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Abstract

The extraction of hidden information from complex trajectories is a continuing problem in single-particle and single-molecule
experiments. Particle trajectories are the result of multiple phenomena, and new methods for revealing changes in molecular
processes are needed. We have developed a practical technique that is capable of identifying multiple states of diffusion
within experimental trajectories. We model single particle tracks for a membrane-associated protein interacting with a
homogeneously distributed binding partner and show that, with certain simplifying assumptions, particle trajectories can be
regarded as the outcome of a two-state hidden Markov model. Using simulated trajectories, we demonstrate that this model
can be used to identify the key biophysical parameters for such a system, namely the diffusion coefficients of the underlying
states, and the rates of transition between them. We use a stochastic optimization scheme to compute maximum likelihood
estimates of these parameters. We have applied this analysis to single-particle trajectories of the integrin receptor lymphocyte
function-associated antigen-1 (LFA-1) on live T cells. Our analysis reveals that the diffusion of LFA-1 is indeed approximately
two-state, and is characterized by large changes in cytoskeletal interactions upon cellular activation.
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Introduction

The lateral mobility of cell-surface proteins plays a critical role in

mediating the biological functions of membrane proteins [1]. The

diffusion of membrane components is affected by factors including

the viscosity of the membrane, clustering of the receptor, and

binding to cellular components. The spatio-temporal dynamics of

membrane-associated receptors are therefore of considerable

interest as they can provide crucial insight into cellular signal

transduction. A variety of biophysical techniques, particularly

fluorescence microscopy experiments, have been extensively utilized

to quantify the lateral mobility of membrane proteins. The

complementary techniques of single particle tracking (SPT,

reviewed in Ref. [2]) and fluorescence recovery after photobleach-

ing (FRAP, reviewed in Ref. [3,4]) probe these dynamics at different

length scales. FRAP captures the behavior of a population of labeled

particles on a spatial scale of a few microns, while SPT records the

dynamics of individual molecules or small macromolecular clusters

over lengths of tens to hundreds of nanometers. In a typical SPT

experiment, a membrane-associated protein is labeled, either

fluorescently or with an antibody conjugated bead, and imaged

using high speed video microscopy with a temporal resolution of

tens of milliseconds or less. The spatial coordinates of the particle

can be determined to a sub-optical resolution of tens of nanometers,

permitting a detailed examination of the particle’s motion [5,6].

The enhanced spatial resolution of SPT, as well as its non-ensemble

nature, make the technique attractive for detailed single molecule

studies of cell surface receptor dynamics.

The analysis of particle trajectories is commonly based on a

classification into different modes of motion, such as Brownian,

hop diffusion, confined motion or directed diffusion based on fits

to their mean squared displacement (MSD) over time [7,8].

Brownian diffusion is characterized by a linear increase in MSD

with time with a slope proportional to the diffusion coefficient.

The timescale of diffusion is often treated by analyzing diffusion

over short time periods (typically 1–4 timesteps or tens of

milliseconds), referred to as microdiffusion, or longer time periods

(typically on the order of seconds), referred to as macroscopic

diffusion. Deviations from linearity are ubiquitous in time versus

MSD data for membrane-associated proteins. Such deviations are

variously attributed to flow, the presence of obstacles, membrane

compartmentalization or changes in membrane lipid organization

[9,10]. Numerous modelling studies have examined the effect of

membrane structure on particle trajectories and have proposed

methods to identify structural features of the plasma membrane

responsible for the observed diffusion [11–16]. Further difficulties

in the analysis of SPT data arise as individual trajectories often

show evidence of heterogeneity that is not easily resolved [17–21].

Thus new methods of analyzing particle trajectories are needed to

extract and interpret subtle changes in diffusive behavior.

Both FRAP and SPT experiments on adhesion receptors

commonly show a large reduction in receptor mobility upon
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binding with cytoskeletal components. Therefore, receptor motion

may involve multiple states (i.e. bound or unbound) that contribute

to the diffusion of the receptor in different ways. In a previous

study of the T cell integrin receptor, LFA-1, particle trajectories

were acquired with a temporal resolution of 1000 frames/s using

antibody-conjugated beads [22]. Macroscopic diffusion coeffi-

cients calculated using an MSD analysis were shown to be

distributed in two distinct subpopulations. Relative contributions

of the two subpopulations varied when the cells were treated with

different pharmacological agents, and when different conforma-

tions of the protein were preferentially labeled. These results

suggested a dynamic equilibrium of LFA-1 between two states with

distinct mobilities. Using cytoskeletal inhibitors, it was shown that

the cytoskeleton was largely responsible for the state with low

mobility. The existence of multiple states with distinct diffusive

properties has also been observed for the CD2 receptor on the

surface of T cells [23]. In these studies, evidence of heterogenous

diffusion was obtained using an MSD analysis that required a large

number of replicates for a reliable identification of the underlying

states. Additionally, the analysis used relied on changes in the

average diffusion, making it difficult to detect subtle or transient

changes in diffusivity within single trajectories.

Here, we present a novel analytical framework to identify

multiple diffusion states and estimate probabilities of switching

between them, from particle trajectories of cell-surface proteins.

Transitions between these states represent the binding and

unbinding of receptors to cytoskeletal contacts or other intracel-

lular signalling components. We introduce a new model that treats

particle trajectories as the outcome of a two-state hidden Markov

process, parametrized by diffusion coefficients of the two states and

rates of transition between them. We adopt a likelihood

maximization strategy to identify model parameters that best

describe a set of tracks, thus characterizing the underlying diffusive

states and the kinetics of the transitions between them.

This analysis was first tested with a series of simulated

trajectories and compared with previous approaches for isolating

subpopulations. We show that our analysis achieves a more

accurate and informative resolution of the underlying biophysical

parameters for a complex trajectory consisting of multiple states of

diffusion. We tested the applicability of this analysis to experi-

mental data of LFA-1 particle trajectories, and found that the

diffusion of this adhesion molecule can indeed be treated as a two-

state process due to its interactions with cytoskeletal binding

partners. Our analysis identifies the characteristic diffusion

coefficient of LFA-1 in the two states, and reveals the kinetics of

switching between them. The use of a likelihood-based approach

further allowed us to compare multiple models for given

experimental data, and identify the statistically most optimal

model that captures the receptor dynamics.

Results

A two-state hidden Markov model for single particle
tracks

We modeled single particle tracks for a labeled, membrane-

associated protein that binds to a uniformly distributed intracel-

lular substrate, such as cytoskeletal binding proteins. This binding

is schematically represented by the bimolecular reaction

PzS ?/
koff

kon:true

C ð1Þ

where P and C are the free and bound forms of the protein, and S
is the substrate. The kinetics of this interaction are characterized

by the bimolecular forward rate constant, kon:true, and a first

order unbinding rate constant, koff . We assume a homogeneous

spatial distribution of the substrate so that at equilibrium the

binding reaction is effectively first order with a rate constant

kon~kon:true
:½S�eq, where ½S�eq is the equilibrium concentration of

the free substrate. With this assumption, we can represent the

bimolecular reaction, at equilibrium, by the unimolecular reaction

D1 ?/
koff

kon

D2 ð2Þ

where D1 and D2 are the diffusion coefficients of the protein in its

free and bound forms, respectively. We further make the

simplifying assumption that the particle is imaged instantaneously,

and that changes in the particle state occur only at the acquisition

time, implying that the particle is entirely in one or the other state

between successive image frames (see Discussion for more details).

