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ABSTRACT: It is tenable to argue that nobody can predict the future with certainty, yet one can learn
from the past and make informed projections for the years ahead. In this Perspective, we overview the
status of how theory and computation can be exploited to obtain chemical understanding from wave
function theory and density functional theory, and then outlook the likely impact of machine learning
(ML) and quantum computers (QC) to appreciate traditional chemical concepts in decades to come. It
is maintained that the development and maturation of ML and QC methods in theoretical and
computational chemistry represent two paradigm shifts about how the Schrödinger equation can be
solved. New chemical understanding can be harnessed in these two new paradigms by making respective use of ML features and QC
qubits. Before that happens, however, we still have hurdles to face and obstacles to overcome in both ML and QC arenas. Possible
pathways to tackle these challenges are proposed. We anticipate that hierarchical modeling, in contrast to multiscale modeling, will
emerge and thrive, becoming the workhorse of in silico simulations in the next few decades.
KEYWORDS: chemical concept, machine learning, quantum computer, wave function theory, density functional theory,
multiscale modeling, hierarchical modeling

I. INTRODUCTION
Theoretical and computational chemistry employs physics
methodologies to simulate properties of chemical systems. It
started from the application of quantum mechanics in the early
20th century to appreciate the behavior of atoms and molecules.
The introduction of digital computers in the late 1950s
revolutionized the numerical solution of the Schrödinger
equation, making it possible to apply wave function theory
(WFT)1,2 to polyatomic molecules. In the late 1980s, density
functional theory (DFT)3,4 emerged as a rigorous yet efficient
tool by bypassing solving the Schrödinger equation directly.
Later, incorporating classical mechanics with quantum mechan-
ics empowered multiscale modeling,5,6 which has become state-
of-the-art, enabling us to simulate complex systems such as
enzymes and macromolecular processes. Meanwhile, applying
WFT and DFT to achieve better understanding for traditional
chemical concepts has been continuously pursued and fruitfully
accomplished in terms of, e.g., FMO (frontier molecular orbital)
theory7,8 and CDFT (conceptual DFT).3,9−12 It is generally
accepted that theoretical and computational chemistry has
nowadays become a mature chemical discipline that enjoys
widespread applications across pharmaceutical, materials, and
biological sciences. Nevertheless, to tackle the pressing
challenges facing humankind in coming decades in health,
energy, environment, etc., which are often complex systems

involving multiple components working together, we still have a
long way to go.

In the recent theoretical and computational chemistry
literature,13−19 we have witnessed a gigantic growth of
applications of artificial intelligence, machine learning (ML),
and deep learning (hereafter, we do not distinguish these
terminologies from each other and generally refer to them as
ML). We also started noticing booming theoretical and
computational chemistry publications using quantum com-
puters (QC).20−26 These newly developed methodologies are
fascinating, and their impacts could be far-reaching. However,
general views in the theoretical and computational chemistry
community about the impact of ML and QC are diversified and
sometimes controversial. While optimists are constantly looking
for more applications to fundamentally overhaul the field,
pessimists hold negative views about their impact, if any, on
theoretical and computational chemistry. The key difference is
whether ML and QC are merely offering better tools to enhance
efficiency and accuracy in computation, or they provide turf-
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breaking opportunities to revolutionize the territory of
theoretical chemistry. In this contribution, we argue the future
might prove that the latter is the case. Our basic premise is that
there could be multiple approaches to numerically solve the
Schrödinger equation and WFT, DFT, ML, and QC are four
alternative yet viable examples of such approaches. Also, based
on our past experiences in exploiting chemical understanding
with theory and computation, we discuss the possible impact on
how chemical understanding can be harvested with these new
tools in decades to come. Before getting started, we should make
the following two points clear. First, exhaustive citations can
never be possible, so we apologize if we miss any relevant
publications. Also, we are aware that our vision is limited by our
experiences, so our projection may be overreaching and thus
could be proven inappropriate or completely incorrect later.
Nevertheless, if any of what we will present below provides any
insight from a different perspective to our readers, that meets the
precise intention of this work. The cautiously optimistic, though
heuristic per se, views presented here represent our long-held
belief that anything is possible in the future and what we do
today might determine what we will end up with tomorrow.

