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Abstract
Early identification of metastatic or recurrent colorectal cancer (CRC) patients who 
will be sensitive to FOLFOX (5-FU, leucovorin and oxaliplatin) therapy is very im-
portant. We performed microarray meta-analysis to identify differentially expressed 
genes (DEGs) between FOLFOX responders and nonresponders in metastatic or re-
current CRC patients, and found that the expression levels of WASHC4, HELZ, 
ERN1, RPS6KB1, and APPBP2 were downregulated, while the expression levels of 
IRF7, EML3, LYPLA2, DRAP1, RNH1, PKP3, TSPAN17, LSS, MLKL, PPP1R7, 
GCDH, C19ORF24, and CCDC124 were upregulated in FOLFOX responders com-
pared with nonresponders. Subsequent functional annotation showed that DEGs 
were significantly enriched in autophagy, ErbB signaling pathway, mitophagy, en-
docytosis, FoxO signaling pathway, apoptosis, and antifolate resistance pathways. 
Based on those candidate genes, several machine learning algorithms were applied 
to the training set, then performances of models were assessed via the cross valida-
tion method. Candidate models with the best tuning parameters were applied to the 
test set and the final model showed satisfactory performance. In addition, we also 
reported that MLKL and CCDC124 gene expression were independent prognostic 
factors for metastatic CRC patients undergoing FOLFOX therapy.

K E Y W O R D S

colorectal cancer, FOLFOX, machine learning algorithm, microarray meta-analysis

www.wileyonlinelibrary.com/journal/cam4
https://orcid.org/0000-0002-3922-9553
mailto:﻿
https://orcid.org/0000-0002-2380-3717
http://creativecommons.org/licenses/by/4.0/
mailto:dingkefeng@zju.edu.cn


1420  |      LU et al.

1  |   INTRODUCTION

Colorectal cancer (CRC) is still the third most commonly 
diagnosed cancer and the third leading cause of cancer-re-
lated deaths.1,2 Management of metastatic or recurrent 
CRC patients is a big challenge, since about 25% of CRC 
patients would present with metastatic lesions when firstly 
diagnosed, yet 50%-60% of CRC patients finally devel-
oped metastatic lesions, with the majority of them being 
unresectable liver metastatic lesions.3,4 Systemic therapies, 
including FOLFOX (5-FU, leucovorin and oxaliplatin), 
FOLFIRI (5-FU, leucovorin and irinotecan), FOLFOXIRI 
(5-FU, leucovorin, oxaliplatin, and irinotecan), and 
CAPEOX (oxaliplatin and capecitabine), are the first-line 
treatments for metastatic CRC patients.5-7 However, only 
about 50% of the CRC patients responded to first-line sys-
temic chemotherapies,8 while the remaining patients will 
suffer from delayed treatment and unnecessary side effects 
of antineoplastic drugs. Therefore, early identification of 
CRC patients who will probably be sensitive to a specific 
chemotherapy is very important.

Several studies have developed methods in various 
aspects to predict therapeutic responses of CRC patients 
toward some chemotherapies. For instance, Ahn et al re-
ported that baseline CT texture could predict FOLFOX 
and FOLFIRI response in CRC patients with liver metas-
tasis.9 In addition, DNA variations and specific gene ex-
pression profile in cancer tissues may have good predictive 
performance, since cancer genetic features are generally 
considered as one of the most important mechanisms lead-
ing to drug resistance.10,11 Kap et al reported that several 
single nucleotide polymorphisms, which were involved in 
cellular metabolism and transport, could have potential 
predictive value for CRC patients undergoing oxaliplatin 
treatment.12 In addition, Kornmann et al conducted a ran-
domized trial to show high mRNA level of thymidylate 
synthase in tumor biopsy samples was a valuable marker 
for predicting objective response during FOLFIRI treat-
ment.13 However, FOLFOX treatment response prediction 
based on specific gene expression profile in metastatic or 
recurrent CRC patients is merely reported by few studies.14