For a constant frame rate,
1

t
, where t is the sampling interval, this

assumption leads to the following fixed transition probabilities for

the particle to switch its state between successive frames (see Text

S1 for a derivation):

p12~
kon

konzkoff
1{e{(konzkoff )t
� �

ð3Þ

p21~
koff

konzkoff

1{e{(konzkoff )t
� �

ð4Þ

p11~1{p12, p22~1{p21: ð5Þ

In this model, the state sequence of the particle during an SPT

experiment is regarded as a 2-state Markov chain. The

Author Summary

Many important biological processes begin when a target
molecule binds to a cell surface receptor protein. This
event leads to a series of biochemical reactions involving
the receptor and signalling molecules, and ultimately a
cellular response. Surface receptors are mobile on the cell
surface and their mobility is influenced by their interaction
with intracellular proteins. We wish to understand the
details of these interactions and how they are affected by
cellular activation. An experimental technique called single
particle tracking (SPT) uses optical microscopy to study the
motion of cell-surface receptors, revealing important
details about the organization of the cell membrane. In
this paper, we propose a new method of analyzing SPT
data to identify reduced receptor mobility as a result of
transient binding to intracellular proteins. Using our
analysis we are able to reliably differentiate receptor
motion when a receptor is freely diffusing on the
membrane versus when it is interacting with an intracel-
lular protein. By observing the frequency of transitions
between free and bound states, we are able to estimate
reaction rates for the interaction. We apply our method to
the receptor LFA-1 in T cells and draw conclusions about
its interactions with the T cell cytoskeleton.

Hidden Markov Analysis of Single Particle Tracks

PLoS Computational Biology | www.ploscompbiol.org 2 November 2009 | Volume 5 | Issue 11 | e1000556



displacement of the particle at each step is the outcome of

Brownian diffusion with a diffusion coefficient corresponding to

the particle state at that interval. As described in Materials and

Methods, to simulate a single particle track arising from the 2-state

dynamics described above, we first generated a discrete Markov

chain that specifies the particle state at each time point. The initial

state of the particle was chosen randomly according to the

stationary probabilities of the two states, and the remaining states

were determined using a discrete-time stochastic algorithm

(Algorithm 1; Fig. 1). The particle displacements at each frame

were sampled from a zero mean Gaussian distribution with

variance proportional to the diffusion coefficient.

In an experimental trajectory, only the particle position is

recorded and information about the particle state must be inferred

from the displacement of the particle between successive frames.

Therefore, in our model, a particle trajectory is regarded as the

outcome of a 2-state hidden Markov model (HMM) [24] consisting

of a sequence of discrete states – free or bound – that are hidden

from the observer, and an observable displacement at each time

point from a well-defined probability distribution (Fig. 2A). As

demonstrated below, a traditional analysis using the mean squared

displacements does not reveal the diffusion coefficients of the

constituent states, the rates of transition between them, or the state-

sequence underlying an observed track. Therefore, we developed a

likelihood-based analysis of single particle tracks to infer these model

parameters and thus quantify the underlying biophysical process. It

should be noted that, though we have chosen to test the two-state

model described above, the hidden Markov formulation and the

associated likelihood maximization scheme is a more general and

powerful technique for analyzing a wide range of models. In

particular, for sufficiently well resolved data, an arbitrarily complex

model with multiple states, with diffusive, confined or directed

motion could be analyzed using this method. We intend to explore

such general models in future studies.

Maximum likelihood parameter estimation
We first consider a trajectory arising from 2D Brownian

diffusion and sampled at fixed time intervals, t. For an observed

sequence of independent displacements O~r1
:r2 � � � rN, the

likelihood of a diffusion coefficient D is

L(DjO)!
1

4pDt
e{r2

1
=4Dt: 1

4pDt
e{r2

2
=4Dt � � � 1

4pDt
e{r2

N=4Dt

~
1

(4pDt)N
exp {

XN

i~1

r2
i =(4Dt)

" # ð6Þ

where ri~jrij. To calculate the maximum likelihood estimate of D
we define the log likelihood function

L(DjO)~{N log (Dt){
1

4Dt

XN

i~1

r2
i ð7Þ

(up to an additive constant) and maximize it with respect to D to

obtain

Dmle~
1

4tN

XN

i~1

r2
i ~

1

4t
Sr2

i T ð8Þ

where Sr2
i T is the mean squared step size. This maximum

likelihood estimate of the diffusion coefficient is most closely

related to the microscopic diffusion coefficient obtained from an

MSD analysis.

The previous equation can be rewritten in the following familiar

form

ssd(t)~4Dmlet ð9Þ

with t~Nt and ssd(t)~
Pi~t=t

i~1 r2
i is the sum of squared

displacements. For a particle undergoing Brownian diffusion, the

single parameter Dmle sufficiently describes the particle motion. In

Fig. 2B we plot ssd(t) for three sets of simulated trajectories, two

for Brownian diffusion with a single diffusion coefficient, and one

for 2-state diffusion. We note an excellent linear fit to ssd(t) in

Figure 1. Simulation algorithm for a 2-state Markov chain.
doi:10.1371/journal.pcbi.1000556.g001

Hidden Markov Analysis of Single Particle Tracks
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each case, and an excellent match between the estimated Dmle and

Dsim for the Browmian diffusion trajectories.

For the 2-state system described above, as the track length

increases, Dmle approaches an effective diffusion coefficient, Deff ,

defined as the weighted average of the diffusion coefficient in

each state. For a sufficiently long track, or when averaging over

multiple tracks, the particle is in state 1 for a fraction of steps

p1~p21=(p12zp21), and in state 2 for a fraction of steps

p2~1{p1~p12=(p12zp21). Thus, the expected value of ssd(t) is

ssd(t)~4(p1D1zp2D2)t~4Deff t ð10Þ

The slope of a linear fit to ssd(t) for the 2-state tracks in

Figure 2B is indeed this weighted average for the chosen set of

parameter values. This Deff is a good descriptor for the overall

mobility of a 2-state particle, but it does not reveal the underlying

diffusion coefficients and their relative contributions. We now

describe a likelihood maximization scheme to identify these

parameters by fitting particle tracks to a 2-state hidden Markov

model.