In what follows, we will first present the challenge of
simulations in the era of multiscale modeling. To set the stage
for our ensuing discussion, we will add two axes, one for
computation and the other for understanding. This ultimate
challenge of in silico simulations is the foundation and starting
point of the present discussion. We will then summarize the
status of how we tackle the matter using WFT and DFT
frameworks. Next, brief introductions of ML and QC are to be
followed with the emphasis on how theoretical and computa-
tional chemistry may benefit from them as alternative
approaches to solve the Schrödinger equation, what their
limitations are, and how we can improve. After that, the general
scheme of how chemical understanding can be harnessed from
different frameworks will be shown in an orthogonal manner.
Finally, we will conclude the discussion by envisaging that
hierarchical modeling, a top-down simulation approach
traversing multiple scales, will emerge and thrive, becoming
more attractive than, yet complementary to, multiscale
modeling.

II. THE ULTIMATE CHALLENGE OF IN SILICO
SIMULATIONS

Chemical science in the present times faces multiple challenges,
ranging from designing advanced materials with novel functions
and combating human health problems to converting solar
energy and addressing sustainable growth. From the theoretical
and computational chemistry viewpoint, these issues can often, if

not always, be boiled down to in silico simulations and dealt with
by multiscale modeling,5,6 which consists of scales along both
space and time axes, as shown in Figure 1a. Depending on the
space-time domain, we have microscopic, mesoscopic, and
macroscopic scales. To simulate these scales, computational
methodologies must be different, with the microscale employing
quantum mechanics, macroscale utilizing classical mechanics,
and mesoscale using hybrid approaches. These different
methods form the computation axis in Figure 1b, whose
outcomes are propensities in structural, thermodynamic,
electronic, spectroscopic, and other properties with varied
accuracy. These properties form the property space of a given
system.

On the other hand, there is a separate understanding axis in
Figure 1b. One might wonder why we need a separate
understanding axis perpendicular to the computation axis.
This is because computation is based on physics laws from
quantum mechanics or classical mechanics, whose results
obtained are total values of physical observables such as energy,
force, density, etc. In chemistry and biology, however, we are
interested inmolecular behaviors on the potential energy surface
and free energy landscape due to the change in the number of
electrons or nuclear conformations, so changes in energy, force,
density, etc., not their total values, are more relevant. These
changes are often in very small numbers compared to the total
value of the physical quantities, yet they make huge differences
in understanding chemical transformations and biological
processes. The patterns, effects, rules, principles, and laws
governing the change of these quantities are expressed as
chemical concepts, which form the foundation of conventional
understanding and chemical wisdom. In most cases, these
differences in physical quantities are not directly extractable
from computational results because they often involve multiple
systems or processes (e.g., barrier heights between reactants and
products), but they may be obtained by making use of the basic
variables from different theoretical frameworks. That is the
reason why we had the additional axis in Figure 1b.

Historically, chemical science is an experimental discipline.
Chemical understanding was obtained from experimentation
and expressed by chemical concepts, such as bonding, acidity,
aromaticity, steric effect, electrophilicity, regioselectivity, etc.
These concepts were coined by experimental chemists through
abstraction and generalization to group together objects,
phenomena, and processes that share common characteristics.
They form the foundation of the traditional wisdom of chemical
understanding and thus are the core of chemical science. These
concepts cannot be directly evaluated from the computation axis
from Figure 1b, yet computational results can be employed to

