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Hepatocellular carcinoma (HCC) is one of themost commonmalignant tumors. Clinical symptoms attributable toHCC are usually
absent, thus often miss the best therapeutic opportunities. Traditional Chinese Medicine (TCM) plays an active role in diagnosis
and treatment of HCC. In this paper, we proposed a particle swarm optimization-based hierarchical feature selection (PSOHFS)
model to infer potential syndromes for diagnosis of HCC. Firstly, the hierarchical feature representation is developed by a three-
layer tree.The clinical symptoms and positive score of patient are leaf nodes and root in the tree, respectively, while each syndrome
feature on the middle layer is extracted from a group of symptoms. Secondly, an improved PSO-based algorithm is applied in a
new reduced feature space to search an optimal syndrome subset. Based on the result of feature selection, the causal relationships
of symptoms and syndromes are inferred via Bayesian networks. In our experiment, 147 symptoms were aggregated into 27 groups
and 27 syndrome featureswere extracted.Theproposed approach discovered 24 syndromeswhich obviously improved the diagnosis
accuracy. Finally, the Bayesian approach was applied to represent the causal relationships both at symptom and syndrome levels.
The results show that our computational model can facilitate the clinical diagnosis of HCC.

1. Introduction

Hepatocellular carcinoma (HCC) is the third most common
cause of cancer-related death worldwide and the leading
cause of death in patients with cirrhosis [1, 2]. In clinical
practice, symptoms attributable toHCC are usually absent, so
the majority of patients are diagnosed with advanced disease,
often precluding potentially curative therapies. This has
resulted, in part, in a 5-year overall survival rate of 12% and
a median survival following diagnosis ranging from 6 to 20
months [3, 4].Therefore, timely and accurate diagnosis is very
important for treatment of HCC. Currently, the modalities
employed in the diagnosis of HCC mainly include cross-
sectional imaging, biopsy, and serum AFP, which depend on
both the size of the lesion and underlying liver function, and
some of them are controversial [5, 6].

Traditional Chinese Medicine (TCM) is one of the most
popular complementary and alternativemedicinemodalities.
It plays an active role in diagnosis and treatment of HCC
in Chinese and East some Asian countries [7, 8]. Different
from other diagnostic methods, it is possible to accurately
diagnose HCC using inspection, auscultation and olfaction,
inquiry, and pulse taking and palpation [8]. In this study,
we will work on a TCM clinical dataset, which is observed
from 120 HCC patients. Each patient is observed on 147
clinical symptoms and a positive score is evaluated to
indicate total positive strength of symptoms. Based on this
TCM dataset, we could achieve two aims: (1) screening the
potential clinical syndromes for this cancer and (2) inferring
the relationships among the potential clinical features via
Bayesian network analysis. However, the computational cost
will be exceedingly high if the dimensions of the raw dataset
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are large. Furthermore, the causal relationships between all
the features are difficult to infer because high dimensional
data sharply increases the complexity of Bayesian network
structure learning [9].

In this study, a particle swarm optimization-based hier-
archical feature selection (PSOHFS) model was proposed
to select potential clinical syndromes for HCC diagnoses.
Firstly, all the 147 original symptoms were arranged into 27
groups according to the categories of clinical observations,
and 27 new syndrome features were generated from these
groups. Then, the hierarchical feature representation was
built with a tree structure, in which different layers indicate
different scales of clinical information (Figure 1). Secondly,
an improved PSO algorithm was employed at the syndrome
level to search an optimal syndrome subset for diagnoses.
The experiment shows that 24 novel syndromes searched by
PSOHFS could improve accuracy of diagnosis. In addition,
Bayesian networks were further constructed at two levels:
(1) a global network on the middle-layer features revealed
the relationships among 24 potential syndromes; (2) the
local networks were used to represent the connections of
symptoms in the same groups.

The rest of the paper is organized as follows. Section 2
introduces the details about the experimental data and the
feature selection approach. Sections 1 and 2 present the
experiment design and results, respectively. Some important
conclusions drawn are presented in Section 5.

2. Materials and Methods

2.1. Experimental Data. In this study, the raw data was
observed from 120HCCpatients.The clinical dataset includes
300 samples and 147 clinical symptoms.The levels of positive
of each symptom are quantified with nonnegative inte-
gers. The larger value indicates stronger positive symptom
occurred.There are two types of data range for all the original
symptoms: binary or integer. For example, the symptom
“lip color is white” is binary (0 or 1); that means there
are two possible states for this symptom: occurrence or
nonoccurrence. Another example is “abdominal pain”; its
data range is 0, 1, 2, and 3. The symptom is not positive if
its value equals zero; otherwise, the larger the value is, the
stronger positive symptom will be. In addition, each patient
is marked with a score (nonnegative value) to represent the
total evaluation of positive symptoms on this patient. It is
obvious that if the HCC patients have larger positive scores
than normal people, it is because some clinical symptoms
appeared.

