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Abstract

Aim

Growth differentiation factor 15 (GDF15) increases in serum during pregnancy to levels not

seen in any other physiological state and is suggested to be involved in pregnancy-induced

nausea, weight regulation and glucose metabolism. The main action of GDF15 is regulated

through a receptor of the brainstem, i.e., through exposure of GDF15 in both blood and cere-

brospinal fluid (CSF). The aim of the current study was to measure GDF15 in both CSF and

serum during pregnancy, and to compare it longitudinally to non-pregnant levels.

Methods

Women were sampled at elective caesarean section (n = 45, BMI = 28.1±5.0) and were fol-

lowed up 5 years after pregnancy (n = 25). GDF15, insulin and leptin were measured in CSF

and serum. Additional measurements included plasma glucose, and serum adiponectin and

Hs-CRP.

Results

GDF15 levels were higher during pregnancy compared with follow-up in both CSF (385±128

vs. 115±32 ng/l, P<0.001) and serum (73789±29198 vs. 404±102 ng/l, P<0.001). CSF levels

correlated with serum levels during pregnancy (P<0.001), but not in the non-pregnant state

(P = 0.98). Both CSF and serum GDF15 were highest in women carrying a female fetus

(P<0.001). Serum GDF15 correlated with the homeostatic model assessment for beta-cell

function and placental weight, and CSF GDF15 correlated inversely with CSF insulin levels.

Conclusion

This, the first study to measure CSF GDF15 during pregnancy, demonstrated increased

GDF15 levels in both serum and CSF during pregnancy. The results suggest that
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effects of GDF15 during pregnancy can be mediated by increases in both CSF and serum

levels.

Introduction

Growth differentiation factor 15 (GDF15), a member of the transforming growth factor-beta

family, was first shown to be involved in inflammation and stress pathways but has also

emerged as a potentially important metabolic regulator [1–3]. GDF15 has been shown for

example to induce weight loss (probably through appetite suppression and decreased food

intake), affect energy expenditure and motivation to exercise, and improve glucose tolerance

[4–9].

Research interest has recently grown regarding GDF15 during pregnancy as substantial and

progressive increases in serum GDF15 have been shown from early to late pregnancy, ending

with serum levels much higher than in any other physiological or pathophysiological state

[10–12]. Pregnancy is marked by major metabolic and physiological changes, such as increases

in appetite, body weight, insulin resistance and inflammation [13, 14]. GDF15 may play an

important role in all these areas and has been found during pregnancy to be linked to altered

glucose metabolism [12, 15], and pregnancy-induced nausea [16–18].

Food intake and energy expenditure are primarily controlled by the central nervous

system, with the arcuate nucleus of the hypothalamus identified as a key area. Several appetite-

suppressing/stimulating neuropeptides have been shown to change both in the circulation and

in the cerebrospinal fluid (CSF) during pregnancy [19, 20]. GDF15 signals through the glial

cell line-derived neurotrophic factor (GDNF) family receptor alpha-like (GFRAL), a receptor

believed to be present only in the area postrema (AP) and the nucleus of the solitary tract

(NTS) regions of the brainstem [21, 22], which in turn signals to the arcuate nucleus in the

hypothalamus. The AP/NTS region is also generally believed to be the main signaling center

for nausea [23]. AP has a highly permeable blood brain barrier (BBB) compared to other brain

regions, and can therefore receive signals both from the blood and CSF, whereas NTS is sepa-

rated from AP with a more solid BBB [24].

Local hypothalamic expression of GDF15 or intracerebroventricular injections of recombi-

nant human GDF15 in mice resulted in a direct central action which induced anorexia and

weight loss [25]. Although numerous recent human studies have measured GDF15 in the cir-

culation, few have examined GDF15 concentrations in the CSF. Studies to date have shown

approximately 50% increased GDF15 levels in CSF of patients with neurodegenerative disor-

ders or glioblastomas [26–28]. However, the effect of pregnancy on CSF levels—a physiological

state with up to 200-fold increases in circulating GDF15—is not known. The aim of this study

was to determine the concentration of GDF15 in both CSF and serum during pregnancy and

to establish whether CSF GDF15 was different in the pregnant compared to the non-pregnant

state in a cohort of women sampled at elective cesarean section and after pregnancy.

