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A B S T R A C T

Background: Esophageal squamous cell carcinoma (ESCC) remains one of the deadly cancer types. Compre-
hensively dissecting the molecular characterization and the heterogeneity of ESCC paves the way for devel-
oping more promising therapeutics.
Methods: Expression profiles of multiple ESCC datasets were integrated. ATAC-seq and RNA-seq were com-
bined to reveal the chromatin accessibility features. A prognosis-related subtype classifier (PrSC) was con-
structed, and its association with the tumor microenvironment (TME) and immunotherapy was assessed.
The key gene signature was validated in clinical samples. Based on the TME heterogeneity of ESCC patients,
potential subtype-specific therapeutic agents were screened.
Findings: The common differentially expressed genes (cDEGs) in ESCC were identified. Up-regulated genes
(HEATR1, TIMELESS, DTL, GINS1, RUVBL1, and ECT2) were found highly important in ESCC cell survival. The
expression alterations of PRIM2, HPGD, NELL2, and TFAP2B were associated with chromatin accessibility
changes. PrSC was a robust scoring tool that was not only associated with the prognosis of ESCC patients, but
also could reflect the TME heterogeneity. TNS1high fibroblasts were associated with immune exclusion. TG-
101348 and Vinorelbine were identified as potential subtype-specific therapeutic agents. Besides, the appli-
cation of PrSC into two immunotherapy cohorts indicated its potential value in assessing treatment response
to immunotherapy.
Interpretation: Our study depicted the multi-dimensional characterization of ESCC, established a robust scor-
ing tool for the prognosis assessment, highlighted the role of TNS1high fibroblasts in TME, and identified
potential drugs for clinical use.
Funding: A full list of funding bodies that contributed to this study can be found in the Acknowledgements
section.
© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/)
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1. Introduction

Esophageal cancer is one of the most commonly diagnosed cancer
types and the 6th leading cause of cancer-related death worldwide
[1]. Histologically, esophageal cancer can be categorized into two
major subtypes: esophageal adenocarcinoma (EAC) and esophageal
squamous cell carcinoma (ESCC), showing different epidemiology
and geographic distribution [2,3]. EAC is more prevalent in Western
countries, whereas ESCC is more common in East Asian countries,
such as China, Indian, and Iran [4]. In China, more than 90% of esoph-
ageal cancer cases were ESCC [5,6]. ESCC is a highly aggressive form
of squamous cell carcinoma with a 5-year survival rate of less than
20% [1]. Currently, surgical resection, radiotherapy, and chemother-
apy are still the primary treatment strategies against ESCC, but the
prognosis of patients remains poor due to the high recurrence rate
and early metastasis.

In recent decades, although there have been great advances in
cancer treatment strategies, such as the development and application
of immunotherapy [7,8], limited progress has been made in develop-
ing therapeutics against ESCC. Although results from recent clinical
trials of advanced ESCC patients after failure with first-line chemo-
therapy showed that there was a significant improvement in the
overall survival (OS) in using Pembrolizumab and Nivolumab com-
pared with chemotherapy, there were still a number of ESCC patients
showing little or no reaction to immunotherapy [9,10]. Therefore, A
comprehensive understanding of the common core molecular fea-
tures of ESCC is indispensable for developing more promising
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Research in context

Evidence before this study

Esophageal squamous cell carcinoma (ESCC) is one of the
deadly cancer types worldwide. The molecular changes in ESCC
as well as the heterogeneity among different ESCC patients
define the prognosis and treatment response. We searched
PubMed for research articles containing the terms ''esophageal
squamous cell carcinoma AND integrative analysis'' without
language or date restrictions. Several studies analyzing the
molecular changes of ESCC were found. However, the samples
enrolled in these studies were relatively limited, while integrat-
ing multiple ESCC datasets would further help identify the key
changes in ESCC. Besides, several gene signatures for the prog-
nosis assessment of ESCC have been reported, while the associ-
ation between previous gene signatures and tumor
microenvironment was less emphasized, and meanwhile, clini-
cal validation of the gene signatures is lacking. We also
searched PubMed for research articles containing the terms
''esophageal squamous cell carcinoma AND drug screening'',
and found no studies that screened potential drugs for ESCC
based on tumor microenvironment heterogeneity. Moreover,
no web application that could help researchers mine the pub-
licly available data of ESCC has been established.

Added value of this study

Through the integration of the expression profiling of ESCC
patients, we identified the shared molecular changes in ESCC.
By combing the ATAC-seq data with the RNA-seq data of ESCC
patients, we revealed the potential transcriptional regulation
characterization in ESCC. Besides, we established a survival-
related subtype classifier called PrSC, which was able to capture
the stromal heterogeneity in ESCC and predict the clinical
response to immunotherapy. We identified a group of TNS1high

fibroblasts in the stroma, which was associated with immune
exclusion phenotype and poor prognosis of ESCC patients. In
addition, based on the molecular heterogeneity of ESCC
patients, we identified some subtype-specific therapeutic
agents. We also built a web application (ESCCEXPRESS, http://
www.bioinfo-zs.com/esccexpress/)

Implications of all the available evidence

The core molecular changes in ESCC were depicted. Stromal
heterogeneity was significantly associated with the prognosis
of ESCC patients. TNS1high fibroblasts were associated with
immune exclusion, disease recurrence, and lymph node metas-
tasis. TG-101348 and Vinorelbine were potential subtype-spe-
cific therapeutic agents.
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therapies, and on the basis of that, identification of subclass patients
who may benefit more from different therapeutic agents based on
intrinsic heterogeneity could further facilitate the development of
personalized treatment strategies.

High-throughput detection platform has already become one of
the important tools to explore the biological alterations during carci-
nogenesis and tumor progression [11]. With the continuous accumu-
lation of data, researchers can now explore the key characteristics of
diseases in a larger cohort based on appropriate data integration
strategy and obtain more convincing results supported by multiple
pieces of evidence [12,13]. Such strategies have been widely applied
to study the molecular features of various cancer types such as lung
adenocarcinoma, hepatocellular carcinoma, and gastric cancer
[14�16]. However, compared with other common cancer types, such
approaches were less applied to study the molecular features of
ESCC. In the present study, we adopted an integrative strategy to sys-
tematically dissect the multi-dimensional features of ESCC. Through
the integration of the expression profiling of ESCC patients from mul-
tiple cohorts, we identified the shared molecular features in ESCC. By
combing the ATAC-seq data with the RNA-seq data of ESCC patients,
we also revealed the potential transcriptional regulation characteri-
zation in ESCC. On the other hand, we established a survival-related
subtype classifier called PrSC, which was able to capture the stromal
heterogeneity in ESCC and predict the clinical response to immuno-
therapy. Meanwhile, using multiplex fluorescent immunohistochem-
istry (mfIHC), we identified a group of TNS1high fibroblasts in the
stroma, which was associated with immune exclusion phenotype
and poor prognosis of ESCC patients. In addition, based on the molec-
ular heterogeneity of ESCC patients, we identified some subtype-spe-
cific therapeutic agents. Finally, we also built a web application
(ESCCEXPRESS, http://www.bioinfo-zs.com/esccexpress/), which pro-
vides several key functions for users to browse and mine the data we
used in the current study.

2. Methods

2.1. Ethics

Patients donating surgical tissue provided informed consent. All
diagnoses were confirmed by histological review by qualified pathol-
ogists. This study was approved by the ethics committee on human
research of Zhongshan Hospital, Fudan University (B2020-332R;
B2020-412R), and conducted in accordance with the principles of the
Declaration of Helsinki.

2.2. ESCC patient samples

Three pairs of ESCC tumor tissues and patient-matched adjacent
non-cancerous tissues (> 3 cm apart from tumor edge) were col-
lected at the Department of Thoracic Surgery, Zhongshan Hospital,
Fudan University, China, in 2020. Collected specimens were divided
into two parts, one for ATAC-seq and another for RNA-seq. The sam-
ples were stored at -80 °C until use. In addition, tissue microarrays
from 241 ESCC patients who underwent radical esophagectomy at
Zhongshan Hospital between 2008 and 2009 were used to verify the
expression and spatial distribution of TNS1. Clinical-pathological
data and follow-up information of these patients were collected as
previously described, including age, gender, tumor size, tumor depth,
lymph node metastasis, TNM stage, histological grade, disease free
survival (DFS), and overall survival (OS) [17]. The DFS was defined as
the interval from surgery to new tumor event, whether it was a local
recurrence or distant metastasis, and OS was defined as the duration
of survival after surgery.

