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Enhanced CRISPR-based DNA demethylation by
Casilio-ME-mediated RNA-guided coupling of
methylcytosine oxidation and DNA repair pathways
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Christopher D. Heinen2, Sheng Li1 & Albert W. Cheng 1,3,4*

Here we develop a methylation editing toolbox, Casilio-ME, that enables not only RNA-guided

methylcytosine editing by targeting TET1 to genomic sites, but also by co-delivering TET1 and

protein factors that couple methylcytosine oxidation to DNA repair activities, and/or promote

TET1 to achieve enhanced activation of methylation-silenced genes. Delivery of TET1 activity

by Casilio-ME1 robustly alters the CpG methylation landscape of promoter regions and

activates methylation-silenced genes. We augment Casilio-ME1 to simultaneously deliver the

TET1-catalytic domain and GADD45A (Casilio-ME2) or NEIL2 (Casilio-ME3) to streamline

removal of oxidized cytosine intermediates to enhance activation of targeted genes. Using

two-in-one effectors or modular effectors, Casilio-ME2 and Casilio-ME3 remarkably boost

gene activation and methylcytosine demethylation of targeted loci. We expand the toolbox to

enable a stable and expression-inducible system for broader application of the Casilio-ME

platforms. This work establishes a platform for editing DNA methylation to enable research

investigations interrogating DNA methylomes.
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DNA methylation is part of the multifaceted epigenetic
modifications of chromatin that shape cellular differ-
entiation, gene expression, and maintenance of cellular

homeostasis. Aberrant DNA methylation is implicated in various
diseases including cancer, imprinting disorders, and neurological
diseases1. Developing tools to directly edit the methylation state
of a specific genomic locus is of significant importance both for
studying the biology of DNA methylation as well as for devel-
opment of therapies to treat DNA methylation-associated
diseases.

In mammalian cells, the 5-methylcytosine (5mC) epigenetic
mark generated by covalent linkage of a methyl group to the 5th
position of the cytosine ring of CpG sequences is catalyzed by one
of the three canonical DNA methyltransferases DMNT1,
DNMT3A, and DNMT3B2–4. DNA methylation is dynamic and
involves demethylation pathways which erase 5mC to restore
unmethylated DNA. Active demethylation involves the ten–eleven
translocation (TET) family of methylcytosine dioxygenases that
iteratively oxidize 5mC into 5-hydroxymethylcytosine (5hmC), 5-
formylcytosine (5fC), and 5-carboxylcytosine (5caC) intermediates5.
Subsequently, 5fC and 5caC are processed by the base-excision
repair (BER) machinery to restore unmethylated cytosines.
Restoration of an intact DNA base is initiated by DNA glycosylases
that excise damaged bases to generate an apurinic/apyrimidinic site
(AP site) for processing by the rest of the BER machinery. Thymine
DNA glycosylase (TDG)-based BER has been functionally linked to
TET1-mediated demethylation, suggesting an interplay between
TET1 and enzymes of the BER machinery to actively erase 5mC
marks. TDG acts on 5fC and 5caC and NEIL1 and NEIL2 DNA
glycosylase/AP-lyase activities facilitate restoration of unmethylated
cytosine by displacing TDG from the AP site to create a single
strand DNA break substrate for further BER processing6–12.
Interestingly, DNA demethylation is enhanced by GADD45A
(Growth Arrest and DNA-Damage-inducible Alpha), a multifaceted
nuclear protein involved in maintenance of genomic stability, DNA
repair and suppression of cell growth13–15. GADD45A interacts
with TET1 and TDG, and was suggested to play a role in coupling
5mC oxidation to DNA repair16,17.

Advances in artificial transcription factor (ATF) technologies
have enabled direct control of gene expression and epigenetic
states18–20. CRISPR/Cas9-based technologies allow much flex-
ibility and scalability because the specificity is programmable by a
single guide RNA (sgRNA)21,22. Tethering of TET1 or DNMT3a
to genomic targets by use of ATFs has been shown to allow
targeted removal or deposition of DNA methylation23–29. How-
ever, these ATF systems have inherent limitations in enabling
multiplexed targeting, effector multimerization or formation of
protein complexes at the targeted sequence. We recently devel-
oped the Casilio system which uses an extended sgRNA scaffold
to assemble protein factors at target sites, enabling multi-
merization, differential multiplexing30, and potentially stoichio-
metric complex formation.

Here we develop an advanced DNA methylation editing
technology which allows targeted bridging of TET1 activity to
BER machinery to efficiently alter the epigenetic state of CpG
targets and activate methylation-silenced genes. Casilio-DNA
Methylation Editing (ME) platforms enable targeted delivery of
the TET1 effector alone (Casilio-ME1) or in association with
GADD45A (Casilio-ME2) or NEIL2 (Casilio-ME3) to achieve
enhanced 5mC demethylation and gene activation. We show
that Casilio-ME-mediated delivery of TET1 activity to gene
promoters induces robust cytosine demethylation within the
targeted CpG island (CGI) and activation of gene expression.
When systematically compared to other reported methylation
editing systems, Casilio-ME shows superior activities in

mediating transcriptional activation of methylation-silenced
gene and 5mC demethylation. The ability of Casilio-ME to
mediate co-delivery of TET1 activity along with other protein
factors, which enhance turnover of oxidized cytosine inter-
mediates, paves the way for new areas of research to efficiently
address the cause–effect relationships of DNA methylation in
normal and pathological processes.

Results
Casilio-ME1 delivers TET1 activity to a genomic target site.
Casilio-ME1 is a three-component DNA Methylation Editing
platform built on Casilio which uses nuclease-deficient Cas9
(dCas9), an effector module made of Pumilio/FBF (PUF)
domain linked to an effector protein, and a modified sgRNA
containing PUF-binding sites (PBS) (Fig. 1a)30. The dCas9/
sgRNA ribonucleoprotein complex binds DNA targets without
cutting to serve as an RNA-guided DNA-binding vehicle whose
specificity is dictated by the spacer sequence of the sgRNA and
a short protospacer adjacent motif located on the target DNA.
PUF-tethered effectors are recruited to the ribonucleoprotein
complex via binding to their cognate PBS present on the sgRNA
scaffold. PUF domains are found in members of an evolutio-
narily conserved family of eukaryotic RNA-binding proteins
whose specificity is encoded within their structural tandem
repeats, each of which recognizes a single ribonucleobase31.
PUF domains can be programmed to bind to any 8-mer RNA
sequence, e.g., PUFa and PUFc used in this study were designed
to bind PBSa (UGUAUGUA) and PBSc (UUGAUGUA),
respectively30,31. Multiple PBS added in tandem to the 3′ end of
the sgRNA allow concurrent recruitment of multiple PUF-
effectors to targeted DNA sequences without interfering with
dCas9 targeting, and therefore allow amplification of the
response to associated effector modules30.