The 2-state HMM is characterized by two diffusion coefficients

and two transition probabilities. We parametrized the model by

the parameter set h~flog10 D1, log10 D2,p12,p21g, and sought to

calculate the likelihood of h, for an observed particle track

O~r1
:r2 � � � rN

L hjO½ �!P Ojh½ �~
X
allq

P Ojq,h½ �P qjh½ � ð11Þ

Figure 2. Two-state particle trajectories. (A.) A schematic 2-state particle trajectory consisting of a sequence of observable displacements arising
from an underlying state sequence hidden from the observer (B.) Sum of squared displacements (ssd) as a function of time for simulated particle
tracks exhibiting purely Brownian motion with a diffusion coefficient D1~0:1 (mm)2=s, or D2~0:01 (mm)2=s, or 2-state motion switching between
these two diffusion coefficients with transition probabilities p12~1=10 and p21~1=20. Each ssd trace is generated from a total of 20 independently
simulated tracks, each containing 100 frames sampled at 10 ms intervals. The colored symbols mark the mean6standard deviation of the ssd for each
set of tracks, and the solid lines are the best linear fits to the time versus mean ssd data.
doi:10.1371/journal.pcbi.1000556.g002

Hidden Markov Analysis of Single Particle Tracks
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where q~s1
:s2 � � � sN ; (si~1 or 2) represents a particular state

sequence of the Markov chain. The probability P qjh½ � of observing

the state sequence depends only on the two transition probabilities,

whereas, for that state sequence, the probability P Ojq,h½ � of

observing the track depends only on the two diffusion coefficients.

Because the possible number of state sequences grows exponen-

tially with the number of steps in a track, a direct calculation using

the above equation is computationally prohibitive. However, the

forward-backward algorithm [25,26] efficiently calculates this

probability by recursively evaluating the forward variable aj(i),

defined as the probability of observing the partial sequence of steps

r1
:r2 � � � :rj up to step j, and being in state i at step j, given the

model parameters h:

aj(i)~P r1
:r2 � � � rj ,sj~ijh

� �
~

X2

k~1

aj{1(k)pki

" #
:P½rj jsj~i,h� ð12Þ

The probability of observing a track for a given choice of the

parameters h is

P Ojh½ �~
X2

i~1

aN (i): ð13Þ

As described in Materials and Methods, we used a modified version

of the forward algorithm to calculate the log likelihood of the

parameter set h~flog10 D1, log10 D2,p12,p21g for an observed set

of particle tracks (Algorithm 2; Fig. 3).

We then maximized this log likelihood with respect to the four

model parameters to calculate their most likely values for a given

set of tracks. We used a Markov Chain Monte Carlo (MCMC)

algorithm (Algorithm 3; Fig. 4) to maximize the log likelihood

function [26]. While it is computationally less efficient than

traditional gradient-based maximization schemes, this algorithm is

less liable to be stuck in a local maxima because of stochastic

downhill steps. Moreover, by sampling the log likelihood

landscape around the maxima, this algorithm establishes the

measure of uncertainty in each parameter estimate. Fig. 5 (A and

B) show a typical MCMC trajectory for fitting a set of simulated 2-

state particle tracks to a 2-state HMM. There is an initial ‘‘burn-

in’’ phase, indicated by the shaded region containing the first

20000 MCMC steps, during which the log likelihood increases

nearly monotonically as the trajectory converges toward a

maximum in log likelihood. After this burn-in phase, the log

likelihood value and the parameter estimates maintain relatively

steady values with small stochastic fluctuations. The distributions

of parameter estimates from the MCMC optimization are shown

in the histograms in Fig. 5C and D. We report the mean of each

parameter distribution as the maximum likelihood parameter

estimate and use the coefficient of variation (CV) to quantify the

uncertainty in this estimate.

We assessed the MCMC parameter optimization scheme for a

range of parameter values, using an ensemble of simulated tracks

for each parameter set. The results, summarized in Table S1 (Text

S1), include the maximum likelihood parameter estimates and

their relative deviations from the true parameter values. For all but

one parameter combination we tested, the maximum likelihood

parameter estimates are remarkably close to their true values, with

relative errors that are typically less than 10%. The error and

dispersion in the parameter estimates are most appreciably

affected by the relative magnitude of the two diffusion coefficients.

In particular, as the two diffusion coefficients approach each other,

the estimates of transition probabilities are progressively more

error-prone and errors of as much as 70% arise. Notably, the

magnitude of transition probabilities, either relative to each other -

simulating a preferred state - or when they are uniformly high -

simulating a frequent turnover of the particle between the two

states - had only a minimal effect on the overall reliability of

parameter estimates. We also tested the effects of varying the track

length on the accuracy and variability of estimated parameters

(Fig. S1, Text S1). As expected, both relative errors and dispersions

in the parameter estimates decreased with an increasing number of

frames.

In Fig. 5 (E and F), we plot another measure of dispersion in

parameter estimates, namely, the span of a 95% coverage of the

parameter distributions, which reveals any assymmetry in the

parameter distributions. For fixed values of D1, p12 and p21, but

varying D2 (corresponding to the first four parameter combina-

tions in Table S1), we observe increasing error and dispersion as

D2 approaches D1. These trends arise because the log likelihood

algorithm attempts to classify each displacement as arising either

from D1 or D2, using equation 19. This classification is

increasingly error-prone as the two states become indistinguish-

able, resulting in the errors seen in Table S1 and Fig. 5 (E and F).

These results suggest that, if the maximum likelihood estimates of

the two diffusion coefficients differ by less than two-fold, then the

2-state HMM is a poor descriptor of the system and parameter

estimates (especially the transition probabilities) should be

interpreted cautiously.

Comparison of HMM and MSD analysis
The most commonly used analysis of single particle trajectories

is to extract a diffusion coefficient from a linear fit to their mean

Figure 3. Forward algorithm for calculating log likelihood of parameter values of a 2-state HMM for a given track O.
doi:10.1371/journal.pcbi.1000556.g003
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squared displacement (MSD) over time [2]. Typically, a

macroscopic diffusion coefficient, Dmacro, that captures the particle

behaviour on a time scale of seconds is calculated. Heterogeneities

in the distribution of Dmacro reveal multiple subpopulations of

diffusing particles, and their relative contribution [22]. We used

simulated particle trajectories to directly compare an MSD-based

analysis with a 2-state HMM analysis over a range of frame rates,

acquisition times and simulation parameters. Typical results are

summarized in Fig. 6(A–D), with the output of Dmacro analysis

shown on the left (Fig. 6A, C) and the output of a 2-state HMM

analysis shown on the right (Fig. 6B, D). For simulated 2-state

trajectories, we note that the distribution of Dmacro values is more

dispersed than the individual distributions of D1 and D2 (Fig. 6A

and B). Further, peaks of the two subpopulations constituting the

Dmacro distribution do not accurately report the diffusion

coefficients of the two underlying states. In contrast, the HMM

analysis is less error-prone and yields sharper parameter

distributions. Moreover, the distribution of Dmacro does not reveal

the kinetics of the transition between the two states. Finally, we

note that when trajectories are simulated with only a single

underlying state, the Dmacro analysis shows spurious subpopula-

tions with peaks flanking the true value of the single diffusion

coefficient (Fig. 6 C), whereas the HMM analysis correctly reports

a near complete overlap in the distributions of D1 and D2,

consistent with only a single identifiable diffusion coefficient (Fig. 6

D). These results offer additonal validation of the proposed HMM

analysis for accurate resolution of 2-state dynamics that are not

well-discerned with an MSD-based analysis of particle tracks.

