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Rheumatoid arthritis (RA) is a chronic autoimmune disease that affects the joints and

other organs for which there is currently no effective treatment. Mesenchymal stem cells

(MSCs) have therapeutic potential due to their immunomodulatory and differentiation

effects. While extensive experimental studies and clinical trials have demonstrated the

effects of MSCs in various diseases, MSCs have been found to cause abnormal

differentiation and tumor formation. Therefore, extracellular vesicles derived from MSCs

(MSC-EVs) are more effective, less toxic, and more stable than the parental cells.

MSC-EVs transfer various nucleic acids, proteins, and lipids from parent cells to recipient

cells, and thus participate in chronic inflammatory and immune processes. In this review,

we summarize the properties and biological functions of MSCs and MSC-EVs in RA.

Improvement in our understanding of the mechanisms underlying MSC and MSC-EVs in

RA provides an insight into potential biomarkers and therapeutic strategies for RA.
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INTRODUCTION

Rheumatoid arthritis (RA) is a prevalent systemic autoimmune disease characterized by progressive
joint destruction, and 50% of RA patients also have extra-articular involvement, including the heart,
lungs, eyes, and blood (1, 2). Globally, the overall incidence of RA is 40/100,000 people per year,
with a prevalence of ∼0.24% (3, 4), which is significantly higher in women (5). The etiologies
and pathogenesis of RA have been extensively studied, wherein genetic susceptibility (i.e., HLA
DR1, TRAF1, and STAT4), epigenetic modification (i.e., DNAmethylation, miR146a, and miR155),
and environmental factors (i.e., smoking, obesity, periodontitis, and vitamin D deficiency) have
been found to promote the loss of immune tolerance, resulting in this disorder (1, 6–8). However,
the precise mechanism underlying RA is complex and has not yet been elucidated. Currently, RA
treatments, including glucocorticoid, immunosuppressants, and biological agents, are non-specific
with an inadequate efficacy, severe adverse reactions, and even life-threatening toxic effects (7, 9).

Mesenchymal stem/stromal cells (MSCs) are a class of stem cells with self-renewal and
multipotent properties that are widely available. As such, extensive clinical research has focused
on the effects of MSCs in tissue regeneration and protection against injury via the replacement of
damaged cells (10, 11). Subsequently, the evidence is increasingly indicating that MSCs play an
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immunomodulatory role primarily through the release of
extracellular vesicles (EVs) and paracrine factors (e.g., growth
factors, hormones, and cytokines) (11, 12). MSCs originate from
many types of tissues, including bone marrow (BM), adipose
tissue (AT), umbilical cord (UC), cord blood (CB), peripheral
blood, dental pulp, liver, and the synovial membrane (12, 13).
Generally, MSCs mostly express CD73, CD90, and CD105;
however, these surface markers cannot be used to discriminate
the source of MSCs. In contrast, MSCs negatively express CD14,
CD34, CD45, and HLA-DR. MSCs can escape T cell recognition
and exhibit low immunogenicity (14–17).

EVs are a group of lipid-bound vesicles that are released
by various cells and play an essential role in the transfer of
information between adjacent or distant cells. According to their
origin, secretion mechanisms, and properties, EVs are divided
into apoptotic bodies, microvesicles (MVs), and exosomes.
Apoptotic bodies (50–5,000 nm) are released by dying cells into
the extracellular space, and contain intact organelles, chromatin,
and small amounts of glycosylated proteins. MVs (100–
1,000 nm) originate from plasma membranes. Exosomes (30–
150 nm) are formed by the intraluminal buds of multivesicular
endosomes (MVEs) (18, 19). Due to the limitations of separation
technologies, small EVs (sEVs) (50–200 nm) are commonly used
in experimental studies (20). Among the different cells known
to produce EVs, MSCs are one of the most prolific cells (21).
Phenotypically,MSC-derived sEVs also express theMSCmarkers
CD73, CD90, and CD105, but not CD14, CD34, or CD11b
(17). The functions of MSC-EVs are similar to those of MSCs,
although the latter are more stable, safe, less toxic, and are able
to pass the blood-brain barrier, thus reducing their propensity
to trigger immune responses (22–24). MSC-EVs transfer nucleic
acids, including DNA, mRNA, and microRNA (miRNA); lipids;
proteins; and surface receptors from donor cells to specific
recipient cells, thereby protecting signaling molecules from
enzymatic degradation during transport. MSC-EVs fuse with
the recipient cell membrane either by directly fusing with the
plasma membrane, fusing with the endosomal membrane after
endocytosis, or by directly binding to the receptor of recipient
cells, and then participate in physiological and pathological
processes (25–27).