2.3. ATAC-seq

Nuclei were purified from frozen ESCC samples based on the pre-
viously described protocol [18]. The quality of the harvested nuclei
was assessed using trypan blue staining. Next, 50,000 nuclei were
prepared for transposition reactions. The Nextera DNA Library Prepa-
ration Kit (Illumina, Cat#: FC-121-1030) was used to perform the
transposition reactions according to manufacturer’s instruction.
Nuclei were pelleted and resuspended with transposase at 37 °C for
30 min. After transposition, DNA fragments were purified with the
MinElute PCR Purification Kit (Qiagen, Cat#: 28004). Then, samples
were amplified using NEBNext High-Fidelity PCR Master Mix (New
England Biolabs, Cat#: M0541S). The amplified libraries were purified
with the MinElute PCR Purification Kit (Qiagen, Cat#: 28004) and
sequenced on Illumina Novaseq 6000 using PE150.
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After obtaining the raw fastq data, the adapter sequences and
low-quality reads were removed using Trimmomatic [19]. Then, the
quality of sequencing data was assessed with FastQC (https://www.
Bioinformaticsbabraham.ac.uk/projects/fastqc/). The clean data were
aligned to human genome (hg38) with Burrows-Wheeler Alignment
tool (BWA) [20]. Multiply mapped reads were removed using SAM-
tools [21]. The bam file generated by the uniquely mapped reads
were used for peak calling using MACS2 with q-value < 0.05 [22].
DeepTools was used for results visualization [23]. Differential peak
analysis was conducted using DESeq2 R package [24]. Genomic fea-
tures of peaks were annotated using ChIPseeker R package [25].
Tracks were visualized using the IGV (https://igv.org).

2.4. RNA-seq

Total RNA was extracted using Trizol (Thermo Fisher Scientific,
Cat#: 15596026). RNA degradation and contamination were assessed
on 1% agarose gels. NanoPhotometer spectrophotometer (IMPLEN)
was used to check RNA purity. RNA concentration was measured
using Qubit RNA Assay Kit (Life Technologies, Cat#: Q32855). RNA
integrity was evaluated using the Agilent Bioanalyzer 2100 system
(Agilent). Sequencing libraries were generated using NEBNext
UltraTM RNA Library Prep Kit for Illumina (NEB, Cat#: E7775) follow-
ing manufacturer’s protocol. The library fragments were then purified
using AMPure XP system (Beckman Coulter). Library quality was
assessed on the Agilent 2100 Bioanalyzer. The prepared libraries
were sequenced using Illumina Novaseq6000 platform and 150 bp
paired-end reads were generated.

Raw data were also processed using Trimmomatic [19]. Then, the
quality of data was assessed using FastQC. Reads were aligned to
hg38 using the STAR [26]. Read counts were generated using HTSeq
[27]. Differential gene expression analysis was conducted using
DESeq2 R package [24].

2.5. Chromatin accessibility and gene expression correlation analysis

In order to assess the global relationship between ATAC-seq sig-
nals and transcription levels of the corresponding genes, genes were
first categorized into high and low abundance groups based on their
mRNA levels using the median value. Then, we extracted TSSs infor-
mation of genes in high and low abundance groups respectively and
compared the ATAC-seq signals 10 kb up- and down-stream sur-
rounding these TSSs using deepTools [23].

2.6. Luciferase reporter assay

PRIM2 promoter (chr6: 57312805-57314804) was subcloned into
the Kpn I and XhoI sites of pGL3-Basica vector (Promega, Cat#:
E1751) to generate the PRIM2-P luciferase reporter. The peak26955
region (chr6: 57274167-57274877) was subcloned into the PRIM2-P
luciferase reporter via SalI and BamHI sites to generate the luciferase
reporter PRIM2-P-E. Transfection was conducted using FuGENE
Transfection Reagent (Promega, Cat#: E2311). Luciferase activity was
measured using the Steady-Glo Luciferase Assay system (Promega,
Cat#: E2550) according to the manufacturer’s instructions.

2.7. Multiplex fluorescent immunohistochemistry

Multiplex fluorescent immunohistochemistry (mfIHC) staining of
TNS1 (Protein Tech, Cat#: 20054-1-AP), CD8 (Servicebio, Cat#:
GB13068-2), and a-SMA (Servicebio, Cat#: GB111364) was per-
formed. Slides were first deparaffinized and rehydrated, followed by
antigen retrieval using sodium citrate retrieval solution (Servicebio,
pH 6.0, Cat#: G1206). Next, endogenous peroxidase and nonspecific
binding sites were blocked using 3% H2O2 (SCRC) and 3% BSA (Serv-
icebio, Cat#: G5001) respectively. After that, first primary antibodies
(CD8) and corresponding secondary antibodies marked with HRP
were applied, followed by the adding of CY3-TSA solution (Servicebio,
Cat#: G1223). Then, slides were microwave treated to remove the
primary antibodies and secondary antibodies combined with tissue.
The same process was conducted for the next two antibodies a-SMA
(FITC, Cat#: G1222) and TNS1 (CY5, Cat#: G1224). After sequential
reactions, slides were stained with DAPI (Servicebio, Cat#: G1012)
and scanned using Pannoramic MIDI (3DHISTECH). CY5 was origi-
nally red, in order to distinguish it from CY3, we set it to pink. After
mfIHC, we assessed the staining quality of each section and excluded
those with relatively poor qualities. Finally, 222 patients (222
patients with OS information and 201 patients with DFS information)
were included for subsequent statistical analysis.

The proportion of a-SMA+TNS1+ fibroblasts in the stroma was
semi-quantified as follows: 0 (0% a-SMA+TNS1+ cells present in the
stroma), 1 (1�10% of a-SMA+ cells in the stroma were a-SMA+TNS1+

positive), 2 (11�50% of a-SMA+ cells in the stroma were
a-SMA+TNS1+ positive) or 3 (>50% of a-SMA+ cells in the stroma
were a-SMA+TNS1+ positive). The staining intensity of TNS1 in
a-SMA+TNS1+ cells was scored as follows: 0 (negative), 1 (weak), 2
(intermediate), or 3 (strong). The total score was calculated as the
sum of the above two factors. Patients were classified into negative
(0), weak (1-2), moderate (3-4) and strong (5-6) staining groups,
respectively, and moderate and strong groups were defined as the
TNS1high group, while the negative and weak groups were defined as
the TNS1low group.

CD8+ T cell infiltration status was determined as follows: immune
desert (the proportion of CD8+ T cells was less than 1% of all nucle-
ated cells in a 5x magnification in a section), immune inflamed (not
immune desert, at least 10% of CD8+ T cells infiltrated into the tumor
mass), immune exclusion (not immune desert, less than 10% of CD8+

T cells penetrated into the parenchyma).

2.8. Public data collection and preprocessing

Gene Expression Omnibus (GEO) data repository was thoroughly
queried for all eligible ESCC expression profiles, and a total of 7 data-
sets (GSE17351, GSE20347, GSE23400, GSE38129, GSE45670,
GSE53625, and GSE77861) from different independent studies of
ESCC were included. All datasets, except for GSE53625, were based
on the Affymetrix platform, we therefore uniformly processed the
raw CEL data of these datasets using the RMA method for background
correction and normalization [28]. Besides, these 6 datasets were
integrated into a new GEO ESCC meta cohort (Supplementary Figure
3) after batch effect removal using sva R package [29]. As for
GSE53625, which was based on Agilent platform, we re-annotated
the probe sets by mapping all sequences provided in GPL18109 anno-
tation file to human genome (hg38) using SeqMap [30]. Probes that
were uniquely mapped were kept, meanwhile, probes that were
mapped to non-protein-coding transcripts were removed. All probes
were converted to gene symbols, and for genes that have multiple
probe-set signals, we averaged the values to obtain a single expres-
sion value. The clinical information of above datasets was down-
loaded using GEOquery R package [31], and among them, only
GSE53625 contained detailed survival information.

