i = 1
V ðkÞ

i GðkÞ
ij

GðkÞ
Sj +

PM

i = 1
GðkÞ
ij

=

PM

i= 1
x kð Þ
i γ kð Þ

� �
: W kð Þ

ij : α
� �

γ kð Þ: α
=
XM

i= 1

x kð Þ
i W kð Þ

ij ð4aÞ

V kð Þ
Oj = tanh V kð Þ

Sj

� �
= tanh

XM

i = 1

x kð Þ
i W kð Þ

ij

 !
ð4bÞ

GðkÞ
Sj is used tomake sure that each columnof the crossbar array has the

same γðkÞ. With this proposed scheme, we can evaluate the dot product
between x kð Þ

i and W kð Þ
ij in the voltage domain and use the m-tanh

activation function to obtain the ideal output, V kð Þ
Oj . Note that this

scheme is not limited to the implementation of a BNN and can be
adopted to implement standard ANN crossbar arrays with tanh and
sigmoid activation functions.

Neural network evaluation
We evaluate the performance of our BNN implementation using the
PIMA Indian Diabetes dataset. This dataset consists of nine parameters
such as number of pregnancies, glucose levels, insulin levels, body
mass index, age, etc. To classify this dataset, we use a fully connected
8 × 10 × 2 BNN, i.e., it has an input layer with 8 neurons, one hidden
layer with 10 neurons, and an output layer with 2 neurons. The dataset
with 767 instances is divided into 720 for training and 47 for testing.
“Bayes by Backprop” algorithm, with a Gaussian prior is used to train
the synaptic weight distributions 12,52 (see the “Methods” for details).
The BNN is trained off-chip for 300 epochs as shown in Fig. 5c, to
obtain train accuracy of 75.41% and test accuracy of 80.85%. Similar
accuracy numbers have been reported in prior works53–55.

Figure 5d shows the circuit of the BNN used to classify the PIMA
Indians dataset. Here, the synapses are arranged in the crossbar array
architecture. The BNN circuit to classify PIMA Indian diabetes dataset
is evaluated using LTSpice simulations (See “Methods” for details).
Note that, at the output layer we do not use the tanh activation func-
tion. Instead, following Eq. 6, the output of the BNN, V ðkÞ

Sj is sampled
Z = 100 times to obtain a distribution, and itsmean is used tomake the
classification. Using the LTSpice simulations, we are able replicate the
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test accuracy of 80.85%. The BNN circuit consumes a miniscule 18.37
nJ/test sample in order to make the classification (see “Methods” for
details).

While the cycle-to-cycle variation in memtransistors is useful for
the generation of Gaussian random numbers, the device-to-device
variation observed along with it is undesirable for the operation of a
neural network. Supplementary Note 1 and Supplementary Fig. 9 dis-
cusses a method to model and reduce the device-to-device variation.
Since, some variation is still expected to exist, we evaluate its effect on
the performance of the circuit for the Bayesian neural network. We
implement up to 10 % variation for the parameters of the synapse: μG+

,
σG+

, and G�, which results in a corresponding variation in Geff , the
parameters of the tanh function: VTH,n and VTH,p, and for the n-type
FET and the p-type FET, and the conductance of the sense resistor GS:

These parameters are drawn from Gaussian distributions where the
mean is given by expected parameter value and standard deviation of
up to 10% is considered. Figure 5e shows the effect of device-to-device
(model) variation on the test accuracy and predictive accuracy. The
predictive accuracy demonstrates how well the predictions of the
expected correct classes are made. Here, the BNN is simulated and
averaged over 5 runs. While, we observe a decrease in the test

accuracy, it is not seen to significantly impact the operation of the BNN
and an accuracy of ≈60% is maintained for 10% variation.

In a BNN, we can use entropy estimation and entropy decom-
position to quantify uncertainty and to find its source, respectively
(see the “Methods” section for details). The distribution of V ðkÞ

Sj at the
output layer can be used to calculate the uncertainty in
classification56,57. Figure 5f shows the total entropy, aleatoric entropy,
and epistemic entropy as a function of model variation, calculated
using Eqs. 8 and 9. In model variation, it was determined that the
variation in synapses is more determinantal to the performance of
BNN compared to variations in the neuron, due to the binary nature of
our classification problem. For a multiclass problem, variations in the
neuron are expected to have a larger impact on the accuracy. In
Fig. 5f, we would expect the aleatoric uncertainty to remain unchan-
ged and total entropy to increase. However, their extraction is
impacted by the increased model variation. Nevertheless, as expec-
ted, the epistemic entropy increases as themodel variation increases.
As shown in Fig. 5g, h, an increase in the input variation results in the
degradation of accuracy, along with an increase in the total and
aleatoric entropy, while a constant epistemic entropy is maintained,
as expected. Hence, in addition to the estimation of total entropy