To enable targeted cytosine demethylation and subsequent
activation of methylation-silenced genes, we built a DNA methyl
editor TET1-effector Casilio-ME1 as a protein fusion of hTET1
catalytic domain (TET1(CD)) to the carboxyl end of PUFa
(Fig. 1a). We chose as a target the MLH1 promoter region that is
part of a large CGI whose aberrant hypermethylation induces
MLH1-silencing in 10–30% of colorectal and other cancers32,33.
MLH1 is silenced in HEK293T cells and therefore represents a
clinically relevant model for developing Casilio-ME.

To test the system, cells were transiently transfected with
plasmids encoding Casilio-ME1 components PUFa-TET1(CD)
effector, dCas9 and six MLH1-promoter-targeting sgRNAs each
containing five copies of PBSa (Fig. 1a). This resulted in robust
MLH1 activation as indicated by the obtained fold changes in
MLH1 mRNA in cells collected on day 3 post-transfection
(Fig. 1b, c upper panel). In contrast, MLH1 activation was not
obtained with a non-targeting sgRNA (NT-sgRNA) (Fig. 1b),
indicating that Casilio-ME1-mediated MLH1 activation requires
specific targeting of the PUFa-TET1(CD) module directed by the
programmable sgRNAs.

Evidence that the Casilio-ME1-induced activation of MLH1
results from TET1-mediated 5mC demethylation came from
high throughput bisulfite sequencing (BSeq) of MLH1 ampli-
cons derived from the cells analyzed in Fig. 1b. BSeq showed
that targeted delivery of the TET1(CD) effector induces a
profound decrease in CpG methylation frequency within the
MLH1 promoter region (Fig. 1c lower panel). Demethylation
activity was prominently higher within CpGs neighboring
MLH1-sgRNA sites (Fig. 1c lower panel (arrows)), and seemed
to spread away, albeit with relatively reduced activities. These
data indicate that Casilio-ME1 mediates delivery of TET1
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activity to promoter regions to induce 5mC demethylation
within the targeted CGI and subsequent activation of the
methylation-silenced gene.

Comparison of Casilio-ME1 with other TET1 delivery systems.
Although other technologies enabling targeted delivery of TET1
activity to genomic loci have been reported to induce activation of

methylation-silenced genes23,24,26,29, a direct comparison of their
efficiency is lacking. Here we compared Casilio-ME1 efficiency to
alter expression of methylation-regulated genes to alternative
technologies for 5mC demethylation that are based on TALEs
(transcription activator like effector), dCas9/MS2 or dCas9/Sun-
Tag systems23,24,26 (Fig. 1d). We therefore assembled four TALE-
TET1(CD) fusions each designed to bind to one of the four
MLH1-sgRNA target sequences used for dCas9-based delivery
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systems. Relative quantitation of MLH1 mRNA indicated that the
SunTag, TALEs or MS2 based systems only achieved 63%, 7% or
1%, respectively, of the Casilio-ME1-mediated activation level
(Fig. 1e). BSeq analysis of MLH1 promoter comparing Casilio-
ME1 and SunTag systems showed that Casilio-ME1 induced
stronger demethylation at most of the CpG sites examined
(Supplementary Fig. 1a, b). The efficient MLH1 activation
obtained with Casilio-ME1 delivery of TET1 activity as compared
to SunTag is not driven by sgRNA composition as a similar trend
was obtained when one sgRNA was used for targetingMLH1 CGI
(Supplementary Fig. 1c). These results suggest that Casilio-ME1-
mediated delivery of TET1 activity to CGI target enables stronger
5mC demethylation and gene activation compared to published
systems.

Co-delivery of TET1(CD) and GADD45A enhances gene acti-
vation. Active 5mC erasure is a two-step process initiated by
TET1-mediated iterative 5mC oxidations followed by base-
excision (BER) or nucleotide-excision (NER) repair conversions
of oxidized intermediates to cytosines5,15. Thus, coupling these
two steps could streamline 5mC active erasure to efficiently
activate methylation-silenced genes. Because GADD45A pro-
motes TET1 activity and/or could recruit key player(s) of DNA
repair14–17, we sought to augment Casilio-ME by constructing an
upgraded version Casilio-ME2 which simultaneously recruits
TET1(CD) and GADD45A to bridge 5mC oxidation with DNA
repair at a specific genomic locus.

To test Casilio-ME2 in inducing MLH1 activation in a
comparison with Casilio-ME1 and our previously reported
Casilio-p65HSF1 activator, we introduced plasmids encoding the
protein fusions of PUFa-p65HSF1 (activator), PUFa-TET1(CD)
(Casilio-ME1), PUFa-GADD45A-TET1(CD) (Casilio-ME2.1), or
GADD45A-PUFa-TET1(CD) (Casilio-ME2.2) (Fig. 2a), along with
dCas9 and sgRNAs plasmids into HEK293T cells. Casilio-ME1-
mediated MLH1 activation was 46% higher than that obtained with
the PUFa-p65HSF1 activator module (Fig. 2b). Interestingly, when
GADD45A was added as part of Casilio-ME2.1 or Casilio-ME2.2
TET1-effectors, MLH1 mRNA expression was augmented by 3 and
6-fold, respectively, compared to Casilio-ME1 (Fig. 2b). This
enhanced MLH1 activation, obtained with GADD45A as part of
the TET1 effector modules, does not result from higher expression
of Casilio-ME2 effectors (Supplementary Fig. 2). Thus, coupling of
GADD45A and TET1(CD) as a two-in-one effector enhances
TET1-mediated activation of methylation-silenced genes.