For TCGA data, somatic mutation information was downloaded
using TCGAbiolinks R package [32]. Fisher’s exact test was applied to
identify different mutated genes between S1 and S2 subtype patients.
For copy number variation (CNV) analysis, GISTIC 2.0 was used to
identify significantly amplified or deleted genomes [33]. DNA meth-
ylation data were collected from our previously developed web appli-
cation, SMART App (http://bioinfo-zs.com/smartapp/), and the
methylation burden of each sample was defined as the median value
of all CpGs associated with this sample [34]. ATAC-seq data of TCGA
patients were downloaded from GDC data portal (https://gdc.cancer.
gov/about-data/publications/ATACseq-AWG) [35]. As for TCGA-ESCC

https://www.Bioinformaticsbabraham.ac.uk/projects/fastqc/
https://www.Bioinformaticsbabraham.ac.uk/projects/fastqc/
https://igv.org
http://bioinfo-zs.com/smartapp/
https://gdc.cancer.gov/about-data/publications/ATACseq-AWG
https://gdc.cancer.gov/about-data/publications/ATACseq-AWG


4 Y. Li et al. / EBioMedicine 70 (2021) 103510
gene expression data, Toil-recomputed transcripts per million data
from Xena public data hubs were used [36]. The EAC data were
removed based on corresponding pathological information and we
ended up obtaining 92 tumor samples and 2 normal samples. Consid-
ering that there were only 2 normal samples in TCGA cohort, differ-
ential expression analysis comparing tumor vs. normal samples was
not performed in TCGA data. Survival information of these patients
was collected based on the previously published study [37]. ChIP-seq
profiles of H3K27ac of ESCC cell lines were downloaded from
GSE76859 [38].
2.9. Functional annotation of cDEGs

GO term enrichment analysis was conducted using clusterPro-
filer R package [39]. The impacts of cDEGs on various pathways
were evaluated using SPIA algorithm [40]. In brief, the built-in
bicor function of WGCNA R package was first used to estimate
the transcriptomics-based biweight midcorrelations between each
cDEG and all other genes [41]. Then, genes were ranked based on
their absolute values, and the top 500 genes were fitted into SPIA
algorithm to identify the pathways significantly impacted. This
process was performed on both GSE53625 and GEO ESCC meta
cohorts respectively, and pathways supported by both datasets
were considered significant.
2.10. Construction of PrSC and transcriptome similarity analysis

The flowchart illustrating the construction of PrSC is shown in
Supplementary Table 7. Specifically, Cox regression analysis was
first performed to screen survival-related genes in GSE53625 and
TCGA ESCC cohorts, respectively. Then, overlapped genes were fitted
into the Least Absolute Shrinkage and Selection Operator (LASSO)
Cox analysis (10-fold cross-validation) to further reduce dimension-
ality and select the most representative marker genes (glmnet R
package). We chose the λ value which corresponded to the smallest
partial likelihood deviance [42]. Based on the λ value, a total of 14
genes were kept, and each gene was automatically assigned with a
coefficient, then the PrSC score was generated based on the formula
we previously introduced [43]:

PrSC ¼
XNum

i¼1

Expi � LCið Þ

where Num represents the number of genes, Expi is the expres-
sion level of genei, and LCi is the LASSO coefficient of genei. The
maximally selected log-rank statistics was used to determine the
optimal cut-off value for classifying high- and low-score groups
[44]. Minprop parameter was set to 30% to avoid assigning too few
patients into a given group. Subsequently, subclass mapping (Sub-
Map) analysis was performed to evaluate whether subtypes identi-
fied in different cohorts exhibited similar transcriptional features
[45].
2.11. Gene set variation analysis and tumor microenvironment
components estimation

To quantify the biological function differences between S1 and
S2 subtype patients, gene set variation analysis (GSVA) was per-
formed using GSVA R package [46]. The pathway information was
downloaded from the MSigDB database (https://www.gsea-
msigdb.org/). Then, differential analysis was conducted to deter-
mine the significantly enriched pathways in each subtype. Tumor
microenvironment components were quantified using
MCPcounter [47]. Besides, stromal and immune scores were
inferred using ESTIMATE method [48].
2.12. Single-cell RNA sequencing data analysis

Single-cell RNA sequencing data of mouse esophageal cancer
model were downloaded from GSA database (CRA002118) [49].
Seurat (v4.0.0) standardized workflow was performed [50]. Tns1high

and Tns1low fibroblast groups were determined based on the median
expression value of Tns1. The FindMarkers function in Seurat was
used to identify differentially expressed genes (adjusted p value <

0.05). Top 10 genes were used as marker genes and the cell abun-
dance was calculated based on the mean value of the marker genes
[51]. Biological processes were inferred using GSVA method [46].
Cell-cell communications were inferred using CellChat [52]. Cells
were annotated based on canonical markers [49].

2.13. Drug response data collection and processing

Drug response data of human cancer cell lines were collected from
three independent datasets, including Cancer Therapeutics Response
Portal (CTRPv.2.0, https://portals.broadinstitute.org/ctrp), Genomics
of Drug Sensitivity in Cancer (GDSC1&2, https://www.cancerrxgene.
org/), and PRISM (19Q4, https://depmap.org/portal/prism/) [53-55].
The area under the dose-response curve (AUC) values were used to
assess the drug sensitivity, with lower values indicating higher sensi-
tivities. Drugs with NA values in more than 20% of cell lines were dis-
carded, then, we used k-nearest neighbors (KNN) method to impute
the remaining missing values. Finally, 632 cancer cell lines and 408
drugs were kept in CTRP, 741 cancer cell lines and 282 drugs were
kept in GDSC, and 440 cancer cell lines and 1291 drugs were kept in
PRISM. The corresponding expression data of cancer cell lines from
CTRP and PRISM datasets were obtained from Cancer Cell Line Ency-
clopedia (CCLE) [56], and the expression data of cancer cell lines from
GDSC were collected from GDSC1000 resource (https://www.cancer
rxgene.org/gdsc1000/).

2.14. Drug sensitivity estimation in ESCC patients

The ridge regression model wrapped in pRRophetic R package was
utilized to estimate the drug sensitivity of ESCC patients [57]. In brief,
this model was trained on expression data and drug response data of
cancer cell lines, therefore allowing the prediction of drug sensitivity
using the patients’ gene expression data. This method is shown better
than other models and can reflect the actual clinical drug response in
patients [58]. This model required three input files, the drug response
data of cancer cell lines, the expression profiles of cancer cell lines, as
well as the expression profiles of ESCC patients, which were prepro-
cessed by filtering out genes with low variability (MAD < 0.5). After
obtaining the predicted drug response data of ESCC patients, differen-
tial analysis was conducted between two subtypes.

2.15. ESCC cell line and cell viability assay

ESCC cell lines KYSE150 (RRID: CVCL_1348) and TE1 (RRID:
CVCL_1759) were purchased from Shanghai Fuheng Biological Tech-
nology Co. Ltd. (Shanghai, China). KYSE410 (RRID: CVCL_1352) was
purchased from Wuhan Procell Life Science and Technology Co., Ltd.
(Wuhan, China). TE11 (RRID: CVCL_1761) and KYSE180 (RRID:
CVCL_1349) were purchased from Shanghai Binsui Bio-Technology
Co. Ltd. (Shanghai, China). KYSE70 (RRID: CVCL_1356) was provided
by Shanghai Cancer Institute, State Key Laboratory of Oncogenes and
Related Genes (Shanghai, China). STR authentication of cell lines was
performed by vendors. Cells were maintained in Dulbecco’s modified
Eagle’s medium (DMEM, Gibco, Cat#: 11995500BT) containing 10%
fetal bovine serum (FBS, BIOIND, Cat#: 04-001-1ACS) at 37 °C in 5%
CO2. The classification of these cell lines was conducted using nearest
template prediction (NTP) method in Gene Pattern web application
(https://cloud.genepattern.org/) [59]. TG-101348 (10 mM, Cat#:
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S2736) was purchased from Selleck Chemicals. Vinorelbine (10 mM,
Cat#: HY-12053A) and ZM-447439 (10 mM, Cat#: HY-10128) were
purchased from MedChemExpress. For cell viability assay, 6000 cells
were seeded in 96-well plates and drugs were added after 24 h. Cells
were treated with drugs for 48 h. Afterwards, cell viability was deter-
mined using CellTiter-Glo Luminescent Cell Viability Assay (Promega,
Cat#: G7572). Luminescence was detected using Wallac Victor2 1420
MultiLabel Counter (PerkinElmer). Experiments were repeated at
least three times.