2.2. Feature Selection. Feature selection for classification or
regression can be widely organized into three categories,
depending on how they interact with the construction of
model. Filter methods employ a criterion to evaluate each
feature individually and is independent of the model [10].
Among them, feature ranking is a common method which
involves ranking all the features based on a certain measure-
ment and selecting a feature subset which contains high-
ranked features [11].Wrappermethods involve combinatorial

Positive score

27 syndromes· · ·· · ·

· · · · · ·
147

symptoms

Figure 1: The hierarchical feature representation of TCM clinical
dataset.

searches through the feature space, guided by the predicting
performance of a classification or regression model [12].
Embedded methods perform feature selection in the process
of training a model [13].

2.3. Hierarchical Feature Selection. When the raw dataset
is high dimensional, the complexity of feature selection
may be extremely high: (a) the computational cost will
sharply increase, particularly for the wrapper and embed-
ded methods; (b) the potential optimal feature subset may
include many irrelevant or redundant features. Therefore,
it is necessary to preliminarily reduce the dimension of
original feature set before feature selection. As a common
preselecting strategy, feature ranking-based approach could
quickly reduce the feature space by picking up high-ranked
features [14]. However, this type of approach always leads
to inclusion of some redundant features. In addition, the
optimal feature subset which covers high-ranked features
may not provide the best performance in the classification (or
regression)model. Ruvolo et al. proposed a novel hierarchical
feature selection approach for the audio classification by
converting the raw data to three-layer feature representation
with a tree structure [15]. All the low-layer features are
aggregated into several groups in a “bag of features” manner,
and then a higher-layer feature is extracted based on the
lower-layer features in the same group. Obviously, the high-
layer feature set constitutes a reduced feature space with little
redundancy and might provide lower computational cost for
classification or regression model.

In this study, our raw TCM data is high dimensional and
there are some redundant clinical symptom features included.
For example, there are four redundant observed features to
describe lip color of patients, such as “lip color is pale,” “lip
color is red,” “lip color is pink,” and “lip color is dark purple.”
Therefore, we aggregate several features into a group if they
describe the same category of clinical symptoms or the same
part of body and define a new syndrome feature for each
symptom group. After extracting all the syndrome features,
we build a tree structure to achieve the hierarchical feature
representation (Figure 1). In this hierarchical structure, the
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Figure 2: The flow chart of the proposed PSOHFS model for hierarchical feature selection.

bottom-layer nodes (leaf nodes) are the original clinical
symptom features which are directly collected from the
original TCM clinical dataset. And a middle-layer syndrome
feature is defined on a group of symptomswhich are related to
the same part of the body. If the symptoms in the same group
are not mutually exclusive (concurrent), the corresponding
syndrome is defined as the sum of all these symptoms;
otherwise, the level of positivity of the syndrome is based
on the frequency of each symptom in all the patients (see
Section 2). The top-layer node is the root of the tree, which
denotes the positive score of a patient. It is obvious that each
syndrome roughly represents the positive strength of one
specific aspect or part of body, while symptomprovidesmuch
more detailed information. Particularly, our study focuses on
how to reasonably extract the syndrome features to generate
a reduced feature set for feature selection and infer the causal
relationships among these two-layer features.

2.4. Particle Swarm Optimization-Based Hierarchical Feature
Selection (PSOHFS). Based on the hierarchical feature rep-
resentation, the dimension of the processed TCM dataset is
sharply reduced on the syndrome level.Wedesigned a chaotic
binary particle swarm optimization (CBPSO) algorithm to
search potential syndromes for diagnosing efficiently. The
flow chart of proposed CBPSO-based feature selection is
shown in Figure 2.

Particle swarm optimization (PSO) is a population-based
random optimization algorithm [16]. A swarm consists of 𝑁

particles moving around in a 𝐷-dimensional search space.
The position of the 𝑖th particle is represented as 𝑋

𝑖
=
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, . . . , 𝑥
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where 1 ≤ 𝑖 ≤ 𝑁. The positions and velocities of particles

are confinedwithin [𝑋min, 𝑋max]
𝐷 and [𝑉min, 𝑉max]

𝐷, respec-
tively. Each particle coexists and evolves simultaneously
based on knowledge shared with neighboring particles; it
makes use of its own memory and knowledge gained by the
swarm as awhole to find the best solution.Thebest previously
encountered position of the 𝑖th particle is considered as its
individual best position 𝑝best
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). The limitation of the

standard PSO algorithm is applied to optimize the problems
in continuous space. However, many optimization problems
occur in a discrete feature space; thus binary PSO (BPSO)was
proposed to combinatorial optimization [17]. In BPSO, each
particle 𝑋

𝑖
is presented as a binary vector, thus, the overall

velocity of particle may be described by the number of bits
changed per iteration. Generally, each particle is updated as
the following equations:
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(1)

Equation (1) will be used to update the velocities and posi-
tions of each particle in each generation. The inertia weight
𝑤 controls the impact of the previous velocity of a particle
on its current one. 𝑟

1
and 𝑟
2
are random numbers between
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[0, 1]; 𝑐
1
and 𝑐
2
are acceleration constants that control how

far a particle moves in a single generation. Velocities Vnew
𝑖𝑑

and
Vold
𝑖𝑑

denote the 𝑑th velocities of the 𝑖th particle in the current
and the last generations, respectively. 𝑥

new
𝑖𝑑

and 𝑥
old
𝑖𝑑

indicate
corresponding positions on the 𝑑th dimension, respectively.
In our case, 𝑉max = 6, 𝑉min = −6.