In recent years, studies have shown that MSCs and MSC-
EVs may be effective in RA, highlighting their potential
immunomodulatory effects. In this review, we aim to discuss
recent advances in the use of MSCs and MSC-EVs for the
treatment of RA.

IMMUNOMODULATORY EFFECT OF MSCS
IN RA

In the past decade, MSC transplantation (MSCT) has been
found to be effective in the treatment of RA by reducing joint
inflammation, bone erosion, and destruction and alleviating the
formation of pannus via immune regulation, anti-inflammation,
and differentiation (28, 29). MSCs mainly interact with both
innate and adaptive immune cells to modulate immune
responses in RA.

MSCs may regulate the proliferation, differentiation, and
function of T cells and reduce the production of pro-
inflammatory factors. In mouse models with collagen-induced
arthritis (CIA), the administration of human AT-derived MSCs
(AT-MSCs) inhibited the differentiation of activated CD4+ T
cells into T helper (Th) 17 effector cells producing interleukin
(IL)-17, but induced the generation of T regulatory cells
(Tregs) that secrete IL-10 and negatively regulate the immune
response (30). Similar beneficial effects have been reported in
RA animal models using various MSC treatments (28, 31, 32).
The effects of MSCs on Th17/Treg cell balance have been
attributed to various soluble molecules, including indoleamine
2,3-dioxygenase (IDO), IL-10, prostaglandin E2 (PGE2), and
nitric oxide (NO), and to the transfer of organelles (32, 33).
For example, after co-culturing healthy mice bone marrow-
derived MSCs (BM-MSCs) and Th17 from peripheral blood
mononuclear cells (PBMCs) of RA patients, the proliferation of
Th17 cells and production of IL-17 was inhibited by transferring
mitochondria from BM-MSCs to Th17 cells. Simultaneously,
mitochondrial transfer from the BM-MSCs of healthy donors
was higher than that from the synovium-derived MSCs of
RA patients (32). T follicular helper (Tfh) cells, a subset of
CD4+ T cells, may help in immunoglobulin affinity maturation
and generate live plasma cells and memory B cells (34, 35).
Liu et al. found that the number of circulating Tfh cells
increased, and was positively correlated with the disease and
anti-cyclic citrullinated peptide antibody levels in RA patients
(36). Subsequently, they further demonstrated that allogeneic
UC-derived MSCs (UC-MSCs) suppressed the proliferation and
function of Tfh cells via IDO production, which may be induced
by interferon (IFN)-γ in vivo and in vitro, thereby ameliorating
the progression of CIA (37). Endoplasmic reticulum (ER)-
stressed MSCs could reduce the number of circulating Tfh cells
via higher PGE2 binding with EP2/EP4 and increased IL-6
levels (38).

B cells mainly produce autoantibodies, including rheumatoid
factor (RF) and anti-citrullinated protein antibodies (ACPAs),
but also secret cytokines and act as antigen-presenting cells to
promote T cell activation in RA (39). MSCs from healthy donors
have been found to suppress B cell proliferation and anti-ACPA
and RF production (29, 40). However, the mechanism underlying
B cell regulation by MSCs in RA remains unclear. Currently,
autologousMSCs injection has been considered to decrease B cell
responses by reducing the levels of the B-cell activation factor
(BAFF), a proliferation-inducing ligand (APRIL), and BAFF
receptors (29). In comparison, in an in vitro experiment, BM-
MSCs from RA patients co-cultured with B cells from PBMC
of healthy donors supported B cell survival, by a mechanism
that may not be correlated with BAFF (41). This may be
because of the conditional complexity of in vitro and in vivo
experiments. In addition, the inhibition of MSCs on Tfh cells
also indirectly affected the proliferation and differentiation of B
cells (37).