2.16. Statistics

Differential gene expression analysis of microarray data was per-
formed using limma R package [60]. Log-rank test was used to
describe the survival difference. Cox regression analysis was per-
formed using survival R package. The Wilcoxon rank sum test was
applied to determine the statistical difference of the two groups. For
comparisons of more than two groups, the Kruskal-Wallis test was
applied. The correlation analysis was conducted using the Spearman
method. For cell viability assay, the statistical significance of differen-
ces was determined by two-way ANOVA. All statistical tests were
two-sided, and statistical significance was considered when p < 0.05.
The website was built based on R Shiny framework. R (version 3.6.1)
was used for all statistical analyses.

2.17. Role of the funding source

The funding bodies were not involved in the study design, imple-
mentation, the analysis, or the interpretation of data.

3. Results

3.1. Identification of common differentially expressed genes across
different ESCC cohorts

The study design is shown in Fig. 1. Data integration is gradually
becoming a preferred strategy to investigate the shared key features
of diseases [51]. Although heterogeneity exists among different ESCC
patients, revealing the common core characteristics in different ESCC
patients is also vital for us to gain more insights into the molecular
features of ESCC. Seven ESCC datasets representing different indepen-
dent ESCC studies from the GEO data repository were first examined
(Supplementary Table 1). Differentially expressed genes in each of
the seven datasets were determined respectively (Supplementary
Figure 1A). A total of 252 genes showed consistent expression altera-
tions after the intersection, among which 178 genes were up-regu-
lated and 74 genes were down-regulated. Next, the tumor and
adjacent non-cancerous tissues of three ESCC patients who under-
went surgical resection at Zhongshan hospital (Zs) were subjected to
RNA-seq (Supplementary Figure 1A and Supplementary Table 2).
Then, we integrated the differentially expressed genes identified in
both the GEO data repository and patients at Zhongshan hospital to
look for shared genes, and this identified a total of 112 common dif-
ferentially expressed genes (cDEGs), with 69 genes up-regulated and
43 genes down-regulated (Supplementary Figure 1B and Supple-
mentary Table 3). Chromosomal distribution of cDEGs demonstrated
that chromosomes 1 and 3 containing the greatest number of dysre-
gulated genes in ESCC. Interestingly, two genes (ELF4 and KIF4A) on
the X chromosome were up-regulated, but not a single Y chromo-
some gene was captured (Supplementary Figure 2).

In order to further figure out whether these cDEGs were essential
for the survival of ESCC cells, we next examined the dependency pro-
files of cDEGs across ESCC cell lines based on the genome-wide
CRISPR-Cas9 loss-of-function data available from DepMap database
(https://depmap.org/) [61]. Among cDEGs, genes that were highly
important in ESCC cell survival were all up-regulated genes, including
HEATR1, TIMELESS, DTL, GINS1, RUVBL1, and ECT2, while not a single
down-regulated was essential in cell survival across ESCC cell lines
(Fig. 2A). Next, we investigated the prognostic relevance of cDEGs in
GSE53625 and TCGA cohorts (Fig. 2B) and found that MFHAS1 and
KIF18B showed a consistent prognostic relevance in GSE53625 and
TCGA cohorts, with higher expression associated with a better prog-
nosis of ESCC patients.

To explore the potential biological functions of cDEGs in ESCC, GO
term enrichment analysis was first performed. The up-regulated
genes were mainly associated with DNA replication, histone modifi-
cation, and chromatin regulation related biological processes, such as
DNA recombination, DNA replication, histone H3�K9 methylation,
and regulation of chromatin organization, whereas the down-regu-
lated genes were predominantly enriched in metabolic related pro-
cesses (Fig. 2C & D and Supplementary Figure 3A & B). Considering
that GO term enrichment analysis is mainly based on known func-
tions of input genes, and if the input genes are not well studied, the
potential impacts of these genes on biological processes and path-
ways may not be fully reflected. Therefore, we here adopted SPIA
algorithm [40], which took the expression features of input genes
into consideration, to explore the impacts of cDEGs on various path-
ways in ESCC. Many cancer-related pathways were identified as
highly correlated with cDEGs, including those that have functions in
the immune system, signaling, cell growth/death, metabolism, endo-
crine, and secretion, cell interaction and RNA regulation (Fig. 2E and
Supplementary Table 4). Consistent with GO enrichment analysis,
most up-regulated genes were highly correlated cell cycle, homolo-
gous recombination and p53 signaling pathway. Besides, we found
IGF2BP2, BCL7A, CYP27B1, CITED2, and CNN3 were involved in
immune-related pathways such as Th17 cell differentiation, antigen
processing and presentation, chemokine signaling pathway, and leu-
kocyte transendothelial migration.

3.2. Chromatin accessibility features in ESCC

Chromatin remodeling play important roles in regulating chroma-
tin accessibility and gene expression [35]. The aforementioned
enrichment analysis revealed that histone modification, chromatin
regulation, and transcription factor complex related processes were
one of the enriched features in ESCC, suggesting alterations in epige-
netic regulation and chromatin accessibility could be one of the con-
tributing molecular mechanisms in ESCC. In order to explore the
chromatin accessibility features in ESCC and identify whether there
were certain genes in cDEGs whose expression alterations may result
from chromatin accessibility changes, we further performed ATAC-
seq on aforementioned ESCC samples collected at Zhongshan hospital
(Supplementary Figure 5). For peaks identified in each sample, we
first annotated their genomic locations and found they were mainly
located at the promoter regions, followed by distal intergenic regions.
Next, we focused on whether the degree of chromatin accessibility
could affect the expression abundance of genes. We first used the
median expression value to categorize the genes identified through
matched RNA-seq data into high and low groups. Then, we compared
the ATAC-seq signal intensities between high and low groups. Results
revealed that in both tumor (correlation coefficient: 0.358) and nor-
mal (correlation coefficient: 0.368) samples, the level of ATAC-seq
signals positively correlated with the expression abundance of the
annotated genes (Fig. 3A).

Next, differential peak analysis was performed by comparing the
ATAC-seq signals between tumor and normal samples to identify
aberrant chromatin-accessible regions in ESCC. 459 increased chro-
matin-accessible regions and 441 decreased chromatin-accessible
regions were identified (Fig. 3B and Supplementary Table 5). Subse-
quent annotation of the differentially accessible regions showed that
these peaks were predominantly located at distal intergenic, intron,
and promoter regions for both increased and decreased regions