Generally, the speed of convergence of BPSO is fast;
however, it has high risk of converging to local optimum.
Because chaos is a complex behavior of a nonlinear determin-
istic system which has ergodic and stochastic properties, we
combine chaos theory with BPSO to design chaotic binary
particle swarm optimization (CBPSO), which potentially
promotes the convergence performance of BPSO [18].

CBPSO-based feature selection is introduced in the fol-
lowing steps (Figure 2).

(1) Chaotic Initialization of Particle Swarm. When CBPSO
is used for feature selection, each particle indicates a
candidate feature subset. Given an original feature set
𝐹 = {𝑓

1
, 𝑓
2
, . . . , 𝑓

𝐷
}, each particle is denoted by 𝑋

𝑖
=

(𝑥
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, 𝑥
𝑖2

, . . . , 𝑥
𝑖𝐷

), where 𝐷 is the number of features. It is
obvious that each particle represents a candidate feature
subset. If 𝑥

𝑖𝑗
equals 1 indicates the 𝑗th feature is selected;

otherwise, is not selected. The performance of convergence
about BPSO largely depends on initial particle swarm. The
chaotic initialization via globally searching combined the
ergodic and stochastic property of chaotic system is often has
a better quality than random initialization.

The common chaotic model is logistic model; it can be
shown as follows:

𝑞
𝑘+1

= 𝜇𝑞
𝑘

(1 − 𝑞
𝑘
) , 𝑘 = 0, 1, 2, . . . . (2)

Equation (2) indicates a dynamical system, where 𝜇 is a
control parameter. Given the value of 𝜇, a time series
𝑞
1
, 𝑞
2
, . . . , 𝑞

𝑘
is generated from a random initial value 𝑞

0
,

which ranges from 0 to 1. When 𝜇 equals 4, there is no stable
solution for the dynamic system. It appears as a complete
chaotic state.

Now, an initial random vector 𝑋
0
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}
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0
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orderly and iterate 𝑘 times, respectively, and then obtain
𝐷 chaotic variables 𝐶𝑋 = [𝑥
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2
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], which have

different locus. When 𝐶𝑋 is substituted into (3), we get 𝑘
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)] represents a particle (1 ≤ 𝑗 ≤ 𝑘):

𝑔 (𝑥) = {
1, 𝑥 ≥ 0.5

0, 𝑥 < 0.5.
(3)

At last, we select 𝑁 top binary vectors to constitute initial
particle swarm based on the fitness values. For fully traversal
of chaotic variable, the iteration of chaotic series is always
large (here, 𝑘 = 500, 𝑁 < 𝑘).

(2) Fitness Calculation Based on LSSVR. Support vector
machine (SVM) has excellent capabilities in classification
(SVC) or regression (SVR), even for small sample [19].
It minimizes an upper bound of the generalization error

based on the principle of structure risk minimize. However,
SVM training process will be time consuming if dataset
is huge. Therefore, least squares support vector machine
(LSSVM) is proposed to overcome the shortcoming of high
computational cost [20]. Generally, LSSVM can be catego-
rized into LSSVR which is used for regression and LSSVC
for classification. Because the problem-solving process of
the SVR is a QP problem, which will inevitably cause a
high computational complexity especially for large-scale QP
problem, LSSVR can overcome these shortcomings by a set
of linear equations and squared loss function which lead to
important reduction in computational complexity [21].

In this study, we use LSSVR as a regression model to
evaluate the predicting performance of each candidate feature
subset. We assume that an optimal feature subset not only
has excellent performance of prediction but also contains
more relevant features and less irrelevant features.The fitness
function is defined in

fitvalue (𝑋
𝑖
) = pdterror (𝑋

𝑖
) + 𝑝 ∗ mfr (𝑋

𝑖
) . (4)

𝑋
𝑖
denotes a particle-coding binary vector which indicates

a candidate feature subset. The function pdterror(𝑋
𝑖
) cal-

culates the predicting error of LSSVR model based on the
selected features in 𝑋

𝑖
. The parameter 𝑝 is a weight between

0 and 1. Function mfr(𝑋
𝑖
) indicates the correlation measure

between a feature subset and the target variable. In (5),
the function fr(𝑓

𝑖𝑗
) measures the relevance between feature

𝑓
𝑖𝑗
(included in 𝑋

𝑖
) and target value via a feature-ranking

strategy. In our experiment, the more predictive features
have smaller values of fr(∗) (see experiment in Section 3.2).
Therefore, the smaller fitness value corresponds to the better
candidate feature subset:

mfr (𝑋
𝑖
) = mean (fr (𝑓

𝑖1
) , fr (𝑓

𝑖2
) , . . . , fr (𝑓

𝑖𝑀
)) . (5)

(3) Update the Velocity and Position for Each Particle. The
velocity and position of each particle are updated according
to (1). Considering the searching performance of CBPSO
is affected largely by inertia weight (𝑤), the value of 𝑤

is dynamically updated in our CBPSO by using nonlinear
decreasing strategy. Its calculation is as follows:

𝑤 = 𝑤𝑙 ∗ (
𝑤𝑠

𝑤𝑙
)

1/(1+𝑐3∗(𝑡/(𝑡max)))
. (6)

In (6), 𝑡max is the number of iterations, 𝑡 is the current
iteration, and 𝑐

3
is a constant (set 𝑐

3
= 10). 𝑤𝑠 and 𝑤𝑙,

respectively, are the values of 𝑤 on the initial and last
generation (𝑤𝑠 > 𝑤𝑙). In our case, 𝑤𝑠 = 1.2, 𝑤𝑙 = 0.4. The
performance of global search of CBPSO is increased using
larger𝑤 at the beginning of iteration, and the local search will
be enhanced using smaller 𝑤 at the later stage.

(4) Reinitialization of Particle Swarm with Probability. The
trajectory of particle is largely affected by 𝑔best and all the
𝑝best
𝑖
. At the beginning of iteration, the convergence rate of

swarm is fast, but it is slow at the later stage which has high
risk of converging to local optimum. For overcoming this
shortcoming, each particle in each generation is reinitialized
with small probability (Figure 3).



BioMed Research International 5

Rand < pc No

No

Yes

Yes

Generate a random number
in [0, 1] for each particle

Rand < rk

Re-initialization i-th particle

Update pbesti and gbest

Stop

Figure 3: The flow chart of reinitialization of particle swarm.

In Figure 3, 𝑝
𝑐
is the probability of reinitialization for

current particle swarm, with its calculation based on (7).
At the early stage of iteration, there are many chances for
particles to approximate the optimal solution, so that the
probability of reinitialization for whole swarm is small. In the
later stage, the probability of reinitialization is increased, it
can largely avoid the particles fall into the local optimum.
The parameter currun denotes the current iteration, and 𝑟𝑘

is a small random probability (in our case, 𝑟𝑘 = 0.3). When
the better particle is found after reinitialization, update the
current 𝑔best and 𝑝best

𝑖
:

𝑝
𝑐

= 1 −
1

1 + ln (currun)
. (7)

(5) Mutation of the Potential Global Optimal Solution. If the
global optimal particle 𝑔best is not constantly improved for
a long time, it is necessary to make variation for it to jump
out from the local optimal point. In our case, when 𝑔best
is invariant in 10 iterations, its binary coding vector will be
mutated with a random probability. If a better particle is
found, 𝑔best is updated again.

(6) Elitist Strategy Is Used in the Later Stage of Iteration. If
step (4) could not obviously improve the 𝑔best further, a
number of new particles are generated with a probability to
instead some particles in current swarm so that the diversity
of current swarm could be enhanced [22].

3. Experiment

3.1. Data Preprocessing. For hierarchical representation of
clinical symptoms, our raw dataset should be preprocessed
as in the following steps. Firstly, we manually divide all the
147 symptoms into 27 groups according to the categories
of symptoms (Table SS in Supplementary Material available
online at http://dx.doi.org/10.1155/2014/127572). Figure 4(a)
shows an example of four clinical symptoms (pale, red, pink,

and dark purple) being arranged to a group called “lip color.”
Hence, a syndrome feature “lip color” simply represents the
states of lip color for a patient instead of four redundant
symptom features. Secondly, we calculate each syndrome
feature which is extracted from the corresponding clinical
symptom group. Therefore, we obtain a new reduced feature
space at syndrome level. Finally, combining the original
symptom features, extracted syndrome features, and the
positive score, we build a tree structure for hierarchical
feature representation of the TCM clinical data. Two typical
examples are given regarding how to extract the syndrome
features from the group of symptoms.

Example 1. Figure 4(a) shows an example of several symp-
toms in the same group beingmutually exclusive.Thatmeans
if the lip color of a patient is red, the rest of the three colorswill
not appear with him/her.We name a new feature 𝐿𝐶with five
possible discrete values (𝐿𝐶 = 0, 1, 2, 3, 4) to simplistically
represent the combined meaning of four original symptoms.
According to Figure 4(a), the states of lip color for a patient
are presented with a binary vector (length is four) in original
TCM data, while we can represent it with a single value 𝐿𝐶,
where𝐿𝐶 ∈ {0, 1, 2, 3, 4}. If𝐿𝐶 equals zero, thatmeans all four
symptoms are not positive. Otherwise, one of the symptoms
appears positive. As for the mapping between four symptoms
and four discrete values (1, 2, 3, and 4), we follow a simple
rule to assign each candidate value to a possible level of
this symptom: the larger discrete value of 𝐿𝐶 indicates that
much more patients are positive on this clinical symptom.
We count the statistic distributions of all the samples on these
four symptoms, respectively, andmap each discrete value to a
symptom of lip color according to the mean value of positive
scores on each symptom.