Dendritic cells (DCs), macrophages, and natural killer (NK)
cells are important members of the innate immune response and
are regulated by MSCs in various diseases (42–44). However,
their interaction with MSCs is scarcely studied in RA. Shin
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FIGURE 1 | The effects and mechanisms of MSC-EVs in RA. Arrows indicate activation or induction, T-bars indicate inhibition, dotted T-bars indicate inconsistent

result, with Tr1 cells increasing in vitro but decreasing in vivo. MSC, mesenchymal Stem Cell; MVs, microvesicles; EVs, extracellular vesicles; Tr1, T regulatory type 1

cells; Th 17, T helper 17 effector cells; Treg, T regulatory cells; FLS, fibroblast-like synoviocytes; IgG, immunoglobulin G; TGF-β, transforming growth factor β; IL,

interleukin; miRNA/miR, microRNA; RAC2, ras-related C3 botulinum toxin substrate 2; MMP14, matrix metalloproteinase 14; VEGF, vascular endothelial growth factor;

CIA, collagen-induced arthritis mice model.

et al. demonstrated that MSCs inhibited the activation of M1-
type macrophages and induced the generation of M2-type
macrophages via the tumor necrosis factor (TNF)-α-mediated
activation of cyclooxygenase-2 (COX-2) and TNF-stimulated
gene-6. This was accompanied by the negative regulation of
the nucleotide-binding domain, leucine-rich repeat pyrin 3
(NLRP3) inflammasome-mediated IL-1β secretion, and caspase-
1 production in macrophages through an IL-1β feedback loop
(45). In addition, MSCs from systemic juvenile idiopathic
arthritis patients were found to inhibit the differentiation of
monocytes to DCs and suppress NK cell activation (46). Li et al.
found that the combination of tolerogenic DCs and MSCs had a
synergistic immunosuppressive effect on CIA mice by polarizing
Th cells and inhibiting pro-inflammatory cytokines (47).

CLINICAL MSC TRIALS IN RA

In recent years, clinical research on the use of MSC therapy for
the treatment of RA has increased. The first randomized clinical
trial (RCT) using allogeneic expanded AT-MSCs (Cx611) for

RA treatment was conducted in 2011 as a multicenter, single
blind, and placebo-controlled phase Ib/IIa clinical trial. A total
of 53 refractory RA patients were enrolled and assigned to
three cohorts with different doses (1, 2, or 4 million cells/kg)
and a placebo cohort, to evaluate the safety and tolerability of
Cx611. The results indicated that the infusion of Cx611 was
generally well-tolerated. One patient with dose-limiting toxicity
(DLT) presented lacunar infarction. Most adverse events (AE)
were mild or of moderate intensity. Although the most common
symptoms were fever and infection, it was difficult to discern
whether these were symptoms or simply side effects of Cx611
(48). In a phase Ia RCT investigating the efficacy and safety
of the intravenous infusion of human CB-derived MSCs (hCB-
MSCs), 9 RA patients were divided equally among three groups,
each receiving a single intravenous infusion of hCB-MSCs at
different dosages. No short-term AE or DLT were reported 4
weeks after infusion. Moreover, the DAS 28 (28-joint disease
activity score) was significantly decreased, pro-inflammatory
cytokines were reduced, and IL-10 levels were increased 24 h
after infusion (49). Similarly, a single-center RCT selected 30 RA
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patients with knee involvement to receive either intra-articular
knee autologous BM-MSCT (n = 15) or normal saline (n =

15). Following the transplantation of 40 million autologous BM-
MSCs, although no statistically significant results between the
two groups were noted in the majority of the outcome measures,
favorable effects on joint inflammation symptoms were observed,
with an improved standing time in the MSCT group (p =

0.02). Moreover, MSCT treatment helped to reduce the dosage
of MTX and prednisolone during the initial 6 months of follow-
up, although not after 1 year. Importantly, no AEs were observed
after MSC administration or during follow-up (50). Similarly, a
clinical trial in Iran investigated whether injections of autologous
BM-MSCs relieved the symptoms of refractory RA patients (51).
These clinical trials found that MSC therapy for RA, especially
refractory RA, is safe, well tolerable, and effective.