https://depmap.org/


Fig. 1. Study overview. Study strategies (Upper panel). 8 ESCC datasets were included to identify common differentially expressed genes (cDEGs). Functional enrichment analysis of
cDEGs suggested changes in chromatin accessibility. ATAC-seq combined with RNA-seq revealed the chromatin accessibility features in ESCC and identified genes whose expression
alterations were related to changes in chromatin accessibility. On the other hand, the investigation of the heterogeneity of ESCC revealed that the stromal difference is one of the
important factors for the prognosis of ESCC patients. A group of TNS1high fibroblasts was associated with immune exclusion phenotype in ESCC. In addition, based on the molecular
heterogeneity of ESCC patients, we identified some subtype-specific therapeutic agents. ESCCEXPRESS web application interface (Lower panel). A web application ESCCEXPRESS
(http://www.bioinfo-zs.com/esccexpress/) was established to facilitate data mining. Users can check the expression alteration of the gene of interest across different ESCC datasets,
explore whether the gene of interest is associated with the clinical outcomes of ESCC patients in different datasets, check the correlation between any two given genes, browse the
baseline expression of the gene of interest in different ESCC cell lines, and check the importance of the gene in the survival of ESCC cell lines.
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(Fig. 3C). To further explore which genes are significantly related to
chromatin accessibility changes, we combined differential peak-
annotated genes with differentially expressed genes from matched
RNA-seq data to look for intersections. The results showed that
34 up-regulated genes were associated with increased ATAC-seq
signals, whereas 33 down-regulated genes had decreased ATAC-
seq signals (Fig. 3D & E). In order to obtain highly confident
results, we further overlapped the above genes with the cDEGs,
and this identified a total of 7 genes, among which NELL2 and
PRIM2 (up-regulated genes) gained more open chromatin archi-
tecture, whereas regions around low expression genes, HPGD,
KAT2B, RRAGD, SASH1, and TFAP2B, showed decreased chromatin
signals. Based on that, we further compared the ATAC-seq signals
of the 7 genes with the ATAC-seq data of esophageal cancer
patients from TCGA to verify our findings. Because there were no
normal samples in TCGA cohort, we here used EAC samples as
the control. Finally, 4 genes (PRIM2, HPGD, NELL2, and TFAP2B)
were identified (Fig. 3F & Supplementary Figure 6), whose peaks
were identical in both TCGA and Zhongshan ESCC patients, sug-
gesting chromatin accessibility changes of these regions were
prevalent in ESCC and these changes were potential regulatory
mechanisms of the expression of these genes.

http://www.bioinfo-zs.com/esccexpress/


Fig. 2. Identification of cDEGs in ESCC and functional annotation.
A. Expression alterations of cDEGs across 8 ESCC cohorts and corresponding cell line dependency data across 20 ESCC cell lines. The heatmap on the left represented the Log2

fold-change of cDEGs. The heatmap on the right represented the cell line dependency value. A dependency value> 0.5 is considered significantly dependent. Genes that were highly
associated with the cell survival were highlighted in red.

B. Survival analysis of cDEGs in GSE53625 and TCGA ESCC cohorts (Log-rank test, p < 0.05).
C. GO biological process enrichment analysis for genes that were up-regulated in cDEGs (p < 0.05).
D. GO biological process enrichment analysis for genes that were down-regulated in cDEGs (p < 0.05).
E. Pathways significantly associated with cDEGs (p < 0.05). Pathways were classified into different major categories. Yellow circles represent up-regulated genes, purple circles

represent down-regulated genes.
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Fig. 3. Chromatin accessibility features in ESCC.
A. ATAC-seq signals at TSSs positively correlated with gene expression abundance. The left Fig.s showed the correlation between ATAC-seq signals at TSSs and gene expression

in normal tissues, and the right Fig.s showed the correlation between ATAC-seq signals at TSSs and gene expression in tumor tissues. The significance level between the ATAC-seq
signal and gene expression was shown (Spearman correlation, p < 0.05).

B. Identification of altered chromatin-accessible regions in ESCC. Up-regulated peaks were shown by red and down-regulated peaks were shown by blue (|Log2 fold-change| >
1, p < 0.05).

C. Annotation of altered chromatin-accessible regions. Upper: increased regions. Lower: decreased regions.
D. Identification of up-regulated genes that were associated with open chromatin regions. Upper: peak annotated genes were intersected with up-regulated genes from

matched RNA-seq data. Lower: above genes were further overlapped with up-regulated genes in cDEGs.
E. Identification of down-regulated genes that were associated with closed chromatin regions. Upper: peak annotated genes were intersected with down-regulated genes from

matched RNA-seq data. Lower: above genes were further overlapped with down-regulated genes in cDEGs.
F. Changes in chromatin accessibility upstream of PRIM2 and ChIP-Seq profiles (GSE76859) of TE7 and KYSE510 cells. Upper, track in green showed normalized and merged

ATAC-seq signals in normal tissues and track in orange showed normalized and merged ATAC-seq signals in tumor tissues. Lower, ChIP-seq profiles of H3K27ac of ESCC cell lines
(TE7 and KYSE510). Red boxes indicated changes supported by both Zs patients, ESCC cell lines, and TCGA ESCC patients.
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We next investigated whether the peak26559 regulated the
expression of PRIM2. We first examined the publicly available ChIP-
seq profiles of H3K27ac of ESCC cell lines (TE7 and KYSE510). The
results showed that there were also peaks at the peak26559 region
(Fig. 3F). We next performed the luciferase reporter assay. Stronger
transcription-enhancing activity was observed in TE1 and HEK293
cells transfected with PRIM2-P-E plasmid (containing the sequences
of the PRIM2 promoter and peak26955) compared to PRIM2-P plas-
mid (containing the sequences of the PRIM2 promoter) (Supplemen-
tary Figure 7).

The above analyses revealed the shared key molecular changes
and chromatin accessibility features in ESCC compared with normal
tissues, and identified several genes whose expression alterations
may result from changes in chromatin accessibility.

3.3. Stromal heterogeneity linked with distinct clinical outcomes of ESCC
patients

Previous studies have shown that molecular heterogeneities are
tightly associated with therapeutic outcomes and prognosis of
patients in various cancer types [14,62], we wondered whether there
were distinct molecular phenotypes in ESCC that contributed to
patients' survival differences. To answer this question, we first
screened all survival-related genes in GSE53625 and TCGA ESCC
cohorts separately (Fig. 4A & Supplementary Table 6), followed by
the convergence of the survival-related genes identified in both
cohorts. Eventually, 76 genes were classified as the risk factors and
116 genes were identified as protective factors in ESCC (Fig. 4B). To
obtain the most representative survival-related marker genes, we
further performed LASSO Cox regression analysis in the GSE53625
cohort to get the best combination of genes. As a result, a total of 14
genes were identified, including 6 risky and 8 protective genes
(Fig. 4C & Supplementary Table 7). The KEGG pathway enrichment
analysis of these 14 genes were shown in Supplementary Table 8.
Based on the LASSO coefficients assigned to each of the 14 genes, we
established a scoring system (termed here as Prognosis-related Sub-
type Classifier, PrSC). Based on optimal cut-off value generated using
maximally selected log-rank statistics, ESCC patients were classified
into high- and low-score groups. We here defined the high-score
group as ESCC subtype 1 (S1) and the low-score group as ESCC sub-
type 2 (S2). Comparison of the survival outcomes between S1
(N = 102) and S2 (N = 77) patients in GSE53625 cohort revealed a sig-
nificant difference. Subsequently, we applied PrSC into the TCGA
cohort, and consistently, S1 (N = 48) patients displayed a poorer



Fig. 4. Identification of survival-related molecular subtypes in ESCC.
A. Screening of survival-related genes in GSE53625 (upper) and TCGA ESCC (lower) cohorts using Cox regression analysis. Risky genes were defined as genes with a hazard ratio

(HR) > 1 whereas genes with HR < 1 were considered as protective genes (p < 0.05).
B. Overlapping of risky (upper) and protective (lower) genes identified in GSE53625 and TCGA ESCC cohorts.
C. Identification of representative marker genes using LASSO Cox regression analysis in GSE53625 cohort. Risky genes were colored in orange and protective genes were green.
D. S1/S2 subtype patients showed distinct OS differences in both GSE53625 (left) and TCGA ESCC (right) cohorts (Log-rank test, p < 0.05).
E. Submap analysis showing a significant correlation of classification among three ESCC cohorts. A p-value < 0.05 indicating a significant similarity.
F. The heatmap showing the biological pathway differences between S1 and S2 subtypes (Wilcoxon rank sum test, p <0.05).
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prognosis than S2 (N = 44) patients, which confirmed the stability of
this scoring tool (Fig. 4D).