Microarray and next-generation sequencing could pro-
vide gene expression profiles and help identify differentially 
expressed genes (DEGs) between groups. High-throughput 
gene expression profiles have been used to predict prognosis 
of CRC patients,15 identify stage II CRC patients who had 
high recurrence risk16 and predict patients' response toward 
certain chemotherapy.17 Nevertheless, it has been reported 
by a number of studies that results of microarray data were 
poor in reproducibility and were sensitive to perturbations of 
data.18,19 Furthermore, microarray datasets generally used 
thousands of probes, while only a limited number of sam-
ples were tested, which will decrease the accuracy of model 

prediction. Fortunately, microarray meta-analysis could solve 
the above issues by combining the results of several microar-
ray datasets, detecting DEGs across datasets and evaluating 
their heterogeneities.20

In the current study, we performed microarray meta-anal-
ysis to identify DEGs between FOLFOX responders and 
nonresponders in metastatic or recurrent CRC patients, and 
functional annotation of those DEGs was performed. We 
then adopted several machine learning algorithms to estab-
lish prediction models in the training set data, and assessed 
performances of models via the cross validation method. 
Candidate models were applied to the test set and the final 
model prediction performance was reported. In addition, we 
also explored whether those candidate genes could become 
prognostic markers for metastatic or recurrent CRC patients 
undergoing FOLFOX therapy.

2  |   MATERIALS AND METHODS

2.1  |  Datasets searching and screening

The datasets searching process was performed in the GEO 
database (http://www.ncbi.nlm.nih.gov/geo/) and the 
ArrayExpress database (http://www.ebi.ac.uk/array​expre​
ss/). The searching strategy was: (“colorectal cancer” OR 
“CRC”) AND (“FOLFOX”). In addition, published litera-
tures were also manually retrieved in the PubMed database 
to avoid potentially missing datasets. The datasets searching 
process was conducted up to January 2018. Two independ-
ent researchers (Wei Lu and Dongliang Fu) screened the 
search results independently. First, duplicated datasets were 
removed, afterward, titles and brief descriptions of datasets 
were reviewed, and finally, datasets were assessed for eligi-
bility according to the inclusion criteria: samples were pri-
mary or metastatic lesions of metastatic or recurrent CRCs; 
patients received first-line FOLFOX regimen (patients re-
ceived FOLFOX in combination with bevacizumab thera-
pies were excluded), and all samples were obtained before 
FOLFOX regimen; expression microarrays were performed 
and raw data were available; FOLFOX treatment response 
statuses were available.

2.2  |  Data extraction and microarray data 
preprocessing

We extracted the following information of the included 
datasets: series accession number, microarray platform, 
year of data submission, source of specimens, number of 
specimens, gender, tissue type, regimen, response evalua-
tion, and response rate. All lesions of each patient were as-
sessed by image examination after FOLFOX therapy, and 
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tumor response was evaluated according to RECIST recom-
mendations.21 Responders represented complete response 
and partial response, while nonresponders represented 
stable disease and progressive disease. Raw data of each 
datasets were downloaded from the GEO database (http://
ftp.ncbi.nih.gov/geo/serie​s/). Raw data (CEL files) of each 
datasets were read into R and converted to the AffyBatch 
object using the ReadAffy function of the “affy” package 
(version 1.56.0) in R.22 Background correction, normaliza-
tion, and summarization were performed using the MAS5 
algorithm,23 then the log2 transformation was applied to 
the expression matrix. We used nsFilter function of the 
“genefilter” package (version 1.60.0) in R to filter multiple 
probe sets, which mapped to the same Entrez Gene ID, and 
removed noninformative probe sets according to the value 
of IQR (interquartile range).24 The expression matrix was 
then annotated by the “annotate” package (version 1.56.1) 
and the “hgu133plus2.db” package (version 3.2.3).25,26 In 
addition, response statuses of patients were added accord-
ing to the requirements of the “MetaDE” package (version 
1.0.5) in R.27