To obtain further evidence that co-delivery of TET1(CD) and
GADD45A effectors to target sites enhances gene activation
compared to delivery of TET1(CD) alone, we fused each effector

to a separate PUF protein, i.e., TET1(CD) to PUFa and
GADD45A to PUFc, and used sgRNA containing both PBSa
and PBSc to tether the respective PUF-fusion to the sgRNA
scaffold (Fig. 2c). When Casilio-ME2.3 (PUFc-GADD45A) or
Casilio-ME2.4 (GADD45A-PUFc) components were introduced
to cells, 3- and 6-fold increase in TET1-mediated MLH1
activation was obtained, respectively (Fig. 2d). However, no
MLH1 expression was detected using Casilio-ME2.3 and ME2.4
systems when a catalytically dead TET1(CD) (dTET1(CD))
replaced wild-type TET1(CD), indicating that the observed
GADD45A-mediated stimulation of gene activation requires the
oxidative activity of TET1 (Fig. 2d). Similarly, no MLH1
activation was obtained when the GADD45A module of
Casilio-ME2.3 and ME2.4 systems were introduced into cells
without the PUFa-TET1(CD) component (Fig. 2c, d), indicating
that expression of GADD45A alone, in the absence of the TET1
module, does not mediate gene activation. In addition, when the
sgRNAs contained PBSa but lacked PBSc required for tethering
PUFc-associated modules, GADD45A modules failed to stimulate
MLH1 activation (Supplementary Fig. 3). Thus, enhancement of
gene activation in Casilio-ME2 requires co-delivery of GADD45A
and TET1-effector modules to the target site.

Co-delivery of TET1(CD) and BER enzymes. TDG, NEIL1, and
NEIL2 have been functionally linked to active DNA demethyla-
tion as they are involved in the initial step of removing oxidized
cytosines 5fC and 5caC produced by TET1 activities6–9,11,12.
Because initiating repair of oxidized cytosines by the BER
machinery might be a rate limiting step to TET1-mediated acti-
vation of methylation-silenced genes, we reasoned that coupling
TET1 activities with DNA glycosylases could facilitate 5mC active
erasure and enhance subsequent gene activation.

We therefore linked NEIL1, NEIL2, NEIL3, or TDG to the
PUFa-TET1(CD) effector as single-chain protein fusions and
looked for potential gains in Casilio-ME1-mediated MLH1
activation. Among these, only NEIL2 fusions showed enhanced
activation of MLH1 expression (Supplementary Fig. 4). Casilio-
ME3.1 and Casilio-ME3.2, in which NEIL2 is fused N-terminally
to PUFa or between PUFa and TET1(CD) of the PUFa-TET1(CD)
effector, respectively, increased MLH1 activation 4-fold in the
presence of MLH1-sgRNAs compared to Casilio-ME1 (Fig. 3a, b).
Thus, co-delivering TET1(CD) and NEIL2 as a two-in-one
effector to target sites improves activation of 5mC-silenced genes.

To further show that NEIL2 promotes demethylation-mediated
gene activation, TET1(CD) and NEIL2 were co-delivered as
separate effectors to MLH1 promoter regions by fusing TET1
(CD) and NEIL2 to PUFa and PUFc, respectively, and using

Fig. 1 Evaluation of Casilio-ME1-mediated gene activation and 5mC demethylation. a Schematic representation Casilio-ME1 components. PUFa-TET1(CD)
effector (TET1 residues 1418–2136), dCas9, and sgRNA with 3′extension scaffold comprising five PUFa-binding site (PBSa) are shown. Amino (N) and
carboxyl (C) termini of protein fusions are arbitrarily shown. b Column plot showing fold changes inMLH1mRNA levels in cells transfected with Casilio-ME1
components comprising MLH1-sgRNAs or NT-sgRNA. Cells were collected three days after transfection and were not subjected to selection. Error bars
represent mean ± S.E.M (n= 3), data form two independent experiments are shown. NS, not significant, p > 0.05, two-way ANOVA. c Upper panel: MLH1
promoter and associated CpG island. Regions B and C are depicted according to a report correlating MLH1-silencing to region C hypermethylation33. CpGs
(lollipops), transcription start site (TSS) (arrow), and the sgRNAs used (A to F) are shown. Coordinates are relative to annotated TSS. Lower panel: high
throughput BSeq analysis of MLH1 amplicons obtained from cells analyzed in (b). CpG methylation frequency of MLH1 promoter regions (mean ± S.E.M; n
= 2) is shown. Arrows indicate locations of CpG overlapping the MLH1 sgRNAs (A–F) target sequences or TSS (blue arrow) as shown. CpG coordinates
represent positions of cytosines, in base pair, relative to annotated TSS. p < 0.0001, two-tail t-test and two-way ANOVA. d DNA demethylation
technologies compared in panel (e). TET1 effectors are tethered to dCas9 nucleoprotein at targeted site via binding of PUFa to PBSa, MS2 coat protein to
stem-loop RNA structures appended to sgRNA, or ScFv (single-chain fragment variable) antibody against short peptide (GCN4) appended in array to
dCas9 carboxy-terminus. TALE mediates delivery of TET1 activity via binding to targeted sequence. In MS2 system mouse TET1(CD) is also C-terminally
fused to dCas9. e Evaluation of Casilio-ME1 platform as compared with alternative 5mC demethylation systems.MLH1mRNA relative levels (mean ± S.E.M.;
n= 3) in cells transfected with Casilio-ME1, MS2, TALE or SunTag components. Four MLH1-sgRNAs or NT-sgRNA were used with dCas9-based delivery
systems. Four TALE effectors each targeting the sequences targeted by the MLH1-sgRNAs A, B, D, or F were used. ***p < 0.05, one-way ANOVA
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Fig. 2 Casilio-ME2mediates dual delivery of TET1(CD) and GADD45A to targeted genomic sites. a Schematic representation of the indicated Casilio-ME and
Casilio platforms showing effector modules of PUFa fusion proteins used to transfect cells analyzed in (b). TET1(CD) (black), GADD45A (blue), p65HSF1
(green), PUFa (light gray), amino (N), and carboxyl (C) termini of protein fusions and occupancy of PBSa are arbitrarily shown. b Plot showingMLH1mRNA
relative levels (mean fold change ± S.E.M.; n= 3) in cells transfected with components of Casilio-ME1, Casilio-ME2.1, Casilio-ME2.2, or Casilio/p65HSF1 in the
presence of MLH1-sgRNAs or NT-sgRNA as indicated. Cells were collected 3 days after transfection. Drawing of promoter regions with the MLH1-sgRNAs
used (A-F), CpGs (lollipops), and TSS (arrow) is shown above the plot. ***p < 0.0005, one-way ANOVA. c Schematic representation of the indicated
Casilio-ME platforms showing effector modules of PUFa and PUFc fusion proteins used to transfect cells analyzed in panel (d). TET1(CD) (black),
GADD45A (blue), PUFa (light gray), PUFc (orange), sgRNA containing both PBSa and PBSc, amino (N) and carboxyl (C) termini of protein fusions are
arbitrarily shown. d MLH1 mRNA relative levels (mean fold change ± S.E.M.; n= 3) in cells transfected with components of Casilio-ME1, Casilio-ME2.3, or
Casilio-ME2.4 in the presence of MLH1-sgRNAs or NT-sgRNA is shown. When indicated PUFa-TET1(CD), effector component of Casilio-ME2.3 and Casilio-
ME2.4, was replaced by a catalytically dead PUFa-TET1(CD) effector containing TET1-inactivating mutations H1671Y, D1673A57, or omitted. MLH1
promoter with the sgRNAs used (A-F), CpGs (lollipops), and TSS (arrow) is depicted above the plot. ***p < 0.0005, one-way ANOVA
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sgRNAs comprising both PBSa and PBSc (Fig. 3c). Binding of these
effectors to a sgRNA scaffold brings TET1(CD) and NEIL2 into
close proximity, and potentially enables coupling of DNA
demethylation with BER. When Casilio-ME3.3 (PUFc-NEIL2) or
Casilio-ME3.4 (NEIL2-PUFc) components were used, MLH1
activation was increased by 7-fold as compared to Casilio-ME1
(Fig. 3d). Taken together, these results show that co-delivery of
TET1(CD) and NEIL2 DNA glycosylase/AP-lyase stimulates
activation of a methylation-silenced gene.