Next, we assessed whether ESCC subtypes determined by PrSC
had similar transcriptomic characterizations across different ESCC
cohorts. Apart from GSE53625 and TCGA ESCC cohorts, we also
enrolled a GEO ESCC meta cohort to cross-validate the transcriptomic
similarities (Supplementary Figure 4). Using SubMap analysis [45],
we found that S1 and S2 patients were highly correlated with corre-
sponding subtypes in the above three cohorts, suggesting that PrSC
was a robust tool that was able to capture the survival-related pheno-
types in ESCC across multiple ESCC cohorts (Fig. 4E). Besides, to
further depict the biological behaviour differences between S1 and
S2 subtypes, functional annotations were performed using GSVA
algorithm in GSE53625, TCGA ESCC, and GEO ESCC meta cohorts,
respectively, and we here only considered biological behaviour dif-
ferences supported by the above three datasets were core biological
differences. The results showed that S1 group patients displayed sig-
nificantly higher levels of stromal related activities such as TGF beta
signaling pathway, vascular smooth muscle contraction, angiogene-
sis, as well as fibroblast TGF beta response signature (TBRs), whereas
fructose and mannose metabolism was enriched in S2 group patients
(Fig. 4F). To verify our findings, we also utilized the ESTIMATE
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algorithm to evaluate the stromal score [48]. Consistently, S1 patients
showed a significantly higher level of stromal score than S2 patients
and the tumor purity was also lower in S1 patients (Supplementary
Figure 8). Moreover, another method, MCP-counter, which was able
to quantify both immune cell and stromal cell populations in the
tumor microenvironment was also used [47], and the results also
substantiated a higher level of infiltration of fibroblasts in S1 patients
(Supplementary Figure 9). It was noteworthy that S1 patients also
tended to display a higher level of CD8+ T Cell. In most cases, the infil-
tration of immune cells such as CD8+ T cell in the tumor microenvi-
ronment (TME) was linked to a better prognosis [63], but immune-
excluded phenotype also could show the presence of immune cells,
while these immune cells could not penetrate into the parenchyma
and thus this type of TME were considered T-cell suppressive [64].
Our results suggested that the stromal activation in the S1 subtype
could inhibit the antitumor effect of immune cells.

We then compared the genomic features of patients in S1 and S2
subtypes based on available TCGA data. The somatic mutation land-
scapes in S1 and S2 subtypes were shown in Supplementary Figure
10A. The percentage of patients in S1 with mutations of genes includ-
ing DIDO1, CREBBP, and ACACB were significantly higher than those
in S2, whereas S2 patients had more KMT2D, FAT2, and LAMA5 muta-
tions. Next, we compared the copy number variations (CNVs) in dif-
ferent groups (Supplementary Figure 10B). The distribution of the
GISTIC score across all chromosomes indicated that S1 patients had
more copy number gains at chromosomes 2 (2q31.2), 5 (5p15.33 and
5p12), 6 (6p22.3, 6p21.1, and 6p12.1), and 19 (19q13.12 and
19q13.43). While S2 patients showed more copy-number gains at
chromosomes 4 (4q12 and 4q13.3), 7 (7q21.12 and 7q22.3), and 8
(8q24.21) (Supplementary Figure 10C & D). The investigation into
the tumor mutation burden (TMB) between S1 and S2 subtype
patients showed no significant difference (Supplementary Figure
10E), but interestingly, S1 subtype patients displayed a significantly
higher level of DNA methylation burden than S2 subtype patients
(Supplementary Figure 10F). In addition, the investigation into the
chromatin accessibility features between S1 and S2 subtypes
revealed that the accessibility of chromatin around the promoter
regions was higher in the former (Supplementary Figure 10G).
Meanwhile, we identified several extracellular matrix and fibroblast
related genes, whose promoter regions were more accessible, and
they were highly expressed in the S1 subtype (Supplementary
Figure 10H).

These results supported by different ESCC cohorts and different
algorithms indicated that the remodeling of stromal components was
a crucial factor in determining the prognosis of ESCC patients.

3.4. TNS1high fibroblasts in the stroma linked with immune exclusion

Next, we assessed each gene's contribution in PrSC in determining
the S1/S2 subtypes using random forest algorithm (Fig. 5A). This anal-
ysis revealed that TNS1 was the most important gene that contrib-
uted to this classification, and therefore, we here chose TNS1 for
further experimental validation. Before we conducted experimental
validation, we first assessed the expression features of TNS1, i.e.,
whether it is predominantly expressed in tumor, immune, or stromal
cells. We referred to the expression profiles of 119 immune cells, 197
tumor cells, 24 endothelial cells, 32 epithelial cells, 61 fibroblasts,
and 49 smooth muscle cells from FANTOM5 [65] (Fig. 5B). The results
demonstrated that TNS1 was predominantly expressed in fibroblasts
and smooth muscle cells (Fig. 5C). Considering that S1 subtype
patients showed a higher level of fibroblast infiltration (Fig. 4F & Sup-
plementary Figure 9), we speculated that TNS1 was associated with
the fibroblasts in the TME. To verify our speculation and validate the
expression features of TNS1 in ESCC tumor microenvironment, we
further collected the single-cell RNA sequencing data of mouse
esophageal cancer model, including two pathological stages
(carcinoma in situ, CIS, and invasive carcinoma, ICA) [49]. The CD45�

non-immune cells were classified into four clusters, including endo-
thelial cells, epithelial cells, fibroblasts, and myocytes (Supplemen-
tary Figure 11A). We first assessed the expression level of Tns1 in
these cells. Consistently, Tns1 was predominantly expressed in fibro-
blasts (Supplementary Figure 11B). Next, we classified fibroblasts
into two clusters (Tns1high and Tns1low groups) based on the median
expression value of Tns1 (Supplementary Figure 11C & D). We com-
pared the composition of Tns1high/low fibroblasts in CIS and ICA stages
and found that the percentage of Tns1high fibroblasts tended to
increase during pathological transition (Supplementary Figure 11E).
Then, the marker genes for Tns1high fibroblasts were determined
(Supplementary Figure 11F), based on which we quantified the cell
abundance of Tns1high fibroblasts in GEO samples [51]. Subsequent
survival analysis showed that ESCC patients with a higher proportion
of Tns1high fibroblasts displayed a poorer OS (Supplementary Figure
11G). In addition, we compared the biological differences between
Tns1high and Tns1low fibroblasts. Consistent with our findings from
bulk gene expression profiles, Tns1high fibroblasts group showed
stronger activities of angiogenesis, extracellular matrix (ECM) inter-
action, EMT, and axon guidance. While the effect of CD8+ T cell was
weaker compared to Tns1low fibroblasts group (Supplementary
Figure 11H).

Next, we performed multiplex fluorescent immunohistochemistry
(mfIHC) on tissue microarrays (TMAs) of ESCC patients from Zs hospi-
tal. Included markers were a-SMA, a common cancer-associated
fibroblasts marker [66], TNS1, and CD8. The results from mfIHC
revealed that patients with a higher proportion of TNS1high fibro-
blasts in the stroma displayed a decreased infiltration level of CD8+ T
cell in the tumor parenchyma and showed an immune exclusion phe-
nomenon (Fig. 5D & E). These TNS1high fibroblasts resided near CD8+ T
cells in the stroma, which suggested possible crosstalk between these
two types of cells. Besides, patients with higher proportions of
TNS1high fibroblasts in the stroma tended to show poorer OS, though
not reaching statistical significance. But patients of TNS1high fibro-
blasts group did show a decreased disease-free survival (DFS)
(Fig. 5F). In addition, TNS1high fibroblasts were associated with the
advanced clinical stage and lymph node metastasis (Fig. 5G).