Analysis of LFA-1 particle trajectories
To test the applicability of the 2-state HMM described above, we

analyzed a set of experimental SPT data for the T cell integrin,

LFA-1. LFA-1 is critical for lymphocte adhesion and signaling, and

has been previously studied using both SPT [22,27–29] and FRAP

techniques [30,31]. In studies of LFA-1 lateral mobility on T cells, it

has generally been observed that receptor diffusion is highly

dependent upon cytoskeletal contacts. These interactions have

manifested themselves in large immobile fractions and reduced

diffusion coefficients. In previous work by Cairo et al., SPT

experiments showed heterogeneous LFA-1 dynamics, with two

apparent populations of diffusion coeffients [22]. The relative

contributions to LFA-1 mobility from these two subpopulations

were found to vary according to changes in the conformation of

LFA-1 and the activation state of T cells. We sought to better

understand the heterogeneity present in these experiments by

analyzing them with the 2-state HMM model. A typical distribution

of the most likely values of D1 and D2 for one set of experiments is

shown in Fig. 6 F, alongside the previously identified distribution of

Dmacro values segmented into the two subpopulations (Fig. 6 E). As

was the case for simulated particle trajectories, the distribution of

Dmacro for LFA-1 is more dispersed with a significant overlap

between the two subpopulations, compared to the distributions of

D1 and D2 from the HMM analysis. However, it must be noted that

unlike simulated trajectories, experimental particle tracks are

subject to greater intrinsic variability arising from differences

between individual cells. It is likely that this cell-to-cell variability is

partly responsible for the observed dispersion in Dmacro values,

whereas the maximum likelihood parameter estimates from the

HMM analysis essentially ignore this variability. Thus, for

experimental particle tracks, the well-resolved peaks in the estimates

of the diffusion coefficients (Fig. 6 F) should be interpreted as their

most likely values over the population of cells analyzed, while an

MSD-based analysis should be used to gauge the variability within

the population.

Figure 4. Algorithm for MCMC maximization of the log likelihood function L(hjjO) with respect to the model parameters h.
doi:10.1371/journal.pcbi.1000556.g004

Hidden Markov Analysis of Single Particle Tracks
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We applied the 2-state HMM analysis to the data set of LFA-1

particle trajectories observed on T cells by Cairo et al. [22]. In

these experiments, LFA-1 was labeled with either its cognate

ligand ICAM-1, or an antibody, TS-1/18, known to block

adhesion, and LFA-1 tracks were observed on resting cells, or

those perturbed by various pharmacological agents (Fig. 7).

Maximum likelihood parameter estimates for the 2-state model

are reported in Table 1. In addition to these model parameters, we

also list the stationary probabilities for the two states, a pseudo

equilibrium constant K�~kon=koff for the first order reaction

(equation 2), and an effective diffusion coefficient, Deff (equation

10), that captures the overall LFA-1 mobility for each set of

particle tracks. The Deff reported in Table 1 are nearly identical to

Dmle values calculated using equation 8, indicating that these two

measures of the overall mobility of a particle are consistent with

each other, and may be used interchangeably.

We note that for all the experiments analyzed here, the maximum

likelihood estimate of D1 is at least double that of D2, and typically

greater by five-fold or more. This separation suggests relatively

small errors in the parameter estimates ( 10%), based on our tests of

this analysis with simulated tracks of comparable length and

sampling interval. Dispersions in the parameter distributions

compare favourably with those for simulated tracks, with

CV,2% for the two diffusion coefficients and CV,15% for the

two transition probabilities. With the exception of ICAM-1-ligated

LFA-1 in phorbol-12-myristate-13-acetate (PMA)-treated cells, the

estimated value of D1 was 0:08{0:09(mm)2=s, most likely

capturing the diffusion of LFA-1 on the plasma membrane with

relatively little interaction with the cytoskeleton. We observe a much

greater variability in the estimates of D2, with values spanning

nearly an order of magnitude, consistent with an active engagement

between LFA-1 and the actin cytoskeleton in this state, thus

rendering it susceptible to factors that affect this interaction, such as

cytochalasin D treatment, or PMA-induced activation.

We observed that in untreated cells, ICAM-1 ligation reduces

the overall mobility of LFA-1, compared to TS-1/18-labeled LFA-1,

as assessed by the Deff value for the two experiments (Table 1; cf.

rows 1 and 2). This is consistent with the previously reported

results using an MSD analysis [22], but the HMM analysis

additionally reveals that the reduced mobility is primarily due to a

two-fold decrease in D2, and not due to an increased fraction of

time spent in the bound state. The decrease in D2 suggests that

upon interaction with ICAM-1, the integrin may bind to an

additional cytoskeletal-binding protein or could increase the

number of cytoskeletal contacts as part of a cluster resulting in

reduced mobility [32].

Figure 5. Parameter optimization for two-state model. A typical MCMC parameter optimization for an ensemble of 20 simulated 2-state
particle tracks with model parameters D1~0:1 (mm)2=s, D2~0:01 (mm)2=s, p12~0:05 and p21~0:025. Each track consists of 1000 frames sampled at
1 ms intervals. (A., B.) HMM parameter values are plotted for an MCMC trajectory that starts with a random initial guess and stochastically evolves in
the parameter space according to Algorithm 3 (Fig. 4). The shaded part of the plots indicate the burn-in phase during which the trajectory
approaches the log likelihood maxima. (C., D.) Histogram of parameter values from the MCMC trajectory above after excluding the burn-in phase. D1

and D2 are in units of (mm)2=s. The gray vertical lines in (D.) mark the values of transition probabilities that were used for simulating the particle
tracks. (E., F.) Typical errors and dispersions in maximum likelihood parameter estimates using the stochastic MCMC optimization scheme described in
the text. Ten independent particle tracks consisting of 1000 steps each, sampled at 5 ms intervals were simulated with D1~0:1 (mm)2=s, different
values of D2 , indicated by the colored dots in the left panel, p12~0:1 and p21~0:05. These parameter combinations correspond to the first four rows
in Table S1. MCMC parameter estimates and 95% coverage intervals of parameter histograms are shown by the corresponding colored crosses that
are centered at the maximum likelihood parameter values.
doi:10.1371/journal.pcbi.1000556.g005
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Treating cells with cytochalasin D reduces the lifetime of the

bound state, with approximately 40% smaller K� values compared

to untreated cells (Table 1; cf. rows 1 and 3, and rows 2 and 4).

Interestingly, this altered distribution between the two states is not

reflected in a consistent trend in the overall mobility: Deff is

virtually unchanged upon cytochalasin D treatment for the TS-1/

18 label, but increases by nearly 20% for ICAM-1-treated cells.