Example 2. The symptoms in the same group are not mutu-
ally exclusive. Figure 4(b) shows three clinical symptoms of
emotion: irritability, depression, and sigh. These symptoms
could be positive simultaneously on a patient. For example,
the clinical symptoms of emotion for a patient are denoted
by a vector 𝐸𝑠 = [2, 0, 1] in original data, which means two
emotion-related positive symptoms appeared with him/her.
In this case, a new syndrome feature 𝑁𝐸𝑠 is extracted from
𝐸𝑠, where 𝑁𝐸𝑠 = sum(𝐸𝑠) = 3. Therefore, if a patient
has several positive symptoms which belong to the same
syndrome, cumulative summation is a feasible strategy to get
a total positive strength on this syndrome.

3.2. Experiment Design. First, we proposed a feature-ranking
strategy for association analysis between individual syn-
drome and positive score (target value) with function fr(∗):

fr (𝑓
𝑖
) =

mcc (𝑓
𝑖
, ps) + 𝑝𝑐V (𝑓

𝑖
)

2

(8)

mcc (𝑓
𝑖
, ps) = 1 −

󵄨󵄨󵄨󵄨corr (𝑓
𝑖
, ps)󵄨󵄨󵄨󵄨

𝑝𝑐V (𝑓
𝑖
) = 1 −

pe (𝑓
𝑖
)

max {pe (𝑓
𝑖
) , pe (𝑓

2
) , . . . , pe (𝑓

𝐷
)}

.

(9)

http://dx.doi.org/10.1155/2014/127572
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Figure 4: Two groups of symptoms are represented: “lip color” and “emotion.” (a) The syndrome feature “lip color” defined on four clinical
symptoms which describe four possible positive states of “lip colors.” (b) The syndrome feature “emotion” defined on three clinical symptom
features which describe three types of emotional states.

Combining ((4)-(5), (8)-(9)), we can determine the fitness
function in the proposed PSOHFS model for feature sub-
set optimizing. The function corr(𝑓

𝑖
, ps) is the correlation

coefficient between feature 𝑓
𝑖
and target value (ps). Function

pe(𝑓
𝑖
) denotes the predicting error of LSSVR model with all

the features except 𝑓
𝑖
. If the predicting error is obviously

increased after moving out 𝑓
𝑖
from the whole feature set, it

indicates the feature 𝑓
𝑖
is high predictive. The smaller value

of fr(𝑓
𝑖
), the higher-ranked feature 𝑓

𝑖
will be. The result of

feature ranking can provide a reference about the importance
of each syndrome to positive score.

Secondly, our developed CBPSO algorithm was applied
at the syndrome level for feature selection. Different swarm
size and the number of iterations were chosen to test the
searching performance of the proposed CBPSO. And then,
the predicting performance of the optimal syndrome subset
(OPS) by proposed model was further validated. On the one
hand, we employed two well-established feature selection
methods to compare them with our proposed PSOHFS
model: (1) correlation-based filtermethod (CFM) [14, 23] and
(2) PSO-based wrapper method (PWM) [14].These standard
approaches were applied on original symptom features. On
the other hand, we further validated the performance of
OPS by feature ranking on the syndrome feature level. Two
types of syndrome subsets were selected to compare: (1) full
collection with all the 27 syndromes (FCS) and (2) filter-
based syndrome set by feature ranking via (8). Here, we set
threshold 0.8 and 0.9 to get two potential syndrome subsets:
FRS1 and FRS2.

Finally, based on the optimal potential syndrome subset
inferred by our PSOHFS model, Bayesian networks were
constructed, respectively, at the symptom and syndrome
levels. On the one hand, the global Bayesian network on
potential syndromes was inferred using GES algorithm [24].
Such coarser-grained network can roughly reveal the causal
relationships among these potential syndromes of this cancer.
Before structure learning of global network, the processed

TCM dataset (TD) in Section 3.1 should be firstly discretized
according to

𝐷𝑇𝐷 (:, 𝑗)

=

{{{{{{{{

{{{{{{{{

{

𝑇𝐷 (:, 𝑗) ,

if length (unique (𝑇𝐷 (:, 𝑗))) ≤ 4

𝑇𝐷 (:, 𝑗)

max (𝑇𝐷 (:, 𝑗)) /itvnum (𝑇𝐷 (:, 𝑗))
,

else

itvnum (𝑇𝐷 (:, 𝑗))

= ⌊log 2 (length (unique (𝑇𝐷 (:, 𝑗))))⌋ + 1.

(10)

TD(:, 𝑗) denotes all the calculated values of 𝑗th syndrome.
Function itvnum (𝑇𝐷(:, 𝑗)) is used to estimate the optimal
intervals of discretization for the sample of 𝑗th syndrome.
If the number of positive levels for a syndrome is larger
than four, the discretization is necessary on this syndrome.
On the other hand, we chose three syndromes as examples
to construct local networks using GES algorithm (Table 4).
When a network structure is learned, Maximum Likelihood
Estimation (MLE) is utilized to compute all the conditional
probability tables. Then, the probability inference could be
achieved using inference algorithm, such as junction tree
method [25, 26].

3.3. Experimental Parameters. The simulating experiments
were implemented under the environment of MATLAB2011a
with Intel Core i5-2410 CPU @ 2.3GHZ, 4GB RAM. In the
LSSVR regression model, Gaussian RBF kernel is employed,
and the kernel parameters 𝜎

2 and 𝛾 should be determined
firstly. Currently, many approaches have been applied in
parameter optimization of LSSVR, such as grid search [27],
cross-validation [28, 29], genetic algorithm (GA) [30], and
simulated annealing algorithm [31]. In our study, grid search
was selected to determine the parameters in the range
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Table 1: The result of feature ranking for all the syndromes.

