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Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous sys-
tem, characterized by remyelination failure and axonal dysfunction. Remyelination by oligo-
dendrocytes is critical for improvement of neurological deficits associated with 
demyelination. Rodent models of demyelination are frequently used to develop and evaluate 
therapies for MS. However, a suitable mouse model for assessing remyelination-associated 
recovery of motor functions is currently unavailable. In this review, we describe the develop-
ment of the mouse model of internal capsule (IC) demyelination by focal injection of 
lysolecithin into brain and its application in the evaluation of drugs for demyelinating dis-
eases. This mouse model exhibits motor deficits and subsequent functional recovery accom-
panying IC remyelination. Notably, this model shows enhancement of functional recovery as 
well as tissue regeneration when treated with clemastine, a drug that promotes remyelina-
tion. The IC demyelination mouse model should contribute to the development of novel 
drugs that promote remyelination and ameliorate neurological deficits in demyelinating dis-
eases.
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I. Introduction
Myelin is composed of multilamellar lipid cell mem-

branes that function as an insulator to increase the conduc-
tion velocity of nerve fibers, and is involved in various 
neural activities through its interaction with axons [2, 20, 
21]. Numerous neurological diseases are associated with 
disruption of myelin in the central nervous system (CNS), 
including multiple sclerosis (MS) [5, 9, 14, 22]. MS is an 
intractable disease characterized by motor paralysis and 
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sensory disturbance caused by demyelination. However, 
effective treatments are currently unavailable [5, 9, 14, 22]. 
A mouse model of demyelination induced by cuprizone 
toxicity has been widely used to evaluate treatments for 
demyelinating neurological diseases, and this model has 
also been used to examine remyelination [17, 26]. More-
over, the experimental autoimmune encephalomyelitis 
(EAE) model has been used in the development of 
immunomodulatory therapies [6, 23]. Studies using these 
animal models have contributed to the exploration of tar-
geted signaling and the development of therapies that mod-
ulate the disease course of MS [4, 10, 19]. However, the 
EAE and cuprizone models are time-consuming to produce 
and often highly variable, both in the area affected by 
demyelination and neurological symptoms. In addition, 
demyelination-induced motor dysfunction and the subse-
quent functional recovery associated with remyelination are 
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not always observed in these models. Therefore, new ani-
mal models that closely mimic the characteristic clinical 
features of MS are urgently needed. In this review, we 
introduce a mouse model of internal capsule (IC) demyeli-
nation that was recently developed to overcome the limita-
tions of current models. Furthermore, we provide an 
overview of recent studies using this IC model.

II. Development and Characterization of the 
IC Demyelination Mouse Model

Numerous studies have used the model of focal 
demyelination induced by injection of lysophosphatidyl-
choline (LPC) into major neural pathways, including the 
spinal cord, corpus callosum and sciatic nerve [3, 13]. The 
LPC-induced demyelination model is highly informative 
for the assessment of regeneration because remyelination is 
spontaneously induced in both the CNS and the peripheral 
nervous system (PNS) [12, 18, 28]. In contrast, the internal 
capsule (IC), a white matter structure, is a major pathway 
of the corticospinal tract, which regulates limb motor func-
tion [24, 25]. In clinical studies, asymmetric motor paraly-
sis is frequently observed in MS patients with IC 
demyelination [15, 16]. Therefore, while motor deficits and 
paralysis associated with demyelination are not usually 
observed after conventional LPC injection, LPC injection 
into the IC to induce focal demyelination in this structure 
could be very useful for assessing motor recovery and 
remyelination.

Recently, we have reported a novel mouse model of 
focal demyelination induced by focal injection of LPC into 
the IC [27]. The mice were injected with 1% LPC (Fig. 

1A), and acute IC demyelination was observed at 7 days 
post lesion (dpl) (Fig. 1B). The mice exhibited motor 
impairments, including asymmetric paralysis affecting the 
fore and hindlimbs [27]. Notably, the mice recovered their 
motor functions by 28 dpl [27]. Oligodendrocyte progenitor 
cells were recruited to the demyelinated lesions and differ-
entiated into myelinating oligodendrocytes by 28 dpl, sug-
gesting that this mouse model features remyelination and 
the resolution of inflammation (Fig. 1C) [27].

III. IC Demyelination Model as a Novel Tool 
for Evaluating Drug Candidates

Drug candidates for demyelinating diseases that pro-
mote remyelination have been identified using high-
throughput screening platforms, such as micropillar array, 
and have been subsequently evaluated in clinical trials [11, 
18]. Clemastine is an anti-muscarinic agent that promotes 
oligodendrocyte differentiation and remyelination, and has 
been reported as an effective drug for MS patients [11, 18]. 
Moreover, clemastine has been demonstrated to promote 
remyelination in rodent models [7, 8]. Therefore, clemas-
tine is a promising drug candidate for MS.