Materials and methods

Ethical approval

The study was approved by the ethical committee at the University of Gothenburg (dnr 402-

08/dnr 750–15). All women received oral and written information about the study and gave

informed written consent before enrolment.
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Study cohort

Women were recruited at admission for elective cesarean section as previously described [19],

and followed up 5 years after pregnancy [29]. All women with serum and/or CSF samples

available from the previous study were included in the present study. Out of 74 women in the

original study, 45 women had remaining samples from the cesarean section and 24 women

had samples from the 5-year follow-up (Fig 1). Inclusion criteria in the original study were

uncomplicated pregnancy and good health, judged from the medical history. At entry, all sub-

jects were normoglycemic, nonsmokers, and did not consume alcohol. Dieting and use of

weight-loss supplements within 6 months before pregnancy were excluding criteria. The rea-

son for elective cesarean section was fear of childbirth (41%), baby in a breech position (27%),

scarring (16%) or other obstetric complication (i.e. placenta previa, perineal tear or large baby,

16%).

The pregnant subjects underwent elective cesarean section the morning after an overnight

fast. A 10-ml venous blood sample was taken by venipuncture before infusion of Ringer-ace-

tate solution. Before spinal anesthesia, an introducer needle was inserted into the interspinous

ligament at L3-4, and a 25-gauge Whitacre needle or a 25-gauge Pajunk Pencil Point Spinal

Fig 1. Flowchart of study. Samples for GDF15 measurements were retrieved from the original cesarean section study by Gustavsson et al [18], and from the follow-up

study by Andersson-Hall et al [28].

https://doi.org/10.1371/journal.pone.0248980.g001
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Needle was inserted through the introducer into the subarachnoid space. Ten milliliters of CSF

were removed with a 10-ml syringe. Hemorrhagic samples were excluded. The first 0.5 ml of

CSF was discarded. Study samples were transferred to polyethylene tubes, placed on ice, centri-

fuged, aliquoted, and stored (–80˚C). Serum samples were similarly centrifuged, aliquoted, and

stored. At the 5-year follow-up, women came to the laboratory after an over-night fast and CSF

and blood samples were taken and processed in the same way as at the cesarean section.

Dietary intake was assessed with a self-administered questionnaire for the three previous

months. The questionnaire had a semi-quantitative food frequency design and was validated

in Swedish men and non-pregnant women against a 4-day food record and assessments of

24-h energy expenditure and nitrogen excretion. From these comparisons, valid estimates of

energy intake were obtained in normal weight, overweight, and obese subjects [30].

Biochemical analysis

Blood glucose and insulin were analysed with a Cobas Modular system (Roche Diagnostics,

Risch, Switzerland) at the Clinical Chemistry Laboratory, Sahlgrenska University Hospital

(accredited in accordance with the International Standard ISO 15189:2007). CSF insulin was

analyzed with a double-antibody radioimmunoassay (Linco Research) at the Department of

Clinical Science, Lund University. Leptin and adiponectin were measured with ELISA kits

(R&D Systems) in the Clinical Neurochemistry Laboratory at Sahlgrenska University Hospital

Mölndal. ELISA plates were read on a Vmax plate reader, and concentrations were determined

with Softmax software (Molecular Devices). Insulin was measured in undiluted samples and

adiponectin in 100-fold diluted samples. For leptin analysis, CSF samples were diluted 2-fold

and serum samples 100-fold. HOMA-IR was calculated as (fasting glucose × fasting insulin)/

22.5 and HOMA-B as (20 × fasting insulin)/(fasting glucose − 3.5) [31]. GDF15 concentration

was measured with Human GDF-15 Quantikine Elisa Kit (R&D Systems, Minneapolis, MN,

USA). Serum GDF15 samples during and after pregnancy were diluted 1:64 and 1:4, respec-

tively. CSF GDF15 samples were diluted 1:2. The intra- and inter-assay coefficients of variation

(CVs) for GDF15 measurements were 1.7% and 7%, respectively.