Syndrome (𝑓
𝑖
) Name of syndrome Abbreviation Size mcc(𝑓

𝑖
, 𝑝𝑠) pe(𝑓

𝑖
) fr(𝑓

𝑖
) Rank

1 Lip color LC 4 0.9257 0.1688 0.9480 24
2 Tongue color Tc 4 0.9293 0.1813 0.9487 25
3 Appearance of tongue-1 At1 3 0.8123 0.5808 0.8550 16
4 Appearance of tongue-2 At2 5 0.9712 0.2998 0.9592 27
5 Coated tongue color Ctc 3 0.8589 0.1914 0.9126 21
6 Texture of coated tongue Tct 7 0.9039 0.2518 0.9298 23
7 Position of coated tongue Pct 5 0.9629 0.2685 0.9578 26
8 The color of complexion Coc 8 0.6396 2.7350 0.5790 6
9 Whole body condition Wbc 8 0.9326 1.0378 0.8749 19
10 Odor Od 1 0.6948 0.6055 0.7941 13
11 Chilly Ch 1 0.6011 0.4767 0.7586 10
12 Hectic fever Hf 1 0.7890 0.4248 0.8571 17
13 Fever Fe 1 0.7304 0.2969 0.8391 15
14 Sweating St 2 0.6270 0.4875 0.7706 11
15 Facial features Ff 13 0.2177 5.6792 0.1088 1
16 Cardiothoracic condition Ca 4 0.4923 1.2036 0.6402 8
17 Sternocostal and abdominal pain Sap 16 0.4010 1.6943 0.5513 5
18 Diet Diet 7 0.2937 1.7266 0.4948 3
19 Defecate and urine Du 10 0.4016 1.7268 0.5488 4
20 Sleep Slp 2 0.4382 0.9854 0.6324 7
21 Emotion NEs 3 0.5141 1.1600 0.6549 9
22 Skin of the limbs Sl 10 0.2091 2.4312 0.3905 2
23 Bump in ribs Bir 1 0.6543 0.5541 0.7784 12
24 Ascites Ass 1 0.7279 0.4304 0.8260 14
25 Pleural effusion Pe 1 0.7894 0.2301 0.8745 18
26 Pulse condition in left Pcle 13 0.8630 0.3003 0.9051 20
27 Pulse condition in right Pcrt 13 0.8716 0.2556 0.9133 22

of [0.1, 100000] for 𝜎
2 and [0.1, 10000] for 𝛾. For a pairwise

(𝜎2, 𝛾), we used 10-fold cross-validation to evaluate the
performance of LSSVR model.

To evaluate the accuracy of prediction, three statistical
metrics are widely employed: (1) mean square error (MSE),
(2) root mean square error (RMSE), and (3) mean relative
percentage error (MRPE). In (11), where 𝑦

𝑖
and 𝑦

󸀠

𝑖
are the

observed value and predicted value, the smaller MSE, RMSE,
and MRPE are, the better the LSSVR model will be:

MSE =
1

𝑛

𝑛

∑

𝑖=1

[𝑦
𝑖
− 𝑦
󸀠

𝑖
]
2

RMSE = √
1

𝑛

𝑛

∑

𝑖=1

[𝑦
𝑖
− 𝑦
󸀠

𝑖
]
2

MRPE =
1

𝑛

𝑛

∑

𝑖=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑦
󸀠

𝑖
− 𝑦
𝑖

𝑦
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

× 100%.

(11)

In our experiment, we used MSE to calculate the values of
function pdterror(∗) and pe(∗).

Moreover, the Matlab Bayes Net Toolbox FullBNT-1.0.7
[32] and BNT Structure Learning Package BNT SLP 1.5 were,
respectively, used in the Bayesian network structure learning,

parameters learning, and probability inference.The probabil-
ity distribution between nodes in a Bayesian network could
be computed according to the inferred network structure and
conditional probability tables.

4. Results and Discussion

Table 1 shows the results of association analysis between
individual syndromes and positive score. mcc(𝑓

𝑖
, ps) reflects

the predicting performance of feature𝑓
𝑖
to ps (positive score).

The smaller the value of mcc is, the more important the
feature 𝑓

𝑖
will be. The value of pe(𝑓

𝑖
) indicates predicting

error of LSSVR model based on all the features except 𝑓
𝑖
;

it is measured by MSE. Here, it is obvious that the higher-
ranked features have lower values of fr(𝑓

𝑖
). We clearly see

some important syndromes are high predictive, such as
“facial features,” “skin of the limbs,” “diet,” “sternocostal and
abdominal pain,” and so forth.

Our developed CBPSO algorithm was applied to search
the optimal syndrome subset on the processed TCM dataset.
Assigning different swarm size and the number of itera-
tions, this CBPSO algorithm shows excellent convergence
performance (Figure 5). Different assignments of param-
eters for CBPSO finally got the same optimal solution:
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Figure 5: The results of CBPSO-based feature selection under different parameters. Four subfigures show the CBPSO algorithm rapidly
approximate the optimal solution in the reduced feature space.