2.3  |  Microarray meta-analysis and 
differentially expressed genes identification

We then performed microarray meta-analysis following 
the guidelines proposed by Ramasamy et al.28 First, we 
extracted the common genes across multiple studies and 
sorted them in the same order. Then we used the “MetaQC” 
package (version 0.1.13) in R to implement the objec-
tive quality control, including IQC (internal quality con-
trol index), EQC (external quality control index), CQCg 
(consistency of differential expression quality control in 
genes), CQCp (consistency of differential expression qual-
ity control in pathways), AQCg (accuracy of differential 
expression quality control in genes), and AQCp (accuracy 
of differential expression quality control in pathways).29 
DEGs were identified using the “MetaDE” package (ver-
sion 1.0.5) in R according to the FOLFOX response sta-
tus,27,30 then heterogeneity was evaluated using Q statistics 
and P value for Q statistics more than .05 indicated no sig-
nificant heterogeneity existed across studies. The moder-
ated t statistic was used to calculate the effect size of each 
gene based on the robust permutation inferences (number 
of permutations = 300). Effect sizes were pooled via the 
random-effect model method,31 and the false discovery 
rate (FDR) controlling was carried out by the Benjamini-
Hochberg procedure, with FDR cutoff value of 0.3 to select 
candidate genes for further machine learning practice.32 
We also displayed a heat map to visualize DEGs across 
studies, and we used the correlation plot to visualize cor-
relation coefficients between variables.

2.4  |  Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway term enrichment 
analysis and gene ontology (GO) term 
enrichment analysis

Kyoto Encyclopedia of Genes and Genomes (KEGG) path-
way term enrichment was performed using the Metascape 
online tool (http://metas​cape.org).33 For each DEG (P < .05 
in the MetaDE results), we first identified statistically en-
riched KEGG pathway terms, P values for hypergeometric 
distribution and enrichment factors (the ratio between ob-
served gene counts and the gene counts expected by chance). 
Enrichment background was set as all genes in the genome. 
Significant KEGG pathway terms were hierarchically clus-
tered based on κ-statistical similarities among gene member-
ships, and 0.3 was set as the κ cutoff value for clustering. 
In addition, a subset of representative KEGG pathway terms 
from these clusters were converted to a network.

Gene ontology (GO) enrichment of DEGs in cellular com-
ponent ontology and biological process ontology was per-
formed by the “clusterProfiler” package in R.34 Enrichment 
background was set as all genes in the genome, and the P 
cutoff value after Benjamini-Hochberg adjustment was set as 
.05.32 Cluster network and the tree of GO terms were also 
displayed for visualization.

2.5  |  Screening and cross validation of 
machine learning models

We chose the dataset GSE28702, which had the largest sam-
ple size among all included studies, to apply machine learning 
algorithms. First, we extracted the expression matrix from the 
dataset, which was composed of expression value of candidate 
genes, sample ID, and FOLFOX treatment response status. 
Data preprocess was performed via the “preprocess” function 
of the “caret” package (version 6.0-77) in R, and we adopted 
the “center” and “scale” methods.35 Next, samples were ran-
domly assigned to training set (60%) and test set (40%) using 
the “sample” function in R. Then we used fivefold cross vali-
dation (“createFolds” function of the “caret” package) for 20 
random replications in the training set to evaluate model per-
formance.35,36 A total of six machine learning algorithms were 
trained using relevant R packages: k-nearest neighbor (KNN) 
of the “class” package,37 support vector machine (SVM) of the 
“e1071” package (version 1.6-8),38 gradient boosting machine 
(GBM) of the “gbm” package (version 2.1.3),39 decision tree of 
the “tree” package (version 1.0-37),40 random forest of the “ran-
domForest” package (version 4.6-12),41 and neural network of 
the “RSNNS” package (version 0.4-9).42 The impact of various 
tuning parameters on model performance was also evaluated 
in the cross validation procedure, and the best tuning param-
eters were selected to represent the performance of the machine 
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learning algorithms, respectively. Assessments of model per-
formance were mainly consisted of accuracy, sensitivity, speci-
ficity, and Youden index. Finally, the top 3 machine learning 
algorithms, with their own best tuning parameters, were applied 
to the test set to predict FOLFOX treatment response.