Statistical analysis

Variables are expressed as mean ± standard deviation (SD). Differences between pregnancy

and follow-up were assessed using paired t-tests; between-group differences for fetal sex were

assessed using independent t-tests and univariate tests. Associations were analyzed using Pear-

son correlations and linear regression models. For analysis during pregnancy, adjustments

were made for gestational age of pregnancy ss GDF15 levels increase steeply and progressively

during pregnancy [12]. Further potential confounders adjusted for were maternal pre-preg-

nancy BMI, gestational weight gain and fetal sex. All tests were two-tailed and conducted at a

0.05 significance level.

Results

Characteristics of study population

The characteristics and blood/CSF measurements for the women in the study are presented in

Table 1. A drop-out analysis showed that women who did not attend the follow-up had higher

pre-pregnancy BMI, and pregnancy glucose and insulin compared with women attending

both visits (BMI, 30 ± 4 vs 27 ± 4 kg/m2, P = 0.01; glucose, 4.5 ± 1.3 vs 3.9 ± 0.6 mmol/l,

P = 0.04; insulin, 13.9 ± 8.0 vs9.0 ± 5.4 mU/l, P = 0.02). There were no differences in age, gesta-

tional weight gain, placental weight or birth weight (P> 0.3), and importantly, there was no
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difference in GDF15 levels in serum or CSF at pregnancy between women that attended one

or two visits (P> 0.5).

Pregnancy GDF15 levels were increased in both serum and CSF

During pregnancy, GDF15 was almost 200 times higher in serum and more than 3 times

higher in CSF compared with levels five years after pregnancy (Table 2). The GDF15 ratio

CSF:serum was, however, lower during pregnancy compared with follow up.

Pregnancy GDF15 levels did not correlate with post-pregnancy GDF15 levels in either

serum or CSF. However, a strongly significant correlation was observed for the ratio CSF:

serum between the two time points (Table 2).

CSF GDF15 was also compared with serum GDF15 within the two time points separately

(Fig 2). During pregnancy, there was a clear and significant correlation (r = 0.577; P<0.001)

Table 1. Maternal characteristics at delivery and at follow-up.

Delivery N Mean ± SD Follow-up N Mean ± SD

General General
Age (y) 45 34.1 ± 4.4 Follow-up time (y) 25 5.0 ± 1.2

Pre-pregnancy BMI (kg/m2) 45 28.1 ± 5.0 BMI (kg/m2) 25 27.5 ± 4.7

Energy Intake (kcal) 24 2739 ± 1025 Energy Intake (kcal) 25 2068 ± 616

Gestational age at cesarean (d) 44 260 ± 35

Gestational weight gain (kg) 40 13.2 ± 6.1

Birth weight of child (kg) 44 3.6 ± 0.5

Blood measurement Blood measurement
p-Glucose (mmol/L) 44 4.2 ± 1.1 p-Glucose (mmol/L) 24 5.2 ± 0.5

s-Insulin (mU/L) 44 11.2 ± 6.9 s-Insulin (mU/L) 25 6.7 ± 3.9

HOMA-IR 44 2.3 ± 2.1 HOMA-IR 24 1.6 ± 1.0

HOMA-B (%) 40 453 ± 473 HOMA-B (%) 24 80 ± 39

s-Leptin (ng/ml) 44 15.1 ± 7.7 s-Leptin (ng/ml) 25 18.4 ± 13.3

s-Adiponectin (μg/ml) 43 5.2 ± 2.3 s-Adiponectin (μg/ml) 25 10.0 ± 4.4

s-Hs-CRP (mg/L) 45 7.8 ± 9.8 s-Hs-CRP (mg/L) 25 2.9 ± 5.3

CSF measurement CSF measurement
CSF-Insulin (mU/L) 45 0.33 ± 0.12 CSF-Insulin (mU/L) 17 1.5 ± 1.6

CSF-Leptin (ng/ml) 45 0.24 ± 0.08 CSF-Leptin (ng/ml) 17 0.20 ± 0.10

https://doi.org/10.1371/journal.pone.0248980.t001

Table 2. GDF15 in serum and CSF at delivery and at follow-up 5 years after delivery.