Fig. 5 | Crossbar array architecture to implement the BNN. a Schematic of a
portion of a BNN, where multiple input neurons are connected to one output
neuron through multiple synapses. b The corresponding circuit implementation
using the crossbar array architecture. Here, a sense transistor is used to obtain a
voltage (V ðkÞ

Sj ) proportional to the dot product between the inputs (V ðkÞ
i ) and

synaptic distributions (GðkÞ
ij ), where i, j, and k represents the row, column, and layer,

respectively. V ðkÞ
Sj is applied to the tanh activation circuit to obtain the output (V ðkÞ

Oj ).
c Training and testing curves for 300 epochs of the BNN constructed to classify the

PIMA Indians dataset. d Circuit implementation of the BNN to perform inference
on-chip. e Accuracy and predicative accuracy as function of model variation. Here,
the effect of variation in synaptic devices, sense resistors, and activation function is
demonstrated. f Total entropy, aleatoric entropy and epistemic entropy as a
function of model variation. g Accuracy and predictive accuracy as a function of
input variation. h Total entropy, aleatoric entropy and epistemic entropy as a
function of input variation.
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using a BNN, with uncertainty decomposition various sources of
entropy can be identified.

Discussion
This work demonstrates the development of computational primitives
needed for a BNN accelerator, using 2D memtransistors. The cycle-to-
cycle variation in the programming of the MoS2 memtransistor is
exploited as a source of randomness and a circuit comprising of two
such memtransistors is used to obtain an ultra-low-power and sto-
chastic synapse, which allows sampling of both positive and negative
weights from a Gaussian distribution with reconfigurable mean and
standard deviation. We also developed circuits to implement the
modified hyperbolic tangent and sigmoid activation functions based
on the integration of MoS2 and WSe2 memtransistors. In addition, we
integrate these components into a crossbar array architecture to
perform efficient MAC operations and we develop a BNN circuit to
perform on-chip inference to classify the PIMA Indians dataset and
evaluate its performance using circuit simulations. Finally, we have
also performed uncertainty decomposition in order to identify the
various sources of uncertainty.

Methods
Device fabrication
MoS2 memtransistors are fabricated using photolithography and
e-beam lithography. Photo-lithography is used to define the back-gate
islands. A p++ Si substrate is first spin coated with LOR 5 A and baked at
180 ˚C for 120 s, and subsequently spin coated with SPR 3012 and
baked at 95 ˚C for 60 s. UsingHeidelbergMLA 150, the desired regions
are exposed to 405 nm light. The exposed regions are developed using
1:1 CD 26 and DI water. To form the back gate islands, 20 nm TiN
followed by 50 nm Pt is deposited through sputtering. 50 nm Al2O3

gate dielectric is deposited using atomic layer deposition. Al2O3 is
etched from back gate contact regions using BCl3 etch, where the etch
region was defined by photolithography. Following this MOCVDMoS2
is transferred onto this substrate and the MoS2 transistors are fabri-
cated as discussed in our previous reports28,51. The fabrication of WSe2
memtransistors have been discussed in our previous report30.

Electrical characterization
Lake Shore CRX-VF probe station and Keysight B1500A parameter
analyzer were used to perform the electrical characterization at room
temperature. The device-to-device variation measurements were per-
formedusing the FormFactor Cascade Summit 12000 semi-automated
probe station.

BNN training and inference
According to the Bayes theorem, the weights of a BNN are given by
posterior probability distributions given by Eq. 5.

p W ∣Dð Þ= p D∣Wð Þ:pðW Þ
pðDÞ ð5Þ

HereD is the training data,p W ∣Dð Þ is the posterior distribution, p D∣Wð Þ
is the likelihood, p Wð Þ is the prior, and p Dð Þ is the evidence. The true
posterior distribution is untraceable in BNNs and hence,methods such
as variational inference12 and Markov chain Monte Carlo (MCMC)
sampling58 are used to approximate the posterior distribution. Varia-
tional inference is typically preferred due to better convergence and
scalability compared to MCMC20. In the variational inference method,
p D∣Wð Þ is estimated using a family of variational posterior distribu-
tions (typically Gaussian distributions), q W ;θð Þ, where θ represents the
variation parameters. For a Gaussian distribution, the variation para-
meters are itsmean and standarddeviation, i.e., θ=μ,σ. The estimation
is performed by minimizing the Kullback-Leibler divergence between
p D∣Wð Þ and q(W;θ). In the training phase, for each synapse, μ and σ are

learned using the traditional backpropagation method12. Here, σ
represents the uncertainty introduced by each synapse. To perform
inference using a BNN, multiple forward passes of the trained network
is evaluated. During each forward pass, each of the Gaussian weight
distributions are sampled once. The output of the network or the
predictive distribution is obtained by averaging the outputs of these
forward passes obtained by sampling the weight distributions. It can
be approximated by drawing Z Monte Carlo samples and finding its
mean given by Eq. 6.

pðy*∣x*,DÞ ≈ 1
Z

XZ

z = 1

p y*∣x*,Wz� � ð6Þ

Here, x* and y* are the test input and output, respectively, D is the
training data, and Wz represents the zth Monte Carlo weight sample.