Table 2: The optimal solutions of our CBPSO using different parameters.

Swarm size Iteration 𝑃 The optimal solution of CBPSO Fitness value
100 100 0.2 001101111111111111111111111 0.40911
100 100 0.5 001101111111111111111111111 0.53205
200 200 0.2 001101111111111111111111111 0.41062
200 200 0.5 001101111111111111111111111 0.52183

001101111111111111111111111. It means the potential syndrome
subset containing 24 syndromes is a steady solution for this
NP-hard problem (Table 2).These 24 syndromes reflectmany
cancer-related parts of body or aspects of observation, which
are helpful to clinically diagnose HCC.

Now, twowell-established feature selectionmethods were
introduced to be compared with our proposed PSOHFS
model: (1) correlation-based filter method (CFM) [14, 23]
and (2) PSO-based wrapper method (PWM) [14]. The first
one uses correlation-based feature ranking as the principle
criteria for feature selection by ordering. The second one
uses standard BPSO algorithm to search an optimal feature
subset. These two methods were all applied on the original
symptom features. For CFM, we used 15% and 30% top-
ranked features to validate its performance, while, for PWM,
we set population size equal to 100 and iterations equal to
100 and 200. Table 3 shows the error of prediction of the
LSSVR model based on candidate optimal feature subsets.

Five candidate feature subsets were searched by the above
twomethods andPSOHFSmodel, respectively. In Table 3, the
values of MSE, MRSE, and MRPE were calculated based on
LSSVR by 5-fold cross-validation.

Comparing the values of MSE, RMSE, and MRPE in
Table 3, we can see that the optimal syndrome set (OPS)
searched by our PSOHFS model has the obvious superi-
ority in the predicting performance. The dimension of the
PSOHFS-based optimal syndrome subset equals 24, which
is significantly smaller relatively to the dimension of the
original symptoms (147). Because CFM and PWM work
directly on the original high dimensional feature space,
it is hard for them to achieve an optimized prediction
performance and the dimension of potential feature subset,
simultaneously. PWM searches for the optimal solution
depending on the evaluation of regression model, so the
optimal feature subset from PWM is more predictive than
CFM’s. However, standard wrapper-based methods do not
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Table 3: The predicting performance of the optimal feature subsets obtained from different feature selection methods.

Approaches Dimension of the optimal feature subset MSE RMSE MRPE (%) Time (second)
PSOHFS 24 (syndromes) 0.1622 0.4027 1.0700 3.0108
CFM (top 15%) 22 (symptoms) 14.4575 3.8023 11.8907 2.8510
CFM (top 30%) 45 (symptoms) 6.2611 2.5022 7.8632 4.8010
PWM (100 iterations) 92 (symptoms) 3.2268 1.7963 5.5645 8.8760
PWM (200 iterations) 89 (symptoms) 2.7516 1.6588 5.2351 8.7390

Table 4: Comparisons of the PSOHFS-based optimal syndrome set
with other potential syndrome subsets.

Feature
set Dimension MSE RMSE MRPE (%) Time (second)

OPS 24 0.1622 0.4027 1.0700 3.0108
FCS 27 0.1834 0.4283 1.9572 3.2604
FRS1 13 3.3735 1.8367 6.2871 2.4024
FRS2 19 1.7084 1.3071 4.5202 2.9640

optimize the size of optimal feature subset. CFMgot theworst
result is reasonable because the correlation measurement can
only detect linear dependencies between variable and target.

Next, we further validate the performance of OPS on
the syndrome level. Two types of syndrome subsets were
selected to compare: (1) full collection with all the 27
syndromes (FCS) and (2) filter-based syndrome subset by
feature ranking via (8). Here, we chose threshold 0.8 and
0.9 to get two potential syndrome subsets: FRS1 and FRS2
(Table 1). In Table 4, we obviously find OPS can get good
balance between the dimension and predicting performance.
The verification on FRS1 and FRS2 proves the fact that,
although feature-ranking methods run quickly, they still
easily lead to worse results because feature-ranking filter
ignores the possible interactions and dependences among the
features [29].The difference between Tables 3 and 4 indicates
the feature selection on a reduced feature space of original
dataset potentially obtains a better solution. 24 potential
syndrome features could quickly diagnose the positive level
ofHCCpatients with high accuracy.Our result suggested that
“lip color,” “tongue color,” and “coated tongue color” could
be ignored during the process of prediction because they
are weak predictive features for discriminating these HCC
samples.

Finally, based on the hierarchical feature representation
and the result of feature selection on syndromes, Bayesian
network on two layers was constructed and the conditional
probability tables were inferred. Here, we picked up three
cases to explain what we can obtain from the Bayesian
network analysis in the symptom and syndrome feature space
(Table 5). Figure 6(a) shows the Bayesian network structure
of “emotion” syndrome. We can clearly see that there is a
causal relationship between “depression” and “sigh.” When a
patient is depressive, sigh is a usual symptom with him/her.
While “irritability” seems to reflect inversely comparing to
“depression”; therefore it is an independent node in this
inferred network structure.The conditional probability tables

Table 5: The details of three syndromes.