Pregnancy vs Follow-up

N Mean ± SD1 (Mean ± SD)2 Difference Correlation

Serum GDF15 (ng/L) Pregnancy 44 73789 ± 29198 (69189 ± 22373) Pa<0.001 R = 0.290 Pb = 0.215
Follow-up 24 404 ± 102

CSF GDF15 (ng/L) Pregnancy 45 385 ± 128 (424 ± 140) Pa<0.001 R = 0.487 Pb = 0.077
Follow-up 16 115 ± 32

CSF:serum GDF15 (%) Pregnancy 44 0.56 ± 0.19 (0.65 ± 0.22) Pa<0.001 R = 0.734 Pb = 0.003
Follow-up 16 31.9 ± 10.3

1Mean ± SD for all women.
2Mean ± SD for women attending both pregnancy and follow-up visit.

pa, significance between pregnancy and follow-up using paired t-test; pa, significance for Pearson correlation between pregnancy and follow-up; R, Pearson correlation

coefficient.

https://doi.org/10.1371/journal.pone.0248980.t002
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between GDF15 serum and CSF levels (Fig 2A). In contrast, 5 years after pregnancy there was

no correlation between serum and CSF levels (Fig 2B).

Women carrying a female fetus had the highest GDF15 levels in both serum

and CSF

Women carrying a female fetus had significantly higher GDF15 levels both in serum and in

CSF during pregnancy compared with women carrying a male fetus (Fig 3), whether or not

Fig 2. Correlations between GDF15 in cerebrospinal fluid and GDF15 in serum. Pearson correlation at A) cesarean section and B) at follow-up 5 years after pregnancy.

https://doi.org/10.1371/journal.pone.0248980.g002

Fig 3. Maternal GDF15 levels at cesarean section depending on fetal sex. Box plot of GDF15 in A) serum, B) CSF or C) CSF:serum ratio. aindependent t-test; badjusted

for maternal pre-pregnancy BMI, maternal age and gestational age. The box represents first quartile, median and third quartile; the whiskers represent standard deviation.

https://doi.org/10.1371/journal.pone.0248980.g003
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the analysis was adjusted for gestational age, maternal age and BMI. There was no significant

difference in the CSF:serum ratio of GDF15 between mothers carrying fetuses of different sex.

After pregnancy, there were no differences in GDF15 in either serum or CSF between mothers

that carried female vs. male fetuses (P> 0.6).

Serum GDF15 associated with beta-cell function

At cesarean section, there were no associations between GDF15 in serum or in CSF with self-

reported pre-pregnancy BMI (P = 0.18) or gestational weight gain (P = 0.92). There was a posi-

tive association for serum GDF15 with HOMA-B (Table 3), but no significant associations

with glucose, insulin or HOMA-IR were found. Similarly, associations between serum GDF15

and the adipokines leptin and adiponectin, the inflammation marker hs-CRP, and birth weight

were not significant. The association between GDF15 and placental weight was significant

when adjusted for gestational age, but not in the fully adjusted model.

There was a negative association between CSF GDF15 and insulin when adjusted for gesta-

tional age, but not in the fully adjusted model (Table 3). There was no association with CSF

leptin.

At follow up, none of the blood or CSF measurements correlated significantly with GDF15

(S1 and S2 Tables). There were no significant correlations between GDF15 and energy or mac-

ronutrient intake at delivery or at follow-up.

Discussion

For the first time, GDF15 levels were measured in CSF of pregnant women. We showed

increased levels of GDF15 in both CSF and serum compared with the non-pregnant state,

whereas the ratio CSF:serum was lower during pregnancy. Furthermore, women carrying a

female fetus had higher GDF15 levels in both serum and CSF.