Figure 1. (a) Multiscale modeling of chemical systems and (b) the ultimate challenge of simulations.
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help improve their understanding. For example, there is no
concept of bonding in quantummechanics, but with the orbitals
introduced by WFT, covalent bonding can be appreciated by
orbital overlapping. In DFT, however, there is no concept of
orbitals, so as our recent studies have shown, density-based
descriptors can be employed to identify different kinds of
covalent bonds and various categories of noncovalent
interactions.27−29 Other examples are aromaticity, steric effect,
electrophilicity, regioselectivity, etc. They originated from
experimental studies, but different theories provide different
insights to understand them. How to crank numbers along the
computation axis in Figure 1b is paramount, but how to turn
numbers into understanding along the understanding axis is
equally important. These conjoint efforts are never easy, but not
impossible. In our view, Figure 1b summarizes the ultimate
challenge of in silico simulations in theoretical and computa-
tional chemistry.

III. WFT AND DFT AS TWO PARADIGMS
The size of chemical space is enormous, so is the property space.
Themapping between chemical space and property space can be
one-to-many and many-to-one. For example, one molecule can
have multiple properties (such as acidity, aromaticity,
nucleophilicity, and so on), whereas several molecules might
possess the same property or functionality (e.g., hydrophobicity,
binding affinity, acceptor inhibition, etc.). The many-to-one
mapping is often called the inverse molecular design. In
quantum chemistry, the one-to-many mapping is dictated by
the Schrödinger equation, whose solution must be approximate
except for a few special cases. Two categories of approximations
are available in the literature.1−4 The first is WFT (Figure 2a),

including valence bond theory (VBT) and molecular orbital
theory (MOT), and the other is DFT (Figure 2b). In Figure 2a,
the Hamiltonian operator, Ĥ, represents a molecular species in
chemical space, and its electronic energy E and total wave
function Ψ can be numerically determined by employing orbitals
{Øj}, either molecular orbitals in MOT or bond orbitals in VBT,
with which all properties, Pi, associated with the species,
{Pi[Øj]}, can be obtained. Insightful chemical understanding
using these orbitals for traditional chemical concepts such as
bonding and reactivity can also be yielded. Well-known
examples to improve reactivity understanding are Fukui’s
frontier molecular orbital (FMO) theory7,8 and Woodward−
Hoffmann rules.30−32 Using them, chemical reactivity of
numerous reactions can be qualitatively predicted.

DFT provides another pathway to accomplish the one-to-
many mapping, as shown in Figure 2b, by avoiding directly
solving the total wave function Ψ. Instead, DFTmakes use of the
ground state electron density, ρ, as the basic variable. According
to the basic theorems of Hohenberg−Kohn inDFT,3,33 there is a

one-to-one correspondence between ρ and the external
potential, υext, ρ ⇔ υext, suggesting that all properties associated
with the system, including the total energy E, are functionals of
ρ. DFT has been the most successful and widely applied
approach in theoretical and computational chemistry in the last
few decades to simulate the electronic structure of molecules
and solids alike.3,4 Even though the Kohn−Sham scheme34 of
DFT employed Kohn−Sham orbitals to outcome the difficulty
of approximating the kinetic energy density functional, it is not
necessary to do so in principle. The DFT method without using
orbitals is called orbital-free DFT (OF-DFT), which has been
enjoying considerable research attention in recent litera-
ture.35−37

Insightful understanding of traditional chemical concepts can
also be obtained in DFT without resorting to orbitals.
Conceptual DFT (CDFT)3,9−12 is the first DFT framework
developed to appreciate reactivity related matters, where
electronegativity, hardness, Fukui function,38,39 electrophilic-
ity,40 dual descriptor,41 etc. were formulated. CDFT was also
applied to evaluate molecular acidity42 and metal-binding
specificity,43 and predict proton-coupled electron transfer
(PCET) mechanisms.44,45 Also, using density associated
quantities such as density gradient and Laplacian, we recently
proposed several density-based descriptors to identify covalent
bonds and noncovalent interactions,27−29 quantify steric
effect,46 electrophilicity, and nucleophilicity,47 and determine
regioselectivity and stereoselectivity.48,49 Recent mini-reviews
about these studies are available.50−52 A book to highlight the
recent progress of these topics in DFT, as well as in VBT and
MOT, is being published.53