Syndrome Symptoms
The number of
level of positive

symptom

Emotion
Irritability 4
Depression 3

Sigh 3

Cardiothoracic
condition

Tightness in the chest 4
Shortness of breath 3

Palpitations 3
Pain in the chest 3

Diet

Anorexia 4
Tired of greasy 4

Nausea 3
Hiccups 3

Acid reflux 3
Water reflux 3

Gastric discomfort 2

of “emotion” are shown as in Supplementary Table S1A-
S1C. For example, P(“irritability” = 0, “depression” = 1,
“sigh” = 1) = 0.027 suggests the probability of the clinical
symptoms “depression” and “sigh” is positive on a patient.
Figure 6(b) shows the network structure of “cardiothoracic
condition” syndrome. From Figure 6(b), “tightness in the
chest”might lead to three other clinical symptoms: “shortness
of breath,” “palpitations,” and “pain in chest.”The conditional
probability tables of “cardiothoracic condition” are shown in
Supplementary Table S2A-S2D. For example, P(“tightness in
the chest” = 1, “shortness of breath” = 1, “palpitations” = 1,
“pain in chest” = 0) = 0.01143. Similarly, Figure 6(c) shows
the network structure of “diet” syndrome. The conditional
probability tables of “diet” are shown in Supplementary Table
S3A-S3G. At last, Figure 7 represents the global network on
24 potential syndromes.There are three subnetworkmodules
and six independent nodes in Figure 7. All the relationships
among these syndromes were represented. Their conditional
probability tables were listed in Supplementary Table SS1-
SS24. Based on the hierarchical feature representation, the
Bayesian networks potentially provided uswith useful knowl-
edge with multi-granularity. From Table 6, we can clearly see
that the computational cost of network structure learning is
sharply increased when the number of nodes in the network
is increasing. It further proves that if we construct Bayesian
network on 147 original clinical symptoms directly, it will
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Figure 6: Three inferred Bayesian networks based on symptom features. (a) The casual relationships among three clinical symptoms of
“emotion” group. “Depression” might cause “sigh,” while “irritability” is an isolated node. (b) The casual relationships among four clinical
symptoms of “cardiothoracic condition” group. (c) The casual relationships among seven clinical symptoms of “diet.”
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Figure 7: The global Bayesian network based on 24 potential syndromes.
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Table 6: The computational cost of structure learning for some
Bayesian networks.

Bayesian networks The number
of nodes

Computational
time of structure
learning (second)

Emotion 3 0.06
Cardiothoracic condition 4 0.41
Diet 7 4.23
Potential syndrome set (OPS) 24 606.88

meet unimaginable computational complex; therefore, our
method proposed in this paper provided a good solution.

5. Conclusions

In this paper, a particle swarm optimization-based hierarchi-
cal feature selection (PSOHFS) model was proposed to infer
potential clinical features of HCC on a Traditional Chinese
Medicine dataset which was collected from 120 patients. The
PSOHFSmodel firstly arranged all the 147 original symptoms
into 27 groups according to the categories of clinical symp-
toms and extracted a new syndrome feature from each group.
The raw TCM clinical dataset was represented in a reduced
feature space so that we can build a hierarchical feature
representation pattern with a tree structure. Based on such
hierarchical feature graph, we reached two aims: (1) based on
a significant reduced feature space, the feature selection can
be easily realized, and the optimal feature subset could diag-
nose patient samples efficiently; (2) we constructed Bayesian
network on symptom and syndrome levels. A global Bayesian
network for all the potential syndromes roughly described
the relationships among the main important aspects of HCC.
While each local network was constructed for the symptom
features in the same group, the causal relationships among
them could be inferred.

In our simulating experiment, our CBPSO algorithm
in PSOHFS model discovered an optimal syndrome subset
of HCC, which included 24 syndromes. With a LSSVR
regression model built by these 24 potential syndromes,
the diagnosis accuracy of HCC is high and computational
cost is sharply reduced. The significance of the proposed
model is as follows: (1) feature selection is implemented on
a reduced feature space, so that the dimension of optimal
feature subset is smaller; (2) the fitness function in CBPSO
algorithm optimizes the predicting performance and the
correlation between features and target variable. Based on the
results of feature selection, we further achieved the Bayesian
network construction at both syndrome and symptom levels
to explain the relationships among all the nodes and the
probability inference could be computed based on learned
network structure and conditional probability tables.

However, our model also has some shortcomings: (1)
most of syndrome groups were aggregated from the clinical
symptoms observed from the same parts of body, while much
more evidence proved that there are significant relationships
between symptoms which describe different parts (aspects)

of body; (2) we did not study the relationships of clinical
symptom features which belong to different groups. In the
future, we will collect more clinical samples of HCC to
deeply analyze the correlation between any clinical features.
Also, some high-predictive clinical features inferred in this
study need to be validated further in other TCM clinical
datasets. If we can discover and validate some high-predictive
clinical features in the next step of research, that might be the
significant phenotypes of this cancer.
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