IMMUNOMODULATORY EFFECTS OF
MSC-EVS IN RA

Recent studies have indicated that the mechanisms underlying
the interaction between MSC-EVs and recipient cells are not
unique in terms of their physiological or pathological processes
in RA (Figure 1). Ma et al. found that both human UC-MSCs
and the EVs secreted by them inhibited the proliferation of
T cells, promoted T cell apoptosis, decreased RORγ levels,
increased Foxp3 levels, and regulated the balance of Treg/Th17
cells in in vitro and in vivo experiments, resulting in delayed
radiological progression and synovial hyperplasia inhibition (52).
Notably, the partial effect of MSC-EVs was different from
that of parental MSCs in RA. MSC-exosomes increased the
number of Treg, whereas MSCs did not. And MSCs were more
capable of reducing the number of CD4+IFN-γ+T lymphocytes.
Compared with parental BM-MSCs and MVs, the exosomes
increased the number of Treg cells. In addition, this study showed
that MSC-exosomes inhibited plasmablasts but generated Breg
cells (53).

Based on the fact that EVs are able to transfer information to
recipient cells, subsequent studies characterized the mechanisms
by which EVs, particularly through miRNAs, are involved in
RA. Chen et al. were the first to report that BM-MSC-EVs
transferred miR-150-5p to the joint cavity. Compared with
osteoarthritis patients, the expression levels of miR-150-5p in
the serum, synovial tissues, and fibroblast-like synoviocytes
(FLS) of RA patients were significantly decreased, whereas the
expression levels of matrix metalloproteinase (MMP) 14 and
vascular endothelial growth factor (VEGF) were increased. MiR-
150-5p was effectively transfected into BM-MSCs in vitro and
transferred by exosomes to RA-FLS. MSC-exosomal miR-150-
5p suppressed the expression of the target genes MMP14 and
VEGF by directly binding to their 3’-UTRs, thereby reversing
the migration and invasion of RA-FLS and HUVEC tube
formation induced by pro-inflammatory factors, including IL-
1β, transforming growth factor β (TGF-β), and TNF-α. In vivo,
the effect of MSC-exosome-miR-150-5p injection was consistent
with those mentioned above, wherein MSC-exosome-miR-150-
5p inhibited angiogenesis and alleviated joint inflammation (54).

Recently, miR-192-5p expression was found to be decreased
in human RA-FLS, wherein a dual luciferase reporter gene
assay showed that miR-192-5p directly targeted and negatively
regulated ras-related C3 botulinum toxin substrate 2 (RAC2). In
a CIA rat model, MSC-exosomal miR192-5p was transferred to
the synovial tissue via the blood circulation after injection, and
significantly reduced the levels of RAC2, decreased the clinical
score, and suppressed synovial hyperplasia and joint destruction
compared with rats injected with BM-MSCs-exosome-NC.
Additionally, MSC-exosome-miR-192-5p inhibited the levels of
pro-inflammatory cytokines, including PGE2, IL-1β, and TNF-
α, in synovial tissues and serum, and reduced the release of
NO and inducible NO synthase (iNOS) in the sera of CIA
rats (55). Another in vitro experiment found that the exosome
number and miRNA-124a levels increased in MH7A cells (RA-
FLS cell lines) after co-culturing MH7A with human MSC-
EV. With miRNA-124a (hMSC-124a-EV) overexpression, the
proliferation of MH7A was inhibited by hMSC-124a-EV and
hMSC-EV compared with that in the control group. However, the
cells were blocked in the G0/G1 and S phases, respectively. The
invasion and migration of MH7A were also suppressed, while
apoptosis was promoted. Moreover, the effect of hMSC-124a-EV
treatment was more marked than that of hMSC-EV (56).