2.6  |  Statistical analysis

We used R (version 3.4.2), SPSS 22, and GraphPad Prism 6 to 
perform data process and statistical analyses. Microarray data 
preprocessing, microarray meta-analysis, enrichment analysis, 
and machine learning algorithms were described in the previ-
ous sections. Comparisons among several machine learning 
algorithms were performed using ANOVA. ROC (receiver op-
erating characteristic) curves were plotted and AUC (area under 
the curve) was calculated using the “pROC” package (1.12.1),43 
and AUC was compared with 0.5 using the Z-test, which rep-
resented results of random predictions. Survival analyses were 
performed in SPSS 22 and univariate Cox regression was used 
to screen variables using the “Enter” method under a P value 
of .05. Variables which had significant prognostic values in the 
univariate Cox regression were included in the final multivari-
ate Cox regression. A P value less than .05 showed statistical 
significance unless otherwise stated.

3  |   RESULTS

3.1  |  Characteristics of the included datasets

We exported 248 datasets and four datasets when searching 
the GEO database and the ArrayExpress database, respectively 

(Figure 1A), then three duplicated datasets were removed. After 
screening titles and summaries of 249 datasets, 10 datasets re-
mained and were assessed for eligibility according to the inclu-
sion criteria. Finally, three datasets were included in the further 
analysis and characteristics of datasets were displayed in Table 
1. In brief, all the datasets used the same microarray platform 
(Affymetrix Human Genome U133 Plus 2.0 Array). GSE19860 
had 29 metastatic or recurrent CRCs, while GSE28702 and 
GSE72970 were composed of 83 and 32 metastatic CRCs, re-
spectively. Tissue types of GSE19860 and GSE72970 were all 
primary lesions, and GSE28702 had 56 primary lesions and 23 
metastatic lesions to the liver, three metastatic lesions to the 
peritoneum, and one metastatic lesion to the lung. Treatment 
response evaluation was performed at the end of the first-line 
FOLFOX treatment, and response rates varied from 31.03% to 
60.60% across datasets.

3.2  |  Microarray meta-analysis and 
differentially expressed genes identification

The microarray meta-analysis and machine learning work flow 
were presented in Figure 1B. First, we performed data pre-
process in each datasets and extracted expression matrix ac-
cordingly. Then we calculated six quality control indicators in 
each datasets, as shown in Table S1. All datasets had similar 
ranks and performed well in terms of IQC and EQC, suggest-
ing that all datasets had good internal and external homogene-
ity. Nevertheless, low CQCg, AQCg, CQCp, and AQCp score 
implied that DEGs were inconsistent across datasets, thus we 
believed that DEGs identification through microarray meta-
analysis was necessary and it could help identify FOLFOX 
treatment responders in metastatic or recurrent CRC patients.

F I G U R E  1   A, Flow diagram of datasets screening and selection. B, Flow diagram of identifying differentially expressed genes and building 
models via machine learning algorithms

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE19860
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http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE19860
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE72970
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE28702


      |  1423LU et al.

Next, we analyzed DEGs between FOLFOX nonrespond-
ers and responders by performing the moderated t test to cal-
culate the effect size of each gene, then the random-effect 
model was utilized to pool results across datasets. We identi-
fied 778 DEGs using a P cutoff value of .05 (data not shown), 
and they were used to perform KEGG enrichment analysis 
and GO enrichment analysis.