The difference arises because Deff is affected by changes in both

the two diffusion coefficients, as well as the relative lifetimes of the

two states (equation 10). In this specific case, a marginal decrease

in D1 offsets the shift in the equilibrium to that state for TS-1/18-

labeled LFA-1 such that the overall mobility is essentially

unaltered upon cytochalasin D treatment. In contrast, for

ICAM-1-ligated LFA-1, both diffusion coefficients increase upon

cytochalasin D treatment (D1 by nearly 10%, and D2 by over

25%), resulting in an increase in overall mobility. These results

illustrate a significant advantage of the 2-state HMM analysis in its

ability to capture subtle changes in multiple biophysical param-

eters, compared to an MSD-based analysis that only captures the

overall mobility.

PMA-induced activation of T cells lowered D2 relative to its

value in untreated cells, by over 8-fold for the TS-1/18 label

(Table 1; cf. rows 1 and 5), and by nearly 2-fold for the ICAM-1

label (Table 1; cf. rows 2 and 6), albeit with important differences

between the two cases. For cells labeled with TS-1/18, the reduced

mobility of the bound state is offset by a shift in the equilibrium

toward the free state, resulting in no net change in the overall

mobility. In contrast, when LFA-1 is ligated with ICAM-1, and the

cells are stimulated with PMA, the mobility of both free and bound

LFA-1 are reduced and concurrently, there is a shift in the

equlibrium toward the bound state, as seen by a two-fold increase

in K�. In combinations, these two factors dramatically lower the

overall LFA-1 mobility resulting in the lowest Deff value across all

the experiments analyzed here.

Notably, the combination of ICAM-1 ligation and PMA-

induced activation also increases both the transition probabilities,

p12 by nearly five-fold and p21 by over two-fold, relative to ICAM-

1 ligation alone (Table 1; cf. rows 2 and 6). PMA-activation alone

however reduced these transition probabilities relative to their

values in resting cells labeled with TS-1/18, as well as decreasing

D2 by nearly 10-fold. The transition probabilities are related to the

on and off rates of the LFA-1 interaction with its cytoskeletal

binding partners (equations 3 and 4). With the improved

resolution of the HMM analysis, we can thus discern subtle

regulatory mechanisms for the integrin receptors. It is clear that

LFA-1 is tightly regulated by a dynamic interaction with its

cytoskeletal binding partners. The effective diffusion of the

receptor is likely controlled by altering the specific binding

Figure 6. Comparison between MSD and HMM analysis. Distribution of Dmacro values estimated from MSD plots (left side, panels A,C,E) and the
distribution of maximum likelihood parameter estimates for a 2-state HMM (right side, panels B,D,F), applied to simulated (top and middle, panels A,B
and C,D) and experimental (bottom panels E,F) particle tracks. 20 simulated tracks each containing 1000 frames sampled at 100 frames/s were analyzed
for the top and middle examples. The tracks used for the top example (panels A,B) were simulated for a 2-state system with parameters D1~0:1 (mm)2=s,
D2~0:01 (mm)2=s, p12~0:05 and p21~0:025, and the tracks used for the middle example (panels C,D) were simulated for pure Brownian diffusion with a
diffusion coefficient of 0:01 (mm)2=s. The tracks used for the bottom panels (E,F) are for TS-1/18-labeled LFA-1 in resting T cells, and consist of 75
individual tracks sampled for 4 s at 1000 frames/s [22]. For each track Dmacro was calculated for 1/3 of the total length of the track. Dmacro values for each
set of tracks were binned and plotted as a histogram shown for each plot on the left. The corresponding densities of the distribution of Dmacro values
were estimated and fitted to the sum of two lognormal distributions (shown in blue and green) as described previously [22].
doi:10.1371/journal.pcbi.1000556.g006
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partner, or the on- or off-rates of the interaction. We see evidence

for both these putative mechanisms: the decrease in D2 upon

PMA-induced activation suggests that a different binding partner

may be involved, whereas the increased transition probabilities

upon the combination of ICAM-1 ligation and PMA treatment

suggest that the turnover rate between the two states is altered.

Thus, activation of the cell can alter either of the resolved diffusion

coefficients or modify the equilibrium between the bound and free

state. Together, these findings support the view that LFA-1

diffusion is a complex and dynamic process that integrates multiple

biochemical cues, such as cellular activation, binding partner and

conformational state, to influence T cell adhesion.

Conformation-dependent mobility of LFA-1. As previously

noted using a Dmacro analysis, the diffusion profile of LFA-1 is

conformation-dependent [22]. Lovastatin induces a conformational

change in the I domain of LFA-1 that prevents the adoption of the

active conformation required for ligand binding [33]. An MSD-

based analysis showed that in cells treated with lovastatin, there was

an increase in the mobile fraction relative to untreated cells. We

could further resolve this result using our 2-state HMM analysis that

shows that lovastatin does not alter D1 or D2, but instead shifts the

equilibrium away from the bound state, thus increasing the overall

receptor mobility (Table 1; row 7). Treating cells with PMA

appeared to reverse this trend (Table 1; row 8).

Calpain is a cytosolic protease that cleaves the talin head

domain, thus releasing LFA-1 from its cytoskeletal attachment site

[34]. Thus, it is expected that inhibiting calpain would interfere

with the exchange of LFA-1 between its free and bound states.

Surprisingly, the 2-state HMM analysis of cells treated with the

calpain inhibitor I (cal-I) shows a three-fold increase in p21, and a

concurrent reduction the lifetime of the bound state (K�~0:20,

compared to 0.46 in untreated cells; cf. rows 1 and 9 in Table 1).

Moreover, this trend was abrogated upon PMA treatment

(Table 1; row 10), consistent with a previous observation that

activation of LFA-1 by a calcium ionophore occurs independently

from calpain-mediated cleavage [35].

Segmentation of particle tracks
The hidden Markov formulation that we used to analyze single

particle tracks also allows us to identify the most likely state of the

Markov chain at each step along a track. To achieve this, the

forward-backward algorithm defines a backward variable

bj(i)~P rjz1
:rjz2 � � � rN jsj~i,h

� �
~
X2

k~1

pik
:P rjz1jsjz1~k,h
� �

:bjz1(k)
ð14Þ

that is the probability of observing the partial track rjz1
:rjz2 � � � rN

conditional on the particle being in state i at the j{th step and on

model parameters h. Therefore, the (unnormalized) probability of

the particle being in state i at step j, for an observed track O
conditional on h is

P½sj~ijO,h�~aj(i):bj(i) i~1,2 ð15Þ

where aj(i) is defined in equation 12. The state i that maximizes

this probability is the most likely state. We modified the recursive

definition of bj(i) above for our likelihood-based calculation, as

described in Algorithm 4 (Fig. 8), and estimated the most likely

particle states for a given track, using the maximum likelihood

parameter estimates, ĥh, for the calculation.

Figure 7. Schematic diagram of LFA-1 interactions and experimental conditions. A schematic diagram showing the putative interaction
between LFA-1 and a binding partner (e.g. talin) associated with the actin cytoskeleton, and the pharmacological agents used to perturb the system.
cyto D: cytochalasin D; lova: lovastatin; cal-I: calpain inhibitor I. Additionally, PMA was used to activate the cells. See reference [22] for details of
treatment conditions.
doi:10.1371/journal.pcbi.1000556.g007
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We tested the performance of the segmentation algorithm for

simulated trajectories that were previously used to assess the

performance of the likelihood maximization algorithm (Table S1).