To determine whether the enhanced gene activation obtained
with Casilio-ME3.3 and ME3.4 systems requires co-targeting of
TET1(CD) and NEIL2 to a genomic site and does not result from
NEIL2 over expression, we disabled targeting of NEIL2 effector
modules by using sgRNAs comprising PBSa but lacking the PBSc
required for targeting PUFc-based NEIL2 effectors (Supplemen-
tary Fig. 5a). Cells transfected with Casilio-ME3.3 or ME3.4
components comprising sgRNAs that lacked PBSc tethering sites

showed no significant gains in TET1-mediated MLH1 activation,
indicating that enhanced TET1-mediated gene activation requires
co-targeting of NEIL2 and TET1(CD) modules via an RNA
scaffold (Supplementary Fig. 5b). Thus, these data show that co-
delivery of NEIL2 and TET1(CD) to genomic loci synergistically
promotes TET1-mediated gene activation, likely via facilitated
coupling of 5mC demethylation and BER activities to efficiently
restore unmethylated cytosine to targeted sites.

Comparison of Casilio-ME platforms. Casilio-ME2 and Casilio-
ME3 platforms showed an enhanced activation of a methylation-
silenced gene compared to Casilio-ME1. Here we sought to
compare these platforms to one another in their efficiencies to
activate MLH1 and alter methylation landscape of targeted CGI.
The comparison included the previously reported dCas9-TET1 as
an alternative system for reference25. Normalized MLH1 levels, to
those obtained with dCas9-TET1 system, showed that Casilio-
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ME2.2 gave augmented MLH1 activation higher than Casilio-
ME1, ME2.1, ME3.1, and ME3.2 platforms (Supplementary
Fig. 6a). This augmented MLH1 activation does not necessarily
require targeting with multiple sgRNAs as a similar trend in
MLH1 activation was obtained with one sgRNA targeting MLH1
promoter region (Fig. 6Sb). When modular Casilio-ME2.3,
ME2.4, and ME3.4 platforms were compared, Casilio-ME2.4
showed the most MLH1 activation (Supplementary Fig. 6c). Only
background MLH1 mRNA levels could be detected with TET1
(CD)-dead mutants of the Casilio-ME platforms (Casilio-dME)
(Supplementary Fig. 6a, c), indicating that TET1 activity is
required for gene activation and that delivery of GADD45A or
NEIL2 without TET1 oxidative activity is not sufficient for acti-
vating methylation-silenced genes.

To ask whether the augmented MLH1 activation of Casilio-
ME2.2 and Casilio-ME3.1 came from an increased efficiency in
5mC erasure, we performed BSeq and oxidative BSeq (oxBSeq) by
high throughput amplicon sequencing of MLH1 promoter
regions derived from cells transfected with Casilio-ME compo-
nents or dCas9-TET1. Analysis of 5mC frequencies within MLH1
CGI showed that Casilio-ME2.2 and Casilio-ME3.1 produced
higher demethylation activities compared to Casilio-ME1 and
dCas9-TET1 as indicated by the reduced levels of 5mC (Fig. 4a
upper panel, b). This is consistent with the observed higher
accumulation trends of 5mC-oxidation products 5hmC and
bisulfite converted CpGs (5fC, 5caC and C) (Fig. 4). Interestingly,
a noticeable trend appears to exist when looking at the levels of
5mC-oxidation products; Casilio-ME2.2 produced more bisulfite
converted CpGs (5fC, 5caC, and C), whereas Casilio-ME3.1
produced more 5hmC (Fig. 4b, c). This apparent difference in
5mC oxidation patterns could explain the relative efficiencies of
Casilio-ME2.2 and ME3.1 in enhancing MLH1 activation. The
higher accumulation of 5hmC in the NEIL2-based Casilio-ME
platform could be explained by NEIL2 competing with TET1
(CD) for processing 5fC and 5caC substrates to potentially steer
TET1 activity more toward the 5mC substrate. Alternatively,
TET1 activity may be promoted in the presence of NEIL2 or
NEIL2-associated proteins. For Casilio-ME2.2, the observed 5mC
oxidation profiles are consistent with GADD45A promoting
TET1 activity and/or recruiting BER to the target site, leading to
accumulation of bisulfite converted CpGs (5fC, 5caC, and C).