We further investigated how Tns1high fibroblasts interacted with
CD8+ T cell in the TME based on aforementioned single-cell RNA
sequencing data of mouse esophageal cancer model. We classified
CD8+ T cells into 6 clusters (Supplementary Figure 12A), including
four clusters of naive T cells (Tn), one cluster of cytotoxic T cell (Ct),
and one cluster of exhausted T cell (Ex) according to canonical
markers (Supplementary Figure 12B) [49,67,68]. Then, we used Cell-
Chat to infer the cell-cell communication network among CD8+ T cells
and Tns1high fibroblasts [52]. This analysis revealed significant ligand-
receptor and signaling interactions among these 7 cell groups (Sup-
plementary Figure 12C). Notably, the number of interactions
between cytotoxic T cells and Tns1high fibroblasts was quite promi-
nent (Supplementary Figure 12D). Specifically, these two types of
cells mainly interacted with each other via Cxcl12-Cxcr4,
Fn1 � (Itga4+Itgb7), Fn1 � (Itga4+Itgb1), Fn1 � Cd44, Icam1 � Itgal,
and Icam1 � (Itgal+Itgb2) pairs (Supplementary Figure 12E).

3.5. Subtype-specific therapeutic agents screening and validation

Considering that S1 and S2 subtype patients displayed distinct
molecular features, exploring subtype-specific therapeutic agents for
these individuals would be of great significance in determining per-
sonalized treatment strategies. Based on the S1 and S2 subtypes we
identified in ESCC, we here adopted an integrative strategy to screen
possible drugs that could be more suitable for the molecular features
of these subtype patients (Fig. 6A). Specifically, gene expression data
and drug response data of hundreds of cancer cell lines from three
independent datasets (CTRP, GDSC, and PRISM) were collected [53-



Fig. 5. The association between TNS1high fibroblasts and immune exclusion
A. Identification of TNS1 as the most important gene in contributing to S1/S2 classification using random forest method. The variable importance was based on Mean Decrease

Accuracy.
B. t-SNE analysis of the expression profiles of immune cells, tumor cells, endothelial cells, epithelial cells, fibroblasts, and smooth muscle cells from the FANTOM5 project.
C. Expression levels of 14 genes illustrated as t-SNE plots.
D. Representative immunofluorescence images showing that TNS1high fibroblasts group patients (N = 90) showed a decreased infiltration level of CD8+ T cells than TNS1low fibro-

blasts group patients (N = 132) and the interaction between TNS1high fibroblasts and CD8+ T cells in the stroma. The red arrow represents CD8+ T cell, the pink arrow represents
TNS1high fibroblasts. T, tumor; S, stroma.

E. TNS1high fibroblasts group showed a higher proportion of immune exclusion phenotype (Pearson’s chi-square test, p < 0.05).
F. The association between TNS1high fibroblasts and patients’ prognosis (Log-rank test, p < 0.05).
G. The associations between TNS1high fibroblasts and clinical parameters (Pearson’s chi-square test, p < 0.05).
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55]. Before we estimated potential drugs, we first assessed the
expression features of these cancer cell lines. The results showed that
blood cancer and skin cancer cell lines displayed distinct expression
profiles frommost solid cancer cell lines, so we excluded these cancer
cell lines prior to subsequent analysis (Supplementary Figure 13).
Next, we used the ridge regression model to infer the ESCC patients’



Fig. 6. Identification of subtype-specific drugs.
A. A flowchart illustrating the process of subtype-specific drug identification. Human cancer cell line drug screen data from three independent datasets (CTRP, GDSC, and PRISM)

were included, along with corresponding expression profiles. Based on cancer cell line data, the patients' sensitivities to various drugs were estimated and further validated via
experiments.

B. S1/S2 specific drugs identified in each dataset (Wilcoxon rank sum test, p < 0.05).
C. Venn diagram showing S1 and S2 specific drugs.
D. Classification of ESCC cell lines into S1- and S2-like cells using NTP method (p < 0.05).
E. Evaluation of results using actual drug response data of ESCC cancer cell lines (Wilcoxon rank sum test, *: p < 0.05; **: p < 0.01).
F. In vitro validation of drug response between two subtypes using cell viability assay across 6 ESCC cell lines (Two-way ANOVA, *: p < 0.05; ns: not significant). Experiments

were repeated at least three times.
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sensitivity to different drugs based on the gene expression data and
drug response data in each dataset, separately. After obtaining the
estimated sensitivity data of ESCC patients, differential analysis using
estimated drug sensitivity data from CTRP, GDSC, and PRISM datasets
between two subtypes was performed. As a result, 81 drugs in CTRP,
49 drugs in GDSC, and 205 drugs in PRISM were identified as poten-
tial S1-specific drugs, whereas 129 drugs in CTRP, 72 drugs in GDSC,
and 412 drugs in PRISM were identified as potential S2-specific drugs
(Fig. 6B). We then integrated these drugs and considered the ones
that were identified in at least two datasets significant. As a result, 15
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drugs were considered as S1-specific agents and 40 drugs were more
suitable for S2 patients (Fig. 6C & Supplementary Table 9). It was
noteworthy that among S1-specific agents, Nintedanib, which has
anti-angiogenic and anti-fibrotic activities [69], was the most signifi-
cant S1-specific drug that was supported by three datasets. Interest-
ingly, S1 patients were indeed characterized by increased activities of
angiogenesis and fibroblast infiltration, therefore, this consistency
confirmed the feasibility of our drug screening strategy.

The above analysis has identified a number of candidate drugs
that targeted the molecular differences of ESCC subtype patients, we
next wanted to know whether the tumor cells were sensitive to the
estimated drugs. We first classified ESCC cell lines into S1- and S2-
like cells based on their transcriptome similarities with ESCC subtype
patients using NTP method [59] (Fig. 6D). We then compared the
actual drug response data of the aforementioned S1/S2 specific
agents between S1- and S2-like cells and found that S1-like cell lines
were more sensitive to TG-101348, while S2-like cell lines were
more sensitive to Vinorelbine and ZM-447439 (Fig. 6E). On the basis
of that, we conducted in vitro experimental validation using 6 ESCC
Fig. 7. Application of PrSC into the pan-cancer cohort and two immunotherapy cohorts.
A. PrSC was significantly associated with the prognosis of patients in 6 cancer types (Log-
B. Survival curves showing that the high PrSC score groups had a poorer prognosis than

test, p < 0.05).
C. Distribution of the PrSC score in different immune phenotypes in the PD-L1 treatment
D. Distribution of the PrSC score in different clinical response groups in the PD-L1 treatm

ease; CR, complete response; PR, partial response.
E. The PrSC score was negatively correlated with TMB in the PD-L1 treatment cohort (Spe
F. The PrSC score was negatively correlated with TNB in the PD-L1 treatment cohort (Spe
cell lines, TE1, KYSE70, KYSE410, TE11, KYSE150, and KYSE180. The
results of the cell viability assay presented a relatively good agree-
ment with our prediction except for ZM-447439 (Fig. 6F), suggesting
that TG-101348 and Vinorelbine could be potentially promising
agents for treating different subtypes of ESCC patients.

3.6. Exploring the role of PrSC in the pan-cancer cohort and its
association with immunotherapy response

We next applied PrSC into the pan-cancer cohort to explore
whether it could be extended to different types of cancer in predict-
ing prognosis and reflecting the TME features. Of the 33 cancer types,
PrSC was significantly related to the prognosis of patients in 6 cancer
types, including ACC, COAD, KIRC, LUSC, READ, and STAD (Fig. 7A).
Besides, high score patients in COAD, LUSC, READ, and STAD all
exhibited higher activities of angiogenesis, EMT, and fibroblast TBRs,
and a lower level of fructose and mannose metabolism (Supplemen-
tary Figure 14). It was worth mentioning that COAD, READ, and
STAD all belonged to digestive tract malignancies, and LUSC was also
rank test, p < 0.05).
the low score groups in both PD-L1 (left) and PD-1 (right) treatment cohorts (Log-rank

cohort (Kruskal-Wallis test, p < 0.05).
ent cohort (Wilcoxon rank sum test, p < 0.05). SD, stable disease; PD, progressive dis-

arman correlation, p < 0.05)
arman correlation, p < 0.05).
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squamous cell cancer, suggesting that the TME features captured by
PrSC were not limited in ESCC, but also common in digestive tract
malignancies and squamous cell carcinoma.