Table 3. Associations for serum and CSF GDF15 during pregnancy.

Model A Model B

β P β P
Serum GDF15
p-Glucose -0.181 0.269 -0.286 0.165

s-Insulin -0.162 0.322 -0.289 0.098

HOMA-IR -0.180 0.273 -0.284 0.123

HOMA-B 0.449 0.003 0.590 0.001

s-Leptin -0.097 0.556 -0.190 0.343

s-Adiponectin 0.234 0.155 0.239 0.277

s-Hs-CRP 0.220 0.154 0.106 0.564

Placental weight 0.325 0.044 0.289 0.191

Birth weight 0.100 0.543 0.019 0.932

CSF GDF15
CSF-Insulin -0.318 0.038 -0.232 0.275

CSF-Leptin -0.165 0.293 -0.128 0.527

Linear regression analysis with blood, CSF or pregnancy variables as dependent variables and GDF15 measurement

as independent variable. β represents the standardized beta coefficient for GDF15.

Model A- adjusted for gestational age at sampling.

Model B–adjusted for gestational age, maternal age, maternal pre-pregnancy BMI, gestational weight gain and fetal

sex.

https://doi.org/10.1371/journal.pone.0248980.t003
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We have previously shown in a different cohort followed prospectively that serum GDF15

was increased up to 200 times in trimester 3 compared with the non-pregnant state [12]. We

found similar elevated serum levels in the current population, but also showed an increase in

GDF15 in the CSF during pregnancy. The (approximately 3-fold) increase in CSF was smaller

than observed in serum, thus the ratio of CSF:serum was decreased during pregnancy. GDF15

has been proposed to regulate food intake, to be involved in taste aversion and possibly in food

choice, as well as in improvement of glucose tolerance [3–5, 32, 33]. High serum GDF15 levels

during pregnancy have previously also been linked to nausea and hyperemesis gravidarum,

and in our previous study we showed an association with beta-cell function as measured by

HOMA-B [12, 17, 18]. However, anorexia and cachexia, which would be expected at high

GDF15 levels, does not normally occur during pregnancy. Pregnant women increase food

intake and gain a substantial amount of weight (for example, normal-weight women in our

prospective cohort gained 10.5 kg body weight of which 4 kg was fat mass [34]). How these

greatly increased GDF15 levels coexist with increased energy intake during pregnancy is not

yet known. Although the main effects of GDF15 are believed to be regulated through the

GFRAL receptor of the brainstem [1, 2, 22, 35], GFRAL-independent effects centrally or

peripherally cannot be excluded [36]. GFRAL has been shown to be exclusively expressed in

the AP and NTS regions of the brainstem in the non-pregnant state [1, 2, 22], although no

studies have examined maternal GFRAL expression during pregnancy.

AP has a permeable BBB, which means that the GFRAL receptor is exposed to circulating

ligands from both blood and CSF, whereas NTS is situated behind a less permeable BBB [24].

In murine models, both peripheral and central injections of GDF15 reduce food intake and

cause weight loss [22, 25]. Effects of increased GDF15 in CSF on human physiology are not

known. GDF15 in CSF has been measured only in a few studies, never in pregnancy, but in

conjunction with its potential role in CNS disease. In these studies GDF15 was shown to be

increased in CSF of patients with neurodegenerative disorders such as multiple sclerosis [26]

and Parkinson’s disease [27] or in glioblastoma patients [28]. Patients in these studies typically

had GDF15 levels of between 200–300 pg/ml in CSF (approximately 50% higher than match-

ing controls), i.e. a smaller increase than we found in pregnancy in the present study. The con-

trol subjects in previous studies showed similar CSF levels to our non-pregnant subjects at

follow-up [26, 27]. Unfortunately, none of the previous studies with CSF levels of GDF15 per-

formed parallel measurements of serum GDF15 so comparisons of CSF:serum ratios are not

available.