3.3  |  KEGG enrichment analysis and GO 
enrichment analysis

We listed top 15 KEGG pathway terms in the KEGG en-
richment analysis (Table S2 and Figure 2A), and we found 
those DEGs were significantly enriched in autophagy, ErbB 
signaling pathway, mitophagy, endocytosis, FoxO signaling 
pathway, apoptosis, antifolate resistance, etc In addition, au-
tophagy and ErbB signaling pathway clusters were closely 
correlated (Figure 2B).

GO cellular component ontology enrichment analy-
sis showed that those DEGs were significantly enriched 
in membrane structures and mitochondrial components, 
including mitochondrial inner membrane, mitochondrial 
matrix, mitochondrial protein complex, nuclear mem-
brane, outer membrane, and preautophagosomal structure 
membrane (Figure 2C and S1A). Besides, GO biological 
process ontology enrichment analysis showed significant 
enrichment in positive regulation of catabolic process, 
macroautophagy, cellular respiration, and response to mi-
tochondrial depolarization (Figure 2D and S1B), which 
was in consistent with the results of KEGG enrichment 
analysis.

3.4  |  FOLFOX treatment response 
prediction via machine learning algorithms

Significant gene numbers under various FDR cutoff val-
ues in microarray meta-analysis were displayed in Figure 
S2, and top 18 candidate genes were selected for further 
machine learning practice under the FDR cutoff value of 
0.3 (Table S3). No significant heterogeneity was observed 
according to the P value for Q statistics. As displayed in 
the heat map (Figure 3A), expression levels of five genes 
were downregulated in FOLFOX responders (WASHC4, 
HELZ, ERN1, RPS6KB1, and APPBP2), while expres-
sion levels of 13 genes were upregulated in FOLFOX re-
sponders (IRF7, EML3, LYPLA2, DRAP1, RNH1, PKP3, 
TSPAN17, LSS, MLKL, PPP1R7, GCDH, C19ORF24, 
and CCDC124), with the logFC value varying from −0.751 
to 0.621.

The dataset GSE28702, which had the largest sample 
size, was chosen to apply machine learning algorithms. The T
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expression matrix of 18 candidate genes was extracted, and 
the correlation coefficient plot showed that downregulated 
and upregulated genes in FOLFOX responders were mainly 
positively correlated within their own group, yet negatively 
correlated with genes from another group (Figure 3B). No 
correlation coefficients were more than 0.7, thus no genes 
were filtered and 18 candidate genes were all included in 
the further analysis. Data preprocess of the expression ma-
trix was performed using the “center” and “scale” methods 
via the “preprocess” function of the “caret” package (version 
6.0-77).

Next, samples in GSE28702 were randomly assigned 
to the training set (60%) and the test set (40%). We used 
fivefold cross validation method for 20 random replica-
tions in the training set to evaluate model performance. 
Six machine learning algorithms were tested, including 
KNN, SVM, GBM, decision tree, random forest, and neu-
ral network. The impact of various tuning parameters on 
model performance was also evaluated in the cross vali-
dation procedure, and the best tuning parameters were se-
lected to represent the performance of the corresponding 
machine learning algorithm. Those tuning parameters were 
k in KNN; Gamma, cost, and kernel type in SVM; the total 
number of trees to fit and shrinkage in GBM; the num-
ber of trees to grow and the number of variables randomly 
sampled as candidates at each split in random forest; the 

number of units in the hidden layers and the learning func-
tion type in neural network.