PROSPECTS AND CHALLENGES IN THE
CLINICAL APPLICATION OF MSCS AND
MSC-EVS IN RA

With an increasing number of studies, MSCs have been found
to play an immunomodulatory role in numerous autoimmune
diseases through the production of soluble factors, and the
transfer of EVs containing messaging molecules (11, 57–59). In
addition to immune regulation, MSCs can induce osteogenic
and chondrogenic differentiation, and regulate inflammatory
factors, highlighting it as a promising therapy for RA. Currently,
most clinical trials of MSCT therapy for RA have focused on
refractory RA patients who have not responded to traditional
disease modifying antirheumatic drug (DMARDs) therapy,
without any serious AEs associated with MSCT treatment.
However, the use of MSCs in therapeutic treatments still
faces many challenges. Several studies have found that MSCs
are associated with carcinogenic risk when injected in animal
models (60–63). Allogeneic MSCs have an immunosuppressive
effect on tumor cells, allowing them to evade detection and
destruction by the adaptive immune regulatory system via the
action of CD8+ T cells, leading to the growth of allogeneic
tumor cells (61). MSCs could also secrete VEGF to induce
angiogenesis (62), contributing to tumor stroma formation, and
favor tumor cell proliferation, invasion, and migration (60). The
immunosuppressive effects of MSCs in CIA are also debatable.
While MSCs can inhibit anti-CD3-induced T-cell proliferation in
vitro, they do not affect T cell proliferation nor the development
of CIA (64). Factors including the type of MSCs, culture
conditions, treatment time, number of injected cells, injection
route, and treatment regimen can lead to different results. A
recent study compared the effects of three different types of
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MSCs infused into CIA mice and found that the most effective
treatment was UC-MSCs, followed by BM-MSCs (65). The
efficacy of allogeneic and autologous MSCs remains debatable,
Rozier suggests that autologous MSCs may be involved in the
physiopathology of systemic sclerosis (66). Therefore, RCT are
necessary to compare the efficacy and safety of autologous and
allogeneic MSC therapy in RA. BM-MSCs from RA patients
were also found to promote Th17 cell activation and expansion
via caspase 1 activation (67). In addition, different conditions
also influence the effect of MSCs. For example, epigenetically-
modified MSCs (combination of hypomethylating agents and
histone deacetylase inhibitors) have a high immunoregulatory
effect in RA (68). Consequently, determining how long the
immunomodulatory effects of MSCs last will need to be solved in
clinical practice, the results of which could provide a theoretical
basis and support for their use in the treatment of RA.

Compared with MSC treatment, which may cause abnormal
differentiation and tumor formation, MSC-EVs are more
effective, stable, and safer in alleviating inflammation of CIA,
with broader prospects. EVs carry numerous DNAs, RNAs,
proteins, and lipids fromMSCs and transfer them to the recipient
cells. Due to several advantages, including the ability to pass
the blood-brain barrier and their low immunogenicity, EVs are
natural carriers for drugs and exogenous nucleic acids, which
can be loaded in donor cells before being released into the
extracellular environment (69, 70). More importantly, using EVs
to transfer miRNAs can prevent these from being degraded,
allowing miRNAs to negatively regulate target protein expression
at the post-transcriptional level. In addition to their treatment
potential, several studies have reported that miRNAs secreted
by MSC-EVs (MSC-EV-miRNAs) regulate diverse signaling
pathways by targeting specific proteins, thereby influencing the
development of RA. Therefore, MSC-EV-miRNAs are potential
biomarkers for use in novel cell-free therapeutic strategies for RA.

Although MSC-EVs have been used in preclinical RA studies,
several issues still remain unsolved. Firstly, when MSCs from
different tissues are in distinct differentiation states, the content
and types of molecules assembled by EVs may be different,
thereby affecting their function at recipient cells and causing
changes to physiological processes. MSC-EV miRNAs do not
randomly enter EVs, however, the sorting mechanism by which

cells are adjusted and selected from maternal cells is unknown.
Generally, hundreds of differentially expressed miRNAs could
be found in MSC-EVs by sequencing or microarray assays,
however, no studies have performed miRNA expression profiling
on MSC-EVs between RA and healthy individuals. Currently,
dozens of miRNAs have been reported to affect the proliferation
and function of FLS, previous studies also focused on the effect
of MSC-EV-miRNAs on FLS, further studies on other cells
are also needed. Additionally, whether the complex regulatory
network of miRNAs and their target genes may trigger other
diseases remains unclear and needs further study. Secondly,
MSC-EVs secretemany other signalingmolecules. Eirin et al. (71)
integrated transcriptomic and proteomic analyses and found that
the proteins, transcription factors, and translational regulators
derived from MSC-EVs are involved in the mechanism of tissue
repair in the recipient cell. Further studies on the interactions
of the molecules that affect RA are necessary. Thirdly, EVs
are separated in different ways, without standards, and in
a time-consuming manner. Although commercial exosome
extractants are currently being used, they contain non-exosome
contaminants, such as lipoproteins, which need to be purified.
Lastly, the findings presented here will need to be replicated on a
large scale in clinical trials to assess the safety, effectiveness, and
persistence of MSC-EVs in RA patients.
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