We have recently investigated whether the IC demyeli-
nation mouse model can be used to evaluate drugs for func-
tional recovery and remyelination [29]. In our study, the 
effect of clemastine on recovery of motor functions was 
examined using multiple behavioral tests. Clemastine (10 
mg/kg) was administered from 3 dpl to 9 dpl for immunos-
taining or 3 dpl to 12 dpl for EM analysis by intraperitoneal 
injection after LPC injection into the IC. Clemastine treat-
ment enhanced motor function and improved asymmetric 

Summary of the production and analysis of the internal capsule (IC) demyelinating mouse model. (A) Lysophosphatidylcholine (LPC) is injected 
into the IC. (B) FluoroMyelin staining (green) of the IC demyelinating lesions at 7 days post lesion (dpl). Arrowheads show the demyelinated lesion 
lacking the FluoroMyelin staining. Bar = 200 μm. (C) Schematic diagram showing the time course of demyelination in the mouse model. Focal IC 
demyelination and acute motor deficits are observed by 7 dpl, and are followed by subsequent functional recovery through remyelination by 28 dpl.

Fig. 1. 
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Histological analysis of the internal capsule (IC) demyelinating mouse model given phosphate-buffered saline (PBS) or clemastine treatment. 
Clemastine was administered from 3 days post lesion (dpl) to 9 dpl for Fig. 2A and 2B or 3 dpl to 12 dpl for Fig. 2C by intraperitoneal injection after 
LPC injection. (A) Double immunofluorescence staining of PBS and clemastine-treated mice for Olig2 (green) and platelet-derived growth factor 
receptor a chain (PDGFRα) (red) in the demyelinated lesions in the IC at 10 dpl. Bars = 50 μm. (B) Double immunofluorescence staining of PBS and 
clemastine-treated mice for Olig2 (green) and CC1 (red) in the demyelinated lesions of the IC at 10 dpl. Bars = 50 μm. (C) EM images of the 
contralateral IC (right panel) of a clemastine-treated mouse and the ipsilateral IC of PBS (middle panel) and clemastine-treated (left panel) mice at 14 
dpl. Bars = 2 μm.

Fig. 2. 
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motor paralysis after unilateral IC demyelination [29]. His-
tological analyses, including electron microscopy (EM), 
were performed to assess remyelination. The number of 
Olig2 and platelet-derived growth factor receptor α chain 
(PDGFRα)-double positive oligodendrocyte progenitor 
cells was significantly decreased by clemastine treatment at 
10 dpl (Fig. 2A) [29]. In contrast, the ratio of mature oligo-
dendrocytes double positive for the anti-Olig2 and anti-
adenomatous polyposis coli (CC1) antigens was 
significantly increased in clemastine-treated mice at 10 dpl 
(Fig. 2B) [29]. We used neutral red staining, which is used 
to detect demyelinated lesions by light microscopy, for EM 
analysis [1, 28]. Neutral red-stained IC tissues were dis-
sected from the IC demyelinating mouse model, and the 
structure of the myelin was observed by transmission EM 
(TEM). TEM analysis showed that the number of myeli-
nated axons was greater in clemastine-treated mice than in 
mice treated with phosphate-buffered saline at 14dpl (Fig. 
2C) [29]. These results demonstrate that clemastine treat-
ment promotes remyelination and functional recovery after 
IC damage. Taken together, these findings suggest that the 
mouse model of IC demyelination is useful for testing 
drugs that promote remyelination and motor functional 
recovery.

IV. Conclusion
It has been difficult to assess the recovery of motor 

functions associated with remyelination using conventional 
mouse models of demyelination. Therefore, to facilitate 
drug discovery, it was necessary to develop a new animal 
model of remyelination-induced functional recovery. The 
comparison of the demyelination mouse models are shown 
in Table 1. Although the IC demyelination mouse model 
has the disadvantage of being technically required, this is a 
simple model in which LPC is injected focally, and the area 
of demyelination and the degree of neurological symptoms 
can be modulated by adjusting the injection parameters. 
Therefore, it is a versatile mouse model that is simpler and 
easier to produce than the EAE and cuprizone models. In 
future studies, the IC demyelinating mouse model may be 
used in drug development pipelines to evaluate novel drug 
candidates for demyelinating diseases.
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