Evidence that the enhanced gene activation obtained with
Casilio-ME2.2 and Casilio-ME3.1 required fully active GADD45A
or NEIL2, respectively, was obtained when point mutations were
introduced to alter key functional features or inactivate
corresponding proteins. GADD45A lacks any obvious enzymatic
activity; however, previous reports pointed us to key amino acids
required for chromatin interaction (G39A) or dimerization/self-
association (L77E) of the protein34,35. Catalytically inactive
NEIL2 with (C291S) or (R310Q) mutations located at the zinc
finger domain required for NEIL2-binding to DNA substrate
were also reported36. Introduction of these point mutations to
Casilio-ME2.2 or Casilio-ME3.1 abrogated the enhanced MLH1
activation (Supplementary Fig. 7a). The reduced MLH1 activa-
tions obtained were not due to protein destabilization caused by
amino-acid changes introduced to GADD45A and NEIL2
(Supplementary Fig. 7b, c). Interestingly, Casilio-ME3.1 contain-
ing NEIL2(R310Q) mutation seemed to retain a weak enhance-
ment that is likely attributed to residual catalytic and DNA-
binding activities of the R310Q NEIL2 mutant (Supplementary
Fig. 7a)36.

The enhanced demethylation activities, taken together with the
fact that the boost inMLH1 activation mediated by Casilio-ME2.2
and Casilio-ME3.1 required TET1 oxidative activity and func-
tionally active GADD45A or NEIL2 enhancer proteins, is
consistent with the idea that these platforms might facilitate

bridging oxidative removal of 5mC to DNA repair pathways to
efficiently restore unmethylated cytosine to targeted loci.

Evaluation of potential off-target activities of Casilio-ME. The
CRISPR/dCas9 system inherently tolerates mismatches, to some
extent, between guide RNAs and genomic loci to subsequently
give rise to potential off-target effects37,38. To evaluate Casilio-ME
platforms for potential off-target effects, we performed reduced
representation bisulfite sequencing (RRBS) of genomic DNA
extracted from cells transfected with Casilio-ME components,
dCas9-TET1 or SunTag systems in the presence of either MLH1
or non-targeting sgRNAs. Pairwise correlations between all
samples, including untransfected cells, gave similar correlations.
The correlations were within the same range as previously
reported for RRBS replicates39, suggesting that Casilio-ME plat-
form associated off-target activities, if any existed, do not exceed
those of alternative 5mC editing systems (Supplementary Fig. 8a).

To evaluate further the specificity of the Casilio-ME platforms,
we performed RNAseq to compare MLH1-sgRNAs and NT-
sgRNA transfected cells. The overall pattern of gene expression of
Casilio-ME2.2, SunTag and dCas9-TET1 systems seemed largely
similar with high correlations of FPKM values among MLH1-
sgRNA and NT-sgRNA transfected cells in each system
(Supplementary Fig. 8b). In addition to MLH1, FSBP was called
significantly upregulated in Casilio-ME2.2 by RNAseq analysis,
thus representing a potential off-target effect. However, quantita-
tion by TaqMan assays of FSBP levels in the RNA samples used
for RNAseq showed no expression changes, indicating that FSBP
activation observed in RNAseq is a false positive (Supplementary
Fig. 9a). MLH1 was more prominently upregulated in Casilio-
ME2.2 transfected cells. The other differentially expressed
RNAseq hits of Casilio-ME2.2, SunTag and dCas9-TET1 systems
could represent off-target effects or reflect potential transcriptome
changes subsequent to MLH1 reactivation (Supplementary
Fig. 8b).

Recruitment of BER associated proteins via Casilio-ME plat-
forms might introduce mutations to targeted sites. To evaluate
potential mutagenicity of Casilio-ME, we performed deep
sequencing of the MLH1 locus, a 1 kb targeted region that
comprises the promoter and part of the first exon, and compared
sequence identity distribution among reads to untransfected cells.
Casilio-ME transfected cells showed no significant difference in
sequence identity within MLH1 reads, ruling out the possibility of
Casilio-ME platforms introducing mutations to targeted sites
(Supplementary Fig. 9b, c).

To ask whether expression of the PUFa-TET1(CD) fusion
proteins, Casilio-ME components comprising GADD45A or
NEIL2, could cause cellular alterations, we performed prolifera-
tion assays (MTT) on transfected cells. Cells passaged after
transfection with Casilio-ME showed no measurable growth
changes compared to controls or cells transfected with compo-
nents of alternative DNA demethylation systems (Supplementary
Fig. 10a).

To further evaluate potential alteration of transcriptomes that
may occur subsequent to expression of GADD45A or NEIL2 as
part of PUFa fusions, we compared RNA expression profiles in
cells transfected with Casilio-ME1, Casilio-ME2.2 or Casilio-
ME3.1. RNAseq analysis showed overall comparable RNA
expression profiles in these cells with high correlations of FPKM
values (Supplementary Fig. 10b). However, few off-target genes
were called significantly upregulated in the case of Casilio-ME 2.2
(Supplementary Fig. 10b). None of the off-target hits called genes
associated with known GADD45A cellular functions. TaqMan
assays on four upregulated off-target genes, HSPA1A, PKP3,
SRPX2, and THBS2, showed an activated expression of these off-
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target genes in Casilio-ME2.2 transfected cells (Supplementary
Fig. 10c). Nonetheless, the activated expression of the four genes
required TET1 activity and fully functional GADD45A, indicat-
ing that expression of GADD45A as part of PUFa-TET1
(CD) protein fusion is not sufficient for inducing the observed
changes in expression of untargeted genes (Supplementary
Fig. 10c). The CRISPR associated off-target activity could likely

be reduced by using dCas9 variants with higher fidelity as a
delivery vehicle40–43.