For each set of trajectories, we used the maximum likelihood

parameter estimates to identify the sequence of most likely particle

state at each point along each track, and compared the prediction

with the true identity of that state. Not surprisingly, the accuracy of

track segmentation was strongly dependent on the accuracy of the

maximum likelihood parameter estimates, and in turn on the

separation between the two diffusion coefficients. When the diffusion

coefficients differed by two-fold or greater, we could typically identify

the true particle state more than 80% of the time. A representative

simulated track, color-coded to identify the particle state at each

point, is shown in Fig. 9 A, alongside the true and predicted state

sequences for the trajectory depicted with state-sequence ‘‘barcodes’’

for an easy visual assessment of the segmentation.

We applied the trajectory segmentation algorithm to LFA-1

particle tracks analyzed with a 2-state HMM. A selection of

segmented LFA-1 particle tracks is shown in Fig. 9 B. We noted

that for a majority of the observation period (4 s) the particles were

found in a single state, suggesting relatively slow switching kinetics

on the time scale of these experiments. To further classify the

behavior of individual trajectories, we calculated the total number

of state transitions during the 4 s data acquisition period, and the

fraction of that time during which a particle was in the bound

state(Fig. 10). The overall mobility of an individual particle

decreased with increasing fractions of time in the second state,

consistent with the smaller diffusion coefficient of the second state.

Interestingly, these plots reveal that on the time scale of these

experiments a majority of the particles were predominantly in a

single state, and only a small number of trajectories had frequent

state switches (Fig. 10B). This result is consistent with the generally

small transition probabilities, typically 0:01, for this system

(Table 1). It could also explain the relatively greater dispersion in

the transition probability estimates reported here, as a substantial

number of state switches would be required to estimate the

transition probabilities accurately.

Identification of the most optimal model
We now address the question of how to determine whether a 2-

state model is indeed the best descriptor for the observed data,

given one or more alternate models. We compared different

models by means of Akaike’s information criterion (AICc,

equation 21) and the associated Akaike weights (equation 23; see

Text S1 for details). We fitted simulated trajectories for pure

Brownian diffusion with a 2-state model, and noted that for the

maximum likelihood parameter estimates obtained in that case,

the 2-state model effectively collapses to a single-state diffusion

model (Fig. S2), that is preferred by the Akaike criterion. In

contrast, when the trajectories are simulated from a 2-state

process, the 2-state HMM outperforms a simpler 1-state model.

Notably, for all LFA-1 trajectories analyzed here, the 2-state

model is overwhelmingly preferred based on the Akaike criterion

(data not shown), thus indicating the suitability of this model over a

single state model to capture LFA-1 dynamics.

To determine whether a 2-state model is sufficient to describe

the data, we attempted to further resolve the two states into

component ‘‘sub-states’’. After the intial segmentation of an

ensemble of trajectories, we assembled all the displacements

ascribed to D1 into a single trajectory, and likewise, all the

diplacements ascribed to D2 into another trajectory. The two

resulting trajectories were then further analyzed with both a

1-state and a 2-state model. We found that it is indeed possible to

further resolve the each of these trajectories with a 2-state model
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(Fig. S3), suggesting some heterogeneity in the two states originally

identified. Importantly however, the separation between the

diffusion coefficients of the sub-states is much smaller (approxi-

mately a factor of two) relative to the separation between the

diffusion coefficients of the two original states (greater than an

order of magnitude). As noted above, a small separation between

the two diffusion coefficients implies that a 2-state model is an

unreliable descriptor of the data. Thus, we conclude that our

initial resolution of the data into two component states is sufficent

to characterize the experimental trajectories. When this procedure

was applied to an ensemble of simulated trajectories generated

using the maximum likelihood parameter estimates for the data,

we found that for the two virtual trajectories, the 2-state model

effectively collapsed to a 1-state model.

Discussion

In this study, we examined single particle trajectories for a

membrane-associated protein that interacts with cytoskeletal

binding proteins. Adhesion proteins at the cell membrane regulate

a variety of biological phenomena including inflammation and

antigen-presentation. Using a hidden Markov formulation to

model 2D trajectories of a membrane protein, we outlined a

systematic and easily-implemented procedure to parameterize a

two-state model of diffusion and binding. Parameter estimates for

this model can be used to identify the most probable state at each

frame of the trajectory and thus divide it into mobile and immobile

fragments. To establish the applicability of this analysis, we

rigorously tested it with simulated trajectories for a range of

parameter values. The HMM analysis revealed the diffusion

coefficients of the individual states and identified transient state

changes within single trajectories. Hidden Markov models have

been previously used to analyze actomyosin and kinesin-microtu-

bule movement data [36,37], and DNA looping kinetics [38] in

single-molecule microscopy experiments, but not to our knowl-

edge, to analyze the lateral diffusion of membrane proteins. Thus,

we have developed a novel methodology to analyze and interpret

single particle trajectories of cell-surface molecules.

Our method expands upon the standard MSD analysis for SPT

experiments, and provides previously inaccessible information

about hetereogeneous diffusion. We are able to confidently detect

the presence of two diffusion coefficients (D1 and D2), the transition

probabilities for switching between these states (p12 and p21), and an

apparent equilibrium constant based on these probabilities (K�). In

previous studies of LFA-1 diffusion, a population-based MSD

analysis was used to infer the presence of multiple states of diffusion.

Our new analysis reveals that there are indeed two states responsible

for the lateral-mobility of LFA-1, and that individual trajectories

show a mixture of both states (Fig. 9). We are able to resolve the

detailed state-switching behaviour of individual trajectories (Fig. 10).

These values are accessible only in the aggregate using an MSD

analysis, therefore, the method described here provides a new

window into single-molecule experimental data. As noted above, the

parameters provided by the HMM are inaccessible to a standard

MSD analysis, and may be used to resolve changes in the identity or

rate of specific interactions through changes in diffusion coefficients

and transition probabilities, respectively.

We made two key simplifying assumptions: first, that the particle

transitions between the two states with first order kinetics, and

second, that all transitions occur at the sampling time. First order

kinetics are justifiable when there is an excess of binding sites, but

without direct experimental data, it is difficult to judge the merit of

this assumption. Thus, the transition probabilities reported here

must be interpreted with care, as they depend on kon, and

therefore on the equilibrium substrate concentration, ½S�eq. This

caveat is especially important if transition probabilities reported

here are used to derive first order on and off rates by solving

equations 3 and 5 for kon and koff . Nonetheless, given a

measurement of the substrate concentration, and assuming that

it doesn’t change dramatically over the course of the 4 second

particle track, our method could be used to estimate the true

bimolecular on-rate for the interaction.

The assumption that transitions in the particle state occur on

order of the sampling time is more easily justified in light of the

relatively low transition probabilities that we observe (less than

once every 100 frames). For infrequent transitions relative to the

frame rate, the exact transition moment should not significantly

alter our analysis. The validity of this assumption must be checked

a-posteriori for a given experimental setup, by confirming that the

transition probabilities are indeed small (p12,p21%1) for the chosen

frame rate. We plan to expand our analysis to the more general

case when the transition rates are comparable to the acquisition

frame rates and the transitions occur at intermediate times.