In the non-pregnant state, we saw no correlation between GDF15 in CSF and serum, which

may indicate that a proportion of GDF15 in CSF is produced within the CNS. In pregnancy,

however, a state with large GDF15 increases, CSF levels correlated with serum levels. One

explanation for this could be that large peripheral increases in GDF15 from placental expres-

sion [10], leads to increased transport (active or passive) from blood to CSF across the BBB.

Interestingly, even though there was no association found with either CSF or serum GDF15

levels when comparing the pregnant vs. non-pregnant state, the CSF:serum GDF15 ratio was

strongly correlated between states. This could be interpreted as women with a high degree of

GDF15 transport across the BBB in the non-pregnant state may also have a high degree of

transport in the pregnant state. However, as mentioned above, it should be noted that all

GDF15 in CSF is presumably not from a peripheral origin. Expression of GDF15 in CNS and

release into the CSF has been shown in murine studies [37], and CNS expression has been doc-

umented in the open-access Brain Atlas resource of the Human Protein Atlas [38].

We have previously shown, in a different cohort of pregnant women, higher GDF15 serum

levels in women carrying a female compared with male fetus [12]. We confirmed that finding

in the current cohort, and also showed that CSF levels of GDF15 were higher in the women
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carrying a female fetus. This is a new observation, and the mechanism for higher GDF15 levels

in female pregnancies is not known. However, sexual dimorphism is found for placental tran-

scription of other endocrine molecules found at high levels during pregnancy (such as human

chorionic gonadotropin, HCG), where sex chromosomes has been suggested to play an impor-

tant role [39]. Even though the reason for increased GDF15 levels is not known, one could

speculate that the higher degree of nausea found in women carrying girls [40–43] might be

linked to the higher GDF15 concentrations in serum and/or CSF. There was no difference in

CSF:serum ratio of GDF15 for women with male versus female fetuses, which is as expected if

CSF levels are mainly determined by peripheral levels.

We also confirmed in this new cohort of women our previously shown association between

serum GDF15 and HOMA-B in serum. Additionally, we observed a negative association of

CSF GDF15 with CSF insulin, but no association with CSF leptin. Both insulin and leptin are

believed to be involved in the central regulation of energy balance and peripheral glucose

metabolism during pregnancy [44]. Both hormones stimulate POMC and inhibit AgRP/NPY

neuronal activity and are therefore implicated in decreased food intake. In the present study,

we found no change in CSF leptin during pregnancy compared to follow-up, whereas CSF

insulin was lower during pregnancy compared to follow-up (p = 0.01). In agreement with our

previous study of serum GDF15 in pregnancy, we did not see a correlation with gestational

weight gain. We also did not observe any association with self-reported dietary intake,

although it should be noted that only approximately half of the women returned a completed

dietary questionnaire.

Strengths and limitations

As most research on GDF15 in the CNS has been performed in animals, this study adds impor-

tant new knowledge in the human. The design of the study with women acting as their own

controls is a strength of the study. However, limitations include the shortfall in number of

women attending the follow-up CSF sampling. This reduces power and could open for poten-

tial bias. The women attending both visits had lower BMI, glucose and insulin compared with

the women only sampled at pregnancy. Importantly, however, there were no differences in

GDF15 levels, and with only performing paired longitudinal analysis for changes between the

two time points the bias should not influence the results of the present study. Also, we did not

have information about pregnancy induced nausea, which would have been valuable to evalu-

ate the role played by CSF and serum GDF15 in this respect.

Conclusion

In conclusion, we have measured GDF15 in CSF of pregnant women and compared the levels

longitudinally to the non-pregnant state. We showed increased levels of GDF15 in both CSF

and serum during pregnancy compared with follow-up, and that both CSF and serum levels

were highest in women carrying a female fetus. We propose that effects of GDF15 during preg-

nancy can be mediated by changes in both CSF and serum levels. These types of human studies

are important to start elucidating how GDF15 might be centrally regulated in its proposed

actions involving appetite, nausea and glucose metabolism.
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