Then assessments of model performance were performed 
in cross validation sets according to accuracy, sensitivity, 
specificity, and Youden index (Figure 4 and Table S4). The 
top 3 machine learning algorithms were random forest, SVM, 
and neural network algorithms. There was no significant dif-
ference between the SVM and the random forest algorithm in 
terms of all statistics; however, the neural network algorithm 
was significantly inferior to the random forest algorithm in 
terms of accuracy, specificity, and Youden index. Afterward, 
we applied these top 3 machine learning algorithms in the test 
set to predict FOLFOX response, and the prediction results 
were displayed in Figure S3. SVM, random forest, and neural 
network algorithms had an AUC of 0.827 (95% CI: 0.670-
0.984, P <  .01), 0.877 (95% CI: 0.747-1.00, P <  .01), and 
0.800 (95% CI: 0.638-0.962, P  <  .01) accordingly (Figure 
S4). Using the dichotomize scores as prediction results, as 
shown in Table 2, the SVM algorithm ranked first with a sen-
sitivity of 0.900 (95% CI: 0.669-0.982) and a specificity of 
0.692 (95% CI: 0.389-0.896). The random forest algorithm 
was comparable to the SVM algorithm with a sensitivity 
of 0.850 (95% CI: 0.611-0.960) and the same specificity. 
However, the neural network algorithm ranked last with a 
sensitivity of 0.800 (95% CI: 0.557-0.934) and a relatively 
low specificity of 0.538 (95% CI: 0.261-0.796). In addition, 

F I G U R E  2   A, Bar plot of enriched KEGG terms based on differentially expressed genes. Darker colors indicated smaller P values. B, 
Network of enriched KEGG terms was colored by cluster ID. C, Dot plot of GO enrichment of differentially expressed genes in cellular component 
ontology. D, Dot plot of GO enrichment of differentially expressed genes in biological process ontology

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE28702


      |  1425LU et al.

we also calculated the positive likelihood ratio (PLR) and the 
negative likelihood ratio (NLR) of each algorithm. The SVM 
algorithm had a PLR of 2.925 (95% CI: 1.278-6.697) and a 
NLR of 0.144 (95% CI: 0.036-0.575), while the random for-
est algorithm had similar results. However, the neural net-
work algorithm ranked last, with a PLR of 1.733 (95% CI: 
0.926-3.244) and a NLR of 0.371 (95% CI: 0.136-1.015).

3.5  |  Identifying prognostic genes on 
overall survival for metastatic CRC patients 
undergoing FOLFOX therapy

After confirming the predictive value of these machine learn-
ing algorithms, we then investigated whether these candidate 
genes could be prognostic factors of survival as well. First, 

we performed the univariate Cox regression in GSE28702 
(Table S5). We found that PKP3, LSS, MLKL, C19ORF24, 
and CCDC124, which were all upregulated genes in FOLFOX 
responders, were statistically significant positive prognostic 
factors on overall survival. However, we did not find statisti-
cally significant negative prognostic factors among 18 genes. 
In the multivariate Cox regression, we found that only MLKL 
(HR = 0.358, 95% CI: 0.178-0.717, P = .004) and CCDC124 
(HR = 0.563, 95% CI: 0.336-0.943, P =  .029) genes indi-
cated improved overall survival significantly.

4  |   DISCUSSIONS

FOLFOX is one of the most frequently used first-line chem-
otherapy regimens for metastatic CRC patients, yet only 

F I G U R E  3   A Heat map of 18 
differentially expressed genes used in 
prediction models. Blue color indicated 
gene downregulation and yellow color 
indicated gene upregulation. NR indicates 
nonresponders and R indicates responders. 
Dataset 1, dataset 2, and dataset 3 are 
GSE19860, GSE28702, and GSE72970, 
respectively. B Correlation coefficient 
plot of 18 differentially expressed genes in 
GSE28702. Blue color indicated positive 
correlation and red color indicated negative 
correlation

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE28702
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE19860
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE28702
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE72970
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE28702
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about 50% of the CRC patients had objective responses 
after FOLFOX treatment.8 Unresponsive patients toward 
first-line therapy usually suffered from progressive dis-
eases, unnecessary but serious side effects of antineoplastic 
medications, and massive economic burdens. Therefore it 
is of great importance to identify CRC patients who will be 
sensitive to a specific chemotherapy regimen. Researchers 
have reported methods in various aspects to predict thera-
peutic responses of CRC patients toward some chemothera-
pies,9,12,13 while FOLFOX treatment response prediction in 
metastatic or recurrent CRC patients is merely reported by 
few studies.14