Our analysis offers some distinct advantages over an MSD-

based approach. Firstly, by examining the diffusive behaviour of a

particle at each step along a trajectory, heterogeneous diffusion is

efficiently resolved. Secondly, unlike the distribution of Dmacro

from an MSD analysis, the distributions of HMM parameter

estimates quantify not only the diffusion coefficients of the

underlying states, but also the kinetics of transitions between

them. With some notable exceptions [39–41], these kinetic

parameters are typically inaccessible in traditional analyses of

SPT (or FRAP) experiments. There is mounting evidence that

interprotein interactions affect the mobility of membrane proteins

[42,43], and some progress has been made toward modelling these

effects [44]. In our analysis, we explicitly considered the effect of a

binding interaction on the local diffusive behaviour of a molecule

at short time scales and inferred the most likely parameter

estimates for this interaction.

Figure 8. Forward-backward algorithm for identifying the most likely states of the particle for a given track O.
doi:10.1371/journal.pcbi.1000556.g008
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Of the two states identified in our analysis, the one with greater

mobility (D1) is most likely the freely diffusing form of LFA-1, with

minimal interactions with intracellular proteins. This interpreta-

tion is well-supported by the relatively consistent value of D1

observed across a variety of experimental conditions (Table 1).

The state with low mobility (D2), reported here and in a previous

Figure 9. Segmentation of particle trajectories into the two hidden states. (A.) A simulated 2-state particle track with 1000 steps sampled at
5ms intervals, and parameters D1~0:1 (mm)2=s, D2~0:01 (mm)2=s and p12~p21~0:1, color coded to indicate the particle state (free: blue or bound:
red). The state sequence is also depicted in the top bar code in the right panel, and the predicted state sequence, inferred using the track
segmentation algorithm (Algorithm 4; Fig. 8), is shown in the bottom bar code. (B.) A selection of LFA-1 trajectories segmented into their two
component states. Each enclosing box is a square of side 1:5mm.
doi:10.1371/journal.pcbi.1000556.g009
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study [22], is likely to be either an actin cytoskeleton-associated

form of LFA-1, or part of an integrin-associated signaling cluster

that is slowly diffusing. Association with the actin cytoskeleton is

strongly supported by the nearly twofold reduction in the pseudo-

equilibrium constant, K�, upon cytochalasin D treatment (Table 1).

As well, a majority of the trajectories in cytochalasin D treated

cells, are found predominantly in the high mobility state and

exhibit very few state transitions (Fig. 10), suggesting that

continued actin polymerization is required for maintaining the

cytoskeletal attachment. Though the specific molecular mecha-

nisms responsible are not fully understood, there is considerable

evidence for a tightly regulated interaction between integrin

receptors and the actin cytoskeleton, mediated by cytoskeletal

proteins such as talin [45,46]. Our technique thus offers the

potential to resolve and quantify these interactions using SPT data

for LFA-1.

We note that, the values of diffusion coefficients reported here

are influenced by the use of a micron-sized bead to label the

protein. The potential effects of a bead on the mobility of a

membrane protein are discussed in reference [2], and include,

enhanced drag due to the interaction between the bead and the

extracellular matrix, and possible artifacts from crosslinking of the

protein by the antibodies used. Nonetheless, the use of a bead

allows for imaging at the high frame rates used in these

experiments (1000 frames/s), thus exposing the transient state

switching behavior that occurs on these short time scales.

Our analysis also assumes that the binding partner is

homogeneously distributed, such that the transition probabilities

have no spatial dependence. In this respect, it differs notably from

another class of SPT analysis that has been used to resolve

transient spatial confinement of particles [19–21]. Spatial

confinement typically arises from the preferential partitioning of

cell-surface receptors into or out of membrane microdomains.

Such trapping or exclusion has been directly visualized for T cell

signaling molecules with respect to CD2-enriched domains [43]

and CD9 with respect to tetraspanin-enriched areas (TEA’s) [41].

In another study, analysis of SPT data for a G-protein-coupled

receptor showed evidence for confinement within domains that

were themselves slowly diffusing (termed as ‘‘walking confined

diffusion’’) [42]. Our analysis does not directly resolve spatial

confinement, but instead resolves heterogeneity in the temporal

behavior of a diffusing particle. For sufficiently small confinement

regions that are relatively uniformly distributed, the slow diffusing

state in our model may indeed reflect the passage of a particle

through such a confinement zone. But it is difficult to make such a

conclusion in the absence of a secondary label used to visualize the

membrane heterogeneity.

We have tested simulated 2-state trajectories and experimental

LFA-1 trajectories using the spatial confinement algorithms

described previously [19,20], but do not find any consistent

patterns between the temporal state-switching in our analysis and

spatial confinement as identified by these algorithms (data not

shown). This is not surprising, because these algorithms requires a

clear separation between the macroscopic and microscopic

diffusion coefficients for effective detection of confinement, and

such separation is rarely observed in the LFA-1 data [22]. The

LFA-1 trajectories were acquired with a very high frame rate

(1000 frames/s), but for a relatively short interval (4 s).

Consequently, these data are best suited for analyzing the

behaviour of LFA-1 on a short time scale. This is in contrast

with the typical acquisition rates of 30 frames/s or slower and

acquisition times of tens of seconds that were used for the other

studies cited above. These longer acquisition times allow the

molecules to sample putative confinement regions and are

therefore better suited to effectively distinguish short term diffusive

behavior from long term confinement.

In general, analyzing spatial heterogeneity in mobility with the

HMM formulation would require substantially more complex

models than the one presented here, as the transition probabilities

themselves would vary with the location of the particle. Additional

Figure 10. Relative fractions of time spent in each state. Classification of LFA-1 trajectories based on (A.) the fraction of total steps when the
particle is in the bound state, and (B.) the mean number of transitions per second between the two states, plotted as a function of the overall
mobility. The state sequence for each individual trajectory was established using the track segmentation algorithm with the maximum likelihood
parameter estimates listed in Table 1. The overall mobility is indicated by Dmle values calculated using equation 8 applied to each trajectory.
doi:10.1371/journal.pcbi.1000556.g010
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complexity would be introduced by variations in the size of

confinement regions. In future studies, we intend to examine

modifications to our model that rigorously address these issues. A

notable advantage of the present analysis is the lack of any user-

tuned parameters, such as a characteristic confinement length (Lc)

or a minimum segment length (Sm), used in previous studies [19].

These parameters may vary for different experimental systems and

their judicious choice is essential for succesfully detecting spatial

confinement. In contrast, our analysis is directly applicable to a

variety of experiments without requiring significant modification

from its current form. However, we note that it may be possible to

extract equivalents of the confinement length or other parameters

from the results of the HMM analysis.