On the other hand, previous studies have shown that stromal
components can also affect immunotherapy outcomes [70,71]. There-
fore, we speculated that S1/S2 subtypes may have different responses
to immunotherapy. Based on two immunotherapy cohorts (IMvi-
gor210 PD-L1 treatment cohort and Riaz. et al. melanoma PD-1 treat-
ment cohort) [72,73], we here evaluated the ability of PrSC in
predicting PD-1/PD-L1 treatment response. Interestingly, patients
with low scores had a prominent survival advantage than high score
patients in both cohorts (Fig. 7B). Besides, we found that immune
excluded phenotype had the highest score than immune desert and
inflamed phenotypes, and the score of non-responders was also
higher (Fig. 7C & D). Moreover, PrSC was negatively correlated with
TMB and neoantigen burden (Fig. 7E & F).

4. Discussion

Integrating multiple independent datasets to study the character-
istics of diseases has gradually become a common and popular
approach [16,74,75]. Through this method, researchers can obtain
more reliable and meaningful results in a larger population and iden-
tify things that have been previously neglected.

The first part of this study was to examine the key molecular
changes in ESCC compared with normal tissues. Seven independent
ESCC expression datasets, along with the expression data of Zs hospi-
tal ESCC patients, were integrated to identify the aberrantly
expressed genes in ESCC. By comparing the differentially expressed
genes in tumor tissues, we identified a total of 112 cDEGs. These
genes were abnormally expressed in the eight independent ESCC
cohorts, which, to a great extent, indicated that the expression altera-
tions of these genes were the shared features in ESCC and served as
vital mechanisms during the pathogenesis of ESCC. Among these
genes, in addition to some important genes that were previously
identified to be involved in tumorigenesis, such as MCM5, MCM6,
MCM10, and EXO1 [76-80], genes that were not previously reported
to be involved in ESCC have also been identified, including PRIM2,
KRT32, as well as CCDC86. Besides, it was also worth noting that
IGF2BP2, a m6A reader [81], was also highly expressed in ESCC.
Meanwhile, we found it was closely related to several immune-
related pathways, such as antigen processing and presentation and T
helper cell differentiation. Interestingly, our previous findings in lung
adenocarcinoma revealed that IGF2BP2 was also associated with
immune-related pathways [14], and this consistency may suggest
that m6A modification could also be one of the crucial mechanisms
involved in tumor immune regulation in ESCC.

The alteration of chromatin accessibility is one of the crucial
mechanisms in regulating gene expression [82]. Here, we found
some biological processes that can affect the chromatin accessibility
were significantly enriched in ESCC, indicating that there may be
changes in chromatin accessibility in ESCC. ATAC-seq is one of the
popular methodologies for investigating the chromatin accessibility
profiling in recent years, it has been applied to study the chromatin
landscapes of many cancer types [35,83,84], but barely applied in
ESCC. In the present study, we performed ATAC-seq to examine the
chromatin accessibility features in ESCC. Via integrating the peak-
annotated igenes supported by both Zs ESCC patients and TCGA ESCC
patients with cDEGs, 4 genes, PRIM2, HPGD, NELL2, and TFAP2B,
were finally identified. PRIM2 is a DNA primer enzyme which is
involved in DNA replication regulation. Previous studies have shown
that PRIM2 was upregulated in cervical cancer and lung cancer and
can promote the proliferation of cancer cells and induce dihydroarte-
misinin resistance [85,86]. HPGD has been considered as a tumor
suppressor in various malignancies [87,88]. Several previous studies
have revealed microRNAs such as miR-21, miR-620, and miR-146b-
3p can directly target HPGD and affect its expression [89-91]. Kawa-
mata et al. reported that HPGD was down-regulated in human metas-
tasizing esophageal cancer cell line [92]. Here, we observed that the
promoter region of HPGD was less accessible in tumor tissues, which
suggested that this change could be a vital regulation mechanism
that contributed to the down-regulation of HPGD in ESCC. As for
NELL2 and TFAP2B, the peaks associated with these two genes were
at distal intron and downstream regions, respectively, and the spe-
cific regulating mechanisms may warrant further investigation.

We established a subtype classifier, PrSC, which was linked to the
prognosis of ESCC patients and can reflect the TME heterogeneity in
different ESCC cohorts. Among the genes in PrSC, TNS1 was the most
important one that contributed to the classification, therefore, we
further focused on TNS1. TNS1 belongs to the tensin family and is a
key component of cellular adhesions [93]. Previous studies have
shown that TNS1 was involved in tumorigenesis in several types of
cancer [94,95]. A recent study from Liu et al. revealed that TNS1 was
associated with tumor stroma in colorectal cancer and linked to
poorer prognosis [96]. Here, the cell expression profiles from FAN-
TOM5 [65] suggested that TNS1 was related to fibroblasts, subse-
quently, the results from single-cell RNA sequencing data analysis
further confirmed the expression of TNS1 in fibroblasts and its clini-
cal implications. Furthermore, the results from mfIHC on TMAs of
ESCC patients revealed that TNS1high group was related to immune
exclusion phenotype, and was significantly related to the patient’s
prognosis, clinical stage, and lymph node metastasis. These findings
indicated that this type of fibroblasts in the tumor stroma was a cru-
cial factor in determining the progression of ESCC. Targeting this type
of fibroblasts may provide new ideas and prospects for ESCC treat-
ment.

Identification of subgroup patients who may benefit more from
certain drugs is essential for maximizing the effectiveness of thera-
pies and improving the prognosis of patients. Considering that S1
and S2 subtype patients displayed significantly different molecular
features, we speculated that this discrepancy could result in different
responses to therapeutic agents. Through integrating hundreds of
cancer cell lines' drug screen information, we identified some drugs
that could target the molecular features of S1/S2 subtype patients.
Interestingly, the drugs estimated for S1 patients were mainly associ-
ated with anti-angiogenic and anti-fibrotic activities, such as
AZD4547, Foretinib, and Nintedanib [69,97,98]. In contrast, drugs
that were more suitable for S2 patients were predominantly common
chemotherapy and targeted therapy drugs, including Paclitaxel,
Vinorelbine, and Gefitinib. On the basis of that, further screening for
more promising drugs that could target the tumor cells in these two
molecular subtypes identified 2 agents, TG-101348 and Vinorelbine.
TG-101348 (Fedratinib) is a semi-selective inhibitor of JAK2 devel-
oped for treating myeloproliferative diseases such as myelofibrosis
[99]. Phase 2 clinical trial of TG-101348 on patients with ruxolitinib-
resistant or ruxolitinib-intolerant myelofibrosis showed that patients
could obtain significant clinical benefit with TG-101348 [100].
Besides, a recent study from Liu et al. found that TG-101348 could
exhibit KRAS-dependent anticancer activity in pancreatic ductal ade-
nocarcinoma cell [101]. Vinorelbine is a common chemotherapy
medication for the treatment of non-small cell lung cancer and other
types of cancer [102,103]. A recent phase 3 clinical trial found that
neoadjuvant chemoradiotherapy (Vinorelbine plus Cisplatin) was
associated with significantly decreased recurrences in advanced ESCC
compared with surgery alone, providing evidence of the application
value of Vinorelbine in ESCC [104]. The identification of TG-101348
and Vinorelbine in the present study could provide more clues for
the precise treatment of ESCC, but the efficacy still warrants rigorous
clinical observation.

Finally, the application of PrSC into the pan-cancer cohort
revealed its correlation with prognosis and stromal components in
pan-digestive tract cancer and LUSC patients, which suggested
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possible stromal similarities of these cancer types. In addition, PrSC
was able to reflect the prognosis of patients receiving immune check-
point inhibitor therapy and correlated with immune excluded pheno-
type, which again confirmed its robustness. In addition, for such
patients with stromal remodeling and immune exclusion, the com-
bined application of anti-fibrotic/anti-angiogenic drugs and immuno-
therapy may bring more benefits, but the specific efficacy needs
further research.

In conclusion, our study depicted the multi-dimensional charac-
terization of ESCC, highlighted the indispensable role of stroma cells
in shaping the complexity and heterogeneity of TME, and identified
potential subtype-specific therapeutic agents for ESCC patients.
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