In the current study, we performed the microarray me-
ta-analysis to identify common DEGs between FOLFOX 

responders and nonresponders in metastatic or recurrent 
CRC patients, and we found those DEGs were significantly 
enriched in autophagy, ErbB signaling pathway, mitophagy, 
endocytosis, FoxO signaling pathway, apoptosis, antifo-
late resistance, etc Consistent with previous studies, auto-
phagy has been supposed to act as defensive mechanisms 
against Oxaliplatin in CRC44 and mitophagy inhibition was 
reported to enhance anticancer drug sensitivity in a variety 
of cancers,45 suggesting autophagy and mitophagy may be 
a promising therapeutic target for CRC patients undergoing 
FOLFOX therapy.

Machine learning algorithms were predominant ap-
proaches that could build predictive models based on mi-
croarray data. Using the top 18 gene panel, we applied 

F I G U R E  4   Cross validation results 
using KNN, SVM, GBM, tree, random 
forest, and neural network algorithms. 
Model performances were determined 
according to prediction (A) accuracy, (B) 
sensitivity, (C) specificity, and (D) Youden 
index, each dot represented onefold of cross 
validation result. Results were compared 
by Kruskal-Wallis ANOVA analysis, and 
multiple comparisons are performed by 
Dunn's tests. Significances were labeled 
between the random forest algorithm and 
other algorithms. *P < .05, **P < .01, 
***P < .005

  SVM Random forest Neural network

Sensitivity 0.900 0.850 0.800

95% CI (0.669-0.982) (0.611-0.960) (0.557-0.934)

Specificity 0.692 0.692 0.538

95% CI (0.389-0.896) (0.389-0.896) (0.261-0.796)

PLR 2.925 2.762 1.733

95% CI (1.278-6.697) (1.197-6.373) (0.926-3.244)

NLR 0.144 0.217 0.371

95% CI (0.036-0.575) (0.071-0.658) (0.136-1.015)

Abbreviations: PLR, positive likelihood ratio; NLR, negative likelihood ratio; SVM, support vector machine.

T A B L E  2   Model prediction results in 
the test set



      |  1427LU et al.

several machine learning algorithms to predict FOLFOX 
response. After cross validation in the training set, random 
forest, SVM, and neural network algorithms were applied 
to the test set. We found both the SVM and random forest 
algorithms ranked first with a high sensitivity and a moder-
ate specificity, yet the neural network algorithm was inferior 
to the above two algorithms. In addition, our results were 
in accordance with previous reports that SVM and random 
forest algorithms were the most accurate algorithms in the 
aspect of microarray-based classification.46 Among the top 
18 gene panel, we found that high expression of MLKL and 
CCDC124, which were upregulated genes in FOLFOX re-
sponders, indicated significantly improved overall survival 
in metastatic CRC patients undergoing FOLFOX treatment. 
Although CCDC124 has not been reported to be associated 
with antineoplastic drug resistance, MLKL is a pseudoki-
nase that plays a pivotal role in tumor necrosis factor-induced 
necroptosis and mediates the antimicrobial peptide HPA3P-
induced necrotic death in colon cancer.47 Moreover, Sun et al 
have developed a nanoscale cationic liposome system encap-
sulating MLKL-pDNA, SMAC mimetic, and zVAD to solve 
the multidrug resistance in colon cancer cells.48 These pre-
vious researches and our findings implied that MLKL could 
be a potential therapeutic target for FOLFOX-resistant meta-
static CRC patients.