Finally, the likelihood-based approach that we adopted here is

flexible and can be extended to account for other modes of

motion. We tested a two-state Brownian model in this work, but

the HMM approach could be used to introduce additional states

or alternative models of mobility, such as directed motion. This

approach has the potential to resolve extremely complex and

heterogeneous trajectories. The use of likelihood as a metric for

the quality of a model allows for statistically well-defined

comparisons between various models, using AICc, as described

here, and other tests described elsewhere [47]. In summary, we

believe that fitting particle tracking data to a well-defined model

and using likelihood maximization to estimate model parameters is

a natural and powerful tool for inferring and quantifying the

spatiotemporal dynamics of cell surface proteins.

Materials and Methods

LFA-1 labeling and single-particle trajectories
Experimental LFA-1 trajectories used were acquired as

described in Cairo et al [22]. Briefly, 1 micron beads were labeled

with either an adhesion protein (ICAM-1) or a Fab fragment of an

LFA-1 binding antibody (TS1/18). The beads were then blocked

to prevent non-specific binding, and Jurkat T cells (clone E6.1,

ATCC, Manassas, VA, USA) were labeled with beads and

observed using video microscopy [48]. Cells were treated with

HBSS buffer containing either a vehicle control (DMSO),

phorbol-12-myristate-13-acetate (PMA), cytochalasin D (cytoD),

or calpain inhibitor-I (cal-I). Trajectories were collected on live

cells at 1000 FPS (1 ms) and converted to trajectories using

Metamorph (Universal Imaging, Downington, PA, USA). Data

were analyzed by either an MSD algorithm combined with a

population analysis [22] or by the HMM method described here.

Simulation of single particle tracks
For a particle undergoing Brownian diffusion in a d{

dimensional space with a diffusion coefficient D, the probability

density of observing a displacement r after a time interval t is

given by:

P(r,tjD) dr~
e{jrj2=4Dt

(4pDt)d=2
dr ð16Þ

In this study we are concerned with single particle tracks of a

membrane-associated protein that is imaged at fixed time

intervals. Thus, d~2 and t is the frame rate at which the particle

is imaged. A simulated track therefore consists of N successive

displacements, (xi,yi); i~1, . . . ,N with the displacement along

each dimension distributed normally, with mean 0 and variance

2Dt. To simulate Brownian diffusion, we used the Matlab function

normrnd to generate such a sequence of displacements and then

cumulatively summed them to calculate the particle coordinates.

To simulate trajectories for a particle with 2-state diffusion we

first generated a Markov chain S~s1,s2, . . . ,sN where si~1 or 2
denotes the state of the particle at the i-th time point. The 2|2
Markov transition matrix

A~
p11~1{p12 p12

p21 p22~1{p21

� �
ð17Þ

is composed of the probabilities p12 and p21 for transitions between

the two states. The Markov chain was simulated using Algorithm 1

(Fig. 1). The particle displacements (xi,yi); i~1, . . . ,N were then

drawn randomly from a normal distribution with 0 mean and a

variance 2Dsi
t.

Hidden Markov model likelihood estimation
A particle trajectory consists of a sequence of individual

displacements, denoted as O~r1
:r2 � � � rN , where, ri~(xi,yi).

We calculated the log likelihood, L(hjO), of parameter values

h~flog10 D1, log10 D2,p12,p21g for a particle track as described

next. First, we defined the likelihood of a diffusion coefficient Di

for an individual displacement rj as

Li(rj)!P(xj ,yj jDi,t)~
e{(x2

j zy2
j )=4Dit

4pDit
ð18Þ

and the corresponding log likelihood as

‘i(rj)~ log Li(rj)
� �

~{
r2

j

4Dit
{ log (Dit) ð19Þ

where r2
j ~x2

j zy2
j . The proportionality in the first equation arises

because the likelihood function is only defined up to an arbitrary

multiplicative constant. Likewise, the log likelihood function is only

defined to an arbitrary additive constant, and in our definition

(equation 19) we only retained terms that contain an explicit

dependence on model parameters, ignoring coefficient such as

1=(4p). The log likelihood of the parameters for a sequence of

displacements was calculated using Algorithm 2 (Fig. 3), which is a

modified version of the forward-backward algorithm [24,49].

Finally, the log likelihood function for an ensemble of independent

trajectories, O(1),O(2), . . . ,O(M)
� �

, is simply the sum of the log

likelihood function evaluated for each trajectory.

L hjO(1),O(2), . . . ,O(M)
� �

~
XM
k~1

L hjO(k)
� �

ð20Þ

Maximum likelihood parameter estimation
To estimate the maximum likelihood parameters of a 2-state

HMM for a set of tracks, we used a stochastic Markov Chain Monte

Carlo (MCMC) optimization scheme (Algorithm 3; Fig. 4). This

algorithm assigns random initial values to all the parameters and

iteratively traverses the parameter space through a succession of

small displacements along each parameter axis. For each proposed

displacement, the log likelihood function is evaluated at parameter

values after the displacement and compared to the log likelihood for

the current parameter values. A proposed displacement is accepted

or rejected using a Metropolis rejection scheme: any proposed

displacement that increases the log likelihood from its current value

Hidden Markov Analysis of Single Particle Tracks
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is accepted, but a proposed displacement that decreases the log

likelihood from its current value is only accepted with a probability

equal to the fractional change in the likelihood function after the

proposed move. Typically the MCMC runs were n~1{2|105

steps long with an initial burn-in phase during which the MCMC

trajectories approach an equilibrium. The scales of displacement, s,

were adjusted to achieve an acceptance rate of 20–40% along each

parameter axis after the burn-in phase. The acceptance rate is

defined to be the ratio of number of accepted moves to the total

number of proposed moves along a parameter axis during the

MCMC run. The sample means of the MCMC trajectories, after

excluding the burn-in phase, were reported as the maximum

likelihood parameter estimates. We also calculated the coefficient of

variation (CV), the ratio of the sample standard deviation to the

sample mean, to measure the variability of the parameter estimates.

Track segmentation
We define ĥh~flog10 D̂D1, log10 D̂D2,p̂p12,p̂p21g as the set of

maximum likelihood parameters for a given track O and use a

modified version of the forward-backward algorithm to estimate

the most likely state, ŝsj of the Markov chain at each step along the

track (Algorithm 4; Fig. 8).

Model comparison
To compare the effectiveness of different models in describing a

set of tracks, we used the Akaike information criterion (AICc),

defined as

AICc~{2L½ĥhjO�z2mz
2m(mz1)

n{m{1
ð21Þ

where L½ĥhjO� is the log likelihood function of the maximum

likelihood parameter set ĥh for a model with m parameters, given n
independent observations. Here, n is the number of individual

displacements in the trajectory O. To interpret the AICc values

for different models, we use the rescaled AICc values, defined as

Di~(AICc)i{(AICc)min ð22Þ

where (AICc)min is the minimum AICc value among all models

under consideration, that is, Dmin~0. Each model is then assigned

an Akaike weight

wi~
exp½Di=2�P

exp½Di=2� ð23Þ

that measures the relative evidence in its favour. The sum in the

denominator is over all the models under consideration [47].
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