Portability of the Casilio-ME platforms. To show that Casilio-
ME platforms enable efficient activation of other 5mC-silenced
genes and in different cell types, we measured changes in
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expression of MGMT, SOX17, RHOXF2 (HEK293T), CDH1
(U2OS), and GSTP1 (LNCaP) in cells transfected with the com-
ponents of Casilio-ME platforms. This showed that Casilio-ME
platforms also enabled activation of these methylation-silenced
genes. Casilio-ME2.2, Casilio-ME3.1, or ME3.2 produced sig-
nificantly enhanced gene activations compared to Caslio-ME1 for
the genes tested (Supplementary Fig. 11a-e). The improved gene
activation is consistent with the increased demethylation effi-
ciency obtained by Casilio-ME3.2 targeting GSTP1 CGI as com-
pared to Casilio-ME1 (Supplementary Fig. 11g, h). Expression of
PUFa protein fusions of Casilio-dME1, dME2.2, and dME3.1,
containing catalytically inactive TET1(CD), in the absence of
sgRNAs failed to activate MGMT, SOX17, and RHOXF2 (Sup-
plementary Fig. 11f), indicating that expression of GADD45A or
NEIL2 as part of PUFa-TET1(CD) is not sufficient for activating
expression of the tested genes.

Interestingly, the superiority and the levels of enhancement in
TET1-mediated gene activation achieved by Casilio-ME2.2 and
Casilio-ME3.1 or ME3.2 varied for some gene targets, suggesting
the existence of some locus dependency for GADD45A or NEIL2
to efficiently augment TET1-mediated gene activation. None-
theless, activation of methylation-silenced genes obtained by
Casilio-ME1 targeting different CGIs in different cell types was
more effective compared to previously reported methods
(Supplementary Fig. 11i).

Inducible Casilio-ME platform. To enable tunable and “on-
demand” targeted DNA demethylation and gene activation, we
constructed piggyBac (PB) transposon vectors hosting
doxycycline-inducible PB Casilio-ME1 cassettes (DIP_Casilio-
ME1) where the expression of dCas9 and PUFa-TET1(CD) is
under the control of Tet-On promoters (Supplementary Fig. 12a).
A DIP_Casilio-ME1 stable cell line is established by piggyBac
transposition followed by antibiotic selection. When the DIP_-
Casilio-ME1 cell line was transiently transfected with targeting
sgRNAs, we obtained robust MLH1 activation in the presence of
doxycycline. MLH1 mRNA level also increased in response to
increasing amounts of doxycycline (Supplementary Fig. 12b).
Without doxycycline added, only background levels of MLH1
were detected and no detectable amounts of Casilio-ME1 protein
components were observed in Western blot analysis of protein
extracts from transfected cells (Supplementary Fig. 12b, c). This
DIP_Casilio-ME1 will enable establishment of isogenic cell lines
that can be used to study different target CGIs in a tunable
manner by supplying different target-specific sgRNAs and
adjusting doxycycline dosage.

Discussion
This study establishes a modular RNA-guided DNA methylation
editing platform that not only recruits the TET1 effector to
initiate DNA demethylation by 5mC oxidations, but also delivers

protein factors to facilitate coupling 5mC oxidation to DNA
repair pathways to effectively restore intact DNA to targeted sites.
Such dual delivery enhanced 5mC demethylation at CGI target
and augmented gene activations when compared to TET1(CD)
delivered alone. In addition to the robustness of the platform, the
modular design of Casilio-ME allows a high degree of tunability
and flexibility in editing 5mC epigenetic marks.

Turnover of 5fC and 5caC by DNA repair machinery lags
behind TET1-mediated 5mC oxidations as these intermediates
accumulate before getting converted to unmethylated cytosine44.
Coupling TET1 activity with BER or NER pathways could
accelerate 5fC and 5caC turnover, thereby enhancing activation of
methylation-silenced genes. Consistent with this idea, Casilio-
ME2 and Casilio-ME3 platforms designed to facilitate coupling
TET1 and DNA repair activities gave an enhanced gene activation
and CpG demethylation of targeted sites. This enhanced gene
activation requires TET1 catalytic activity, fully functional
GADD45A or NEIL2 proteins and co-targeting relevant effectors
in close proximity to genomic target sites.

Previous studies revealed interesting functional and physical
interactions among proteins involved in oxidizing 5mC and
removal of oxidized cytosine intermediates via BER or NER.
NEIL2 promotes substrate turnover by TDG during DNA
demethylation12. GADD45A physically interacts with TET1 or
TDG and seems to promote TET1 activity, and enhances removal
of 5fC and 5caC by TDG14,16,17. GADD45A also recruits repair
enzymes such as the 3′-NER endonuclease XPG to genomic sites
DNA45,46. As GADD45A is devoid of any enzymatic activity, it
was proposed to function as a liaison protein to physically couple
5mC oxidation with DNA repair16. Consistent with these
observations, Casilio-mediated co-targeting of TET1(CD) with
GADD45A or NEIL2 within close proximity of their substrates
enhanced 5mC demethylation and activation of methylation-
silenced genes. However, it was reported that GADD45A and
TDG failed to enhance demethylation of methylated plasmid by
TET1(CD) in vitro47, and the addition of TDG to Casilio-ME
modules failed to augment gene activation. TDG protein fusions
tested here might not be functional or other factor(s) might be
required for TDG to produce enhanced gene activation. The
enhanced activation of methylation-silenced genes observed
could alternatively be achieved by TDG-independent pathways,
by perhaps recruiting yet to be found players that could act by
enhancing TET1/BER activities in the presence of GADD45A or
NEIL2, or inhibiting DNA methyltransferases leading to
replication-dependent demethylation at the targeted sites. The
mechanisms by which these potential partners enhance 5mC
erasure are in need of further studies. The Casilio-ME2 and
Casilio-ME3 have the potential to be used in such mechanistic
studies as different combinations of protein assemblies that
include mutants or other proteins could be tested. Future char-
acterization of protein domains enabling an enhanced TET1-
mediated gene activation and of protein interactions taking place

Fig. 4 Efficiency of 5mC demethylation induced by Casilio-ME platforms and dCas9-TET1 system.MLH1 promoter was targeted by using components of the
indicated methylation editing system in the presence ofMLH1-sgRNAs. Cells were collected 3 days after transfection and corresponding genomic DNA was
subjected to high throughput amplicon BSeq and oxBSeq. a 5mC conversion to cytosine by TET1 and BER pathways is depicted above panels. Frequencies
(mean ± S.E.M.; n= 2) of 5mC (upper panel), 5hmC (middle panel) and bisulfite converted CpG (C, 5fC, and 5caC) (lower panel) plotted against CpG
positions within MLH1 promoter region are shown. The obtained levels of (5mC+ 5hmC) and 5mC from two experiments were concordant. Arrows
indicate locations of CpG overlapping one of the six sgRNAs target sequences. Statistical significance of differences in methylation patterns were tested. p
< 0.0001, two-way ANOVA. b Box plot of frequencies of different CpG variants measured by BSeq and oxBSeq across the MLH1 promoter regions in cells
transfected with the indicated 5mC demethylation system is shown. For each box plot the thick line inside the box represents the median value and the
surrounding bottom and top lines represent the 25th and 75th percentiles. The whiskers represent min and max values, the x represents the mean value.
**p < 0.01, and ***p < 0.0001, two-way ANOVA. c same as b but focusing on CpG 86–209 of the MLH1 promoter proximal-intron1 region. NS, not
significant p > 0.05, and ***p < 0.01, two-way ANOVA
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at TET1-targeted genomic sites could lead to further improve-
ment of the Casilio-ME platforms and shed light on 5mC editing
in mammalian cells.