LTSpice Circuit Implementation
The synapses consisting of two memtransistors, T+ and T� are mod-
eled using resistors. During the read step, VR or of 0 V is applied to
prevent read-disturb and V in is applied such that the transistors are
operating in the linear part of the triode region. Hence, these mem-
transistors are modeled using resistors. Here, T+ is modeled as a
resistor which draws fromGaussian conductance distribution given by
G + ~NðμG+

,σG+
Þ and T� is modeled as a resistor set to a constant

conductance of G�. The weight distributions are mapped to con-
ductance distributions with α = 10−9. For the actual circuit imple-
mentation using memtransistors, in order to program and reprogram
the crossbar array, we propose to use a scheme where all devices are
erased with a high V E of 13 V. Following that, each device must be
programmedwith the separate VP values to set them to their expected
states, requiring additional storge to store VP values. The sense tran-
sistor is modeled using a resistor, ensuring that each column of the
crossbar array has the same γðkÞ. γðkÞ is determined for each layer and
multiplied with x kð Þ

i to obtain V kð Þ
i . The tanh activation function is

implemented using the combination of ann-type FET and a p-type FET.
VDD of 1 V is used for the m-tanh activation circuit.

Energy analysis
The total energy consumption of the BNN accelerator is given by Eq. 7.

ETotal = Esyn + Esense + Etanh + EP + EE

=
X

N

��
IT+

+ IT�

�
V int

�
syn

+ ISV St
� �

sense + IT1 + IT2
� �

VDDt
� �

tanh + EP + EE

ð7aÞ

EP + EE =
X

N�100

t IPVP + IEV E

� �
+
X

100

QtðIPVP + IEV EÞ
� �

P,E ð7bÞ

Here, ETotal represents the total energy consumption per test sample.
Esyn, Esense, and Etanh represents the total energy consumption by the
synapses, sense resistors, and the tanh circuit, respectively, during the
inference step. IS represents the current through the sense resistor and
N is the total number of devices. EP and EE represents the energy
consumption for programming and erasing operation on these com-
ponents. IP and IE respectively, are the gate currents associated with
programming and erase operations. Here, only half of the synaptic
devices (100 devices) needs to be erased and programmed for Z = 100
Monte Carlo samples. The rest of the synaptic devices, sense transis-
tors, and tanh circuit components are erased and programmed once
and subsequently only used for inference. For EP and EE evaluations,
maximum IP, VP, IE, V E values expected are used. Using Eq. 7, Esyn of 18
nJ, Esense of 0.025 nJ, and Etanh of 0.012 nJ are obtained from LTSpice
simulations and EP + EE of 0.34 nJ is estimated for a total of Z = 100
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Monte Carlo samples, resulting in an ETotal of 18.37 nJ. Note that while
the program/erase voltages are high compared to other emerging
memory technologies such as memristors and phase-changememory,
the energy consumption associated with memtransistors is low as the
program (gate) currents are on the order of pA and since the
transistors are biased with a drain voltage of 0 V during programming/
erasing, there is no drain current (See Supplementary Table 1 for
energy analysis of various emerging memories)59.

Entropy calculation and decomposition
The softmax of predictive distribution can be used to calculate the
uncertainty in classification or entropy given by Eq. 8.56,57.

H pðŷ*∣x*,DÞ� �
= �

XJ

j = 1

pj ŷ*∣x*,D
� �

*log
�
pj

�
ŷ*∣x*,D

��
ð8Þ

Here, ŷ* is the softmax output and J is the number of output classes.
The entropy can be decomposed into epistemic entropy, i.e., uncer-
tainty inmodel and aleatoric entropy, i.e., uncertainty in data as shown
in Eq. 9.

H pðŷ*∣x*,DÞ� �
=
Y

p ŷ*∣x*,D
� �� �

+ EW ~q W ;θð Þ H pðŷ*∣x*,W Þ� �� � ð9Þ

Here, on the right-hand side, the first term represents epistemic
entropy and the second term represents aleatoric entropy. Aleatoric
entropy is the average entropy for fixed weights and hence the
uncertainty arises from the data. Epistemic entropy can beobtained by
subtracting aleatoric entropy from total entropy, following Eq. 9.

Data availability
The datasets generated during and/or analyzed during the current
study are available from the corresponding authors on reasonable
request.

Code availability
The codes used for plotting the data are available from the corre-
sponding authors on reasonable request.
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