In addition, FOLFOX and FOLFIRI therapies share 
two chemotherapeutic medications and they differ in one 
single agent, and FOLFIRI therapy is also widely used in 
metastatic or recurrent CRC patients. We also have tried 
to apply the top 3 machine learning algorithms (random 
forest, SVM, and neural network) to a FOLFIRI dataset 
(GSE62080), using the same pipeline as FOLFOX re-
sponse prediction before. We found SVM, random forest, 
and neural network algorithms had an AUC of 0.676 (95% 
CI: 0.438-0.914, P =  .147), 0.667 (95% CI: 0.426-0.908, 
P =  .173), and 0.778 (95% CI: 0.576-0.979, P <  .01) ac-
cordingly. Since the best FOLFOX prediction algorithms 
were the random forest algorithm and SVM algorithm, 
but their performances dropped greatly when predicting 
FOLFIRI response, therefore, we believed that these two 
predictors were specifically trained for predicting FOLFOX 
response. However, it was interesting to find that the neural 
network algorithm had moderate performance when pre-
dicting FOLFIRI response, which may be due to the effect 
of two overlapped chemotherapeutic medications between 
FOLFOX and FOLFIRI therapies.

It is worth noting that our study had a number of 
strengths. First, CRC patients in our study received first-
line FOLFOX treatment, and the influence of other che-
motherapies and target agents such as bevacizumab was 
eliminated. Second, microarray data were poor in reproduc-
ibility and were sensitive to perturbations of data, therefore 
DEGs across datasets or platforms may be inconsistent.18,19 

Fortunately, microarray meta-analysis could help us solve 
this issue by combining the results of several microarray 
datasets,20 and our results were more reliable and univer-
sal than results from single microarray dataset. Third, we 
tested six machine leaning algorithms and the model per-
formances were reflected by the cross validation results. 
In addition to FOLFOX response prediction, we also iden-
tified prognostic genes on overall survival for metastatic 
CRC patients undergoing FOLFOX therapy.

However, our study was limited in some aspects as well. 
For instance, FOLFOX treatment response prediction and 
survival analysis were only performed in GSE28702 and 
another two datasets were not included in the analysis due 
to their small sample sizes. Besides, GSE28702 contained 
both primary CRC samples and metastatic CRC samples, 
but we did not perform further subgroup analysis due to the 
limited sample size and sample type, despite the fact that 
metastatic lesions may have significant differences from 
primary lesions. For metachronous metastatic cancers, pri-
mary lesions may also differ from metastatic lesions if long 
time intervals exist between the onset of primary tumors 
and metastatic lesions. Fortunately, the model prediction 
performance was satisfactory to some extent, and we be-
lieved our model prediction performance will be improved 
if we build models using primary CRC samples and met-
astatic CRC samples separately. Metastatic CRC patients 
are recommended to use chemotherapies plus target agents 
unless contraindicated,49 but whether adding a target agent 
will influence the prediction results was unclear. Besides, 
the microarray platform used in the study did not detect 
microRNA or long noncoding RNA, and those noncoding 
RNAs have been proved to play crucial roles in various bi-
ological processes, including oxaliplatin-induced chemore-
sistance in CRC.50,51 We believed our prediction model will 
perform better if those features were added.

In summary, we reported that WASHC4, HELZ, ERN1, 
RPS6KB1, and APPBP2 were downregulated, while IRF7, 
EML3, LYPLA2, DRAP1, RNH1, PKP3, TSPAN17, LSS, 
MLKL, PPP1R7, GCDH, C19ORF24, and CCDC124 were 
upregulated in FOLFOX responders compared with nonre-
sponders in metastatic or recurrent CRC patients, and those 
genes could be potential therapeutic targets for FOLFOX-
resistant metastatic CRC. DEGs were significantly enriched in 
autophagy, ErbB signaling pathway, mitophagy, endocytosis, 
FoxO signaling pathway, apoptosis, and antifolate resistance 
pathways. In addition, SVM and random forest algorithms 
based on those DEGs could help predict FOLFOX response, 
meanwhile expression levels of MLKL and CCDC124 were 
independent prognostic factors for metastatic CRC patients 
undergoing FOLFOX therapy.
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