Different levels of activation of methylation-silenced genes
could be obtained by using one of the three flavors of Casilio-ME
and by varying doxycycline concentrations with the DIP_Casilio-
ME1 platform described here. This equips Casilio-ME platforms
with the capability to fine-tune gene activation. These Casilio-ME
platforms significantly expand 5mC editing capability to effi-
ciently address the causal-effect relationships of methylcytosine
epigenetic marks in numerous biological and pathological
systems.

Methods
Cell culture and transfection. HEK293T and U2OS cells (both from ATCC) were
cultivated in Dulbecco’s modified Eagle’s medium (DMEM)(Sigma) with 10% fetal
bovine serum (FBS)(Lonza), 4% Glutamax (Gibco), 1% Sodium Pyruvate (Gibco),
and penicillin-streptomycin (Gibco) in an incubator set to 37 °C and 5% CO2.
LNCaP cells were obtained from ATCC and cultivated in RPMI-1640 supple-
mented with 10% FBS. Doxycycline (Dox) (Sigma) (1 µg/ml) or as otherwise
indicated was added on the day of transfections with a daily change of media
supplemented with Dox. Cells were seeded into 12-well plates at 150,000 cells per
well the day before being transfected with plasmids each encoding dCas9 (100 ng),
sgRNAs (100 ng) or PUF-fusion (200 ng) in the presence of Attractene or Lipo-
fectamine 3000 transfection reagents according to manufacturers’ instructions
(Qiagen, Thermo Fisher Scientific, respectively). The same plasmid ratio and total
amount of DNA were used in cell transfections with components of dCas9/MS2
and SunTag systems. In the two-component systems, where TET1(CD) was fused
to dCas9 or TALEs, 200 ng effector, 100 ng sgRNAs, and 100 ng empty vector of
plasmid DNA were used. The combinations of MLH1 sgRNAs used were based on
the obtained Casilio-ME1-medaited MLH1 activation efficiency in preliminary
experiments. However, no sgRNAs optimizations were performed for the other
methylation-silenced genes. Nucleofections of LNCaP cells were performed by
using 4D-nucleofector according to manufacturer’s instructions (Lonza) using 400
ng plasmid DNA. Cells were harvested 3 days after transfection or as otherwise
indicated with media changes at 24 h post-transfection, and cell pellets were used
for extractions of RNA, genomic DNA and protein using AllPrep DNA/RNA/
Protein Mini Kit according to the manufacturer’s instructions (Qiagen). Stable and
Dox-inducible expression cell line was generated by transfecting three plasmids
including the hyperactive transposase plasmid (hyPBase)48,49 and the indicated
PiggyBac vectors hosting cassette enabling a Dox-inducible expression of dCas9 or
PUFa-TET1(CD) effector. The transfected cells were then subjected to double
selection in the presence of blasticidin and hygromycin.

Plasmid constructions. A list of plasmids with links to their Addgene entries are
provided in Supplementary Table 1. Detailed descriptions and sequences of oli-
gonucleotides and proteins are given in the Supplementary Tables 2-5. The plas-
mids pCAG-dCas9-5xPlat2AflD and pCAG-scFvGCN4sfGFPTET1CD (Addgene
#82560 and 82561, respectively), pdCas9-Tet1-CD, and pcDNA3.1-MS2-Tet1-CD
(Addgene #83340 and 83341, respectively) were gifts from Izuho Hatada and
Ronggui Hu, respectively.

Quantitative RT-PCR analysis. Harvested cells were washed with Dulbecco’s
phosphate-buffered saline (dPBS), centrifuged at 125 × g for 5 min and then the
flash-frozen pellets were stored at −80 °C. Extracted RNA (500 ng–2 µg) were used
as templates to make cDNA libraries using a High Capacity RNA-to-cDNA kit
(Applied Biosystems). TaqMan gene expression assays were designed using
GAPDH (Hs03929097, VIC) as an endogenous control and CDH1
(Hs01023895_m1, FAM), GSTP1 (Hs00943350_g1, FAM), HSPA1A
(Hs00359163_s1, FAM), MGMT (Hs01037698_m1, FAM), MLH1
(Hs00179866_m1, FAM), PKP3 (Hs00170887_m1, FAM), RHOXF2
(Hs00261259_m1, FAM), SOX17 (Hs00751752_s1, FAM), SRPX2
(Hs00997580_m1, FAM), or THBS2 (Hs01568063_m1, FAM) as targets (Thermo
Fisher Scientific). Quantitative PCR (qPCR) was performed in 10 µL reactions by
using TaqMan Universal Master Mix II with UNG and 2 μL of diluted cDNA from
each sample (Applied Biosystems). Gene expression levels were calculated by “delta
delta Ct” and normalized to control samples using ViiA7 version 1.2.2 or
QuantStudio version 1.3 software (Applied Biosystems by Life technologies).

Bisulfite and oxidative bisulfite sequencing. Bisulfite and oxidative bisulfite
conversion experiments were performed by using the EpiTect Fast DNA Bisulfite
Kit, True Methyl oxBS Module and genomic DNA according to manufacturers’
instructions (Qiagen and NuGen, respectively). For oxBSeq, oxidation reactions
were carried out in parallel and all treated samples developed same orange color
expected for successful oxidative reactions. The average bisulfite conversion rates of
cytosines in oxidized and non-oxidized sample sets were 0.996 and 0.995,

respectively. Bisulfite treated DNA served as templates to PCR-amplify three DNA
fragments of 350–400 bp or a single fragment that coverMLH1 or GSTP1 promoter
regions, respectively, using ZymoTaq PreMix according to manufacturer’s
instructions (Zymo Research). The MLH1 PCR fragments were then cloned by
SLIC into EcoRI-linearized pUC19 plasmid using T4 DNA polymerize50. Ten
independent positive clones for each sample were then subjected to Sanger
sequencing to determine methylation profiles based on bisulfite-mediated cytosine
to thymine conversion frequency of individual CpGs. MLH1 amplicons obtained
from bisulfite converted DNA templates and from unconverted DNA were sub-
jected to high throughput sequencing (2 × 250 paired-end reads) conducted at
Genewiz (South Plainfield, NJ, USA). Fifty to 120 thousand reads were obtained
per sample. Sequence analysis of the plasmids extracted from MLH1 clones to
determine methylation frequencies was performed by using BiQ Analyzer 3 with
minimal bisulfite conversion rate and sequence identity set to 97 and 95%,
respectively51. Reads from high throughput amplicon sequencing, on the other
hand, were analyzed for 5mC and 5hmC by using BiQ Analyzer HiMod with
minimal read quality score, alignment score, sequence identity and bisulfite con-
version rate set to 30, 1000, 0.9, and 0.9, respectively52. Obtained levels of (5mC+
5hmC) and 5mC from two experiments were concordant across the CpGs. BiQ
Analyzer HiMod was used without sequence identity filter to analyze sequence
integrity of MLH1 amplicons derived from genomic DNA without bisulfite
treatment.

Reduced representation bisulfite sequencing (RRBS). Library preparation for
RRBS was performed according to manufacturer’s instructions (Diagenode).
Briefly, 100 ng of genomic DNA for each sample was enzymatically digested, end-
repaired and ligated with an adaptor. Samples with different adaptors were then
pooled together and subjected to bisulfite treatment followed by purification steps.
The pooled DNA was PCR-amplified and then cleaned up with Ampure XP beads.
Libraries were quantified with real time qPCR and sequenced using Illumina
NextSeq (1 × 75 single end reads). Forty to 60 million reads per sample were
obtained. To compute the CpG methylation levels, RRBS reads were aligned to the
hg38 human reference genome using Bismark (version 0.16.0)53. CpG sites with
coverage lower than 10 or higher than 400 reads were filtered out and Pearson’s
correlation of methylation profiles across indicated samples were computed by
using methylKit (version 1.0.0)54.

RNA sequencing. RNA sequencing libraries were prepared for independent
replicates of mRNA samples at Genewiz (South Plainfield, NJ, USA) by using
NEBNext Ultra RNA Library Prep Kit for Illumina according to manufacturer’s
instructions (New England Biolabs). Briefly, mRNA was enriched with Oligod(T)
beads, fragmented for 15 min at 94 °C and then reverse transcribed followed by
second strand cDNA synthesis. cDNA fragments were end repaired and adenylated
at 3′ends, and universal adapters were ligated to cDNA fragments, followed by
index addition and library enrichment by limited cycle PCR. The libraries were
validated on the Agilent TapeStation (Agilent Technologies), and quantified by
using Qubit 2.0 Fluorometer (Invitrogen) and quantitative PCR (KAPA Biosys-
tems). The libraries were clustered on two lanes of a flowcell then loaded on the
Illumina HiSeq instrument according to manufacturer’s instructions. The samples
were sequenced using a 2 × 150 paired-end configuration and image analysis and
base calling were conducted by the HiSeq Control Software. Generated raw
sequence data (.bcl files) from Illumina HiSeq was converted into fastq files and de-
multiplexed using Illumina’s bcl2fastq 2.17 software. Thirty to 40 million read pairs
were obtained per sample. Reads were then quantitated by Salmon into transcript
estimates55, then subjected to DESeq2 for differential gene expression analysis56.
Genes with low read counts in all samples were filtered out to eliminate noise in the
analysis. Differentially expressed genes were called with adjusted p-values less than
0.05. MA-plots and FPKM scatter plots were generated using DESeq2.

Western blot analysis. Protein cell extracts (30 µg) were separated by electro-
phoresis on 10% SDS-polyacrylamide gels and then transferred to nitrocellulose
membranes at 100 V for 1 h using Bjerrum Schafer-Nielsen buffer with SDS.
Blocked membrane in 5% Blotting-Grade Blocker (BioRad) in TBS-T (50 mM Tris
pH 7.6, 200 mM NaCl, 0.1% Tween 20) were incubated overnight at 4 °C with the
indicated antibodies, and then protein bands were detected using Horseradish
peroxidase-conjugated secondary antibodies (Sigma) and Clarity Western ECL
Substrate according to manufacturer’s instructions (BioRad). Monoclonal anti-Flag
(dilution 1:1000, Sigma cat #F1804), monoclonal CRISPR/Cas9 (dilution 1:5000,
Epigentek cat #A-9000-100) and monoclonal anti-β-actin (dilution 1:5000, Sigma
cat #MAB 1501) antibodies were used according to manufacturers’ instructions.
Blots were imaged using a G:Box (Syngene). Uncropped and unprocessed images of
the blots are supplied in Source Data file.

Cell proliferation assay. Cells were split 48 h after transfection in serial dilutions
as indicated, incubated for 48 h and then MTT assay was performed according to
manufacturer’s instructions (Thermo Fisher Scientific), and absorbance at 540 nm
was recorded using a SpectraMax M5 plate reader (Molecular devices).
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Statistical analyses. Information on replication, statistical tests and presentation
are given in the respective figure legends. GraphPad Prism 8 and Microsoft Excel
were used to perform the indicated tests. Differences in all comparisons were
considered significant if the obtained p values were less than 0.05.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The authors declare that the data that support the findings of this study are included in
the published article and in the Supplemental Information, and are available from
corresponding author upon reasonable request. Data containing RNAseq and RRBS raw
sequencing read files were deposited onto sequencing read archive (SRA) with accession
number PRJNA515359. The source data underlying Figs. 1b, 1c, 1e, 2b, 2d, 3b, 3d, and
4a–c and Supplementary Figs. 2b, 7b–c and 12c are provided as a Source Data file. New
plasmids have been deposited to the Addgene repository.
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