IV. MACHINE LEARNING AS A NEW PARADIGM
ML develops algorithms and statistical models that empower
computers to perform simulations without being explicitly
programmed. It does so by using supervised, unsupervised, or
reinforcement learning algorithms through the features of
training data sets. To build ML models, three components,
data sets, features, and algorithms, are mandatory. ML features54

refer to the attributes of data sets that can be employed to train
ML algorithms. ML algorithms learn patterns and establish
relationships between the features and target variables to make
predictions for new data sets. Even though ML does not require
programming implementations as WFT and DFT methods, ML
algorithms must be programmed, and the training set that ML
models are trained on has to come from somewhere, usually the
solutions of other programmed software in WFT and DFT.

We have observed a skyrocketing increase of ML applications
in theoretical and computational chemistry in the past
decade,13−19 involving all space-time domains in Figure 1a. To
most people, applying ML to theoretical and computational
chemistry is merely taking advantage of a new tool to expediate
the simulation and improve the accuracy. This is certainly true.
However, to us, it means more than just that. In our opinion, in
quantum chemistry, ML represents a paradigm shift away from
WFT (Figure 2a) andDFT (Figure 2b). It provides a completely
new way to solve the Schrödinger equation: To solve the equation
without solving it! Our argument is based on the following two
observations. First, ample evidence from the recent literature
indicates that ML can accurately reproduce, and even predict,
the total energy E,55,56 total wave function Ψ,57 and all kinds of
properties {Pi} of molecular systems,58−60 suggesting that the
solution of their Schrödinger equations can be accurately
obtained and thus the equation can be implicitly solved by ML.

Figure 2.One-to-manymapping from chemical space to property space
with (a) wave function theory and (b) density functional theory.
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Second, it is well-recognized that the hardware development of
digital computers has tremendously boosted the implementa-
tion of two schemes in Figure 2 to perform the one-to-many
mapping for molecules and condensed matters. With the
collective development of both hardware and software in recent
decades, computer hardware is fast enough, and computer
software becomes smart enough, so it has become feasible now
for computers to solve the Schrödinger equation without us
explicitly programming it.

Figure 3 shows the mapping from chemical space to property
space usingML. The key for this mapping to take place and work

well is the choice of the feature set, {ajk}, which is to be trained
by the training set and applied to make predictions for the test
set. This feature set should (i) be size-extensive, (ii) be self-
adaptive, (iii) be physically explainable, and (iv) be able to
reproduce the electron density. Size-extensiveness enables the
trained models to be generalizable to larger systems, and self-
adaptiveness takes into account the change of the local
environment for atoms in molecules or solids. The feature set
will also be employed for the purpose of improving chemical
understanding, so it must be physically explainable. The last
requirement of the feature set is the criterion based on DFT. If
the electron density in the ground state is known, according to
the basic theorems of DFT,3,33 everything else about the system
can also be rigorously determined. Examples of descriptors
satisfying the last criterion include atom-condensed shape
functions,61 moments,62 or information entropy.63 This last
requirement guarantees that the mapping in Figure 3 is well
established, and that the feature set also plays the role of quality
control. Lack of meeting these requirements all together for ML
feature sets will impede the transferability, universality, and
interpretability of ML models. Even though there are many
kinds of widely used feature sets in the present literature,54 none
of them is found to satisfy all these four requirements yet.

The reason why the ML-based mapping in Figure 3 is many-
to-many is because one starts with a training set of many inputs
and ends up with the outcome of many predictions. This many-
to-many mapping not only provides a new pathway to
accomplish the one-to-many mapping shown in Figure 2 for
WFT and DFT, but also offers desirable opportunities to exploit
the many-to-one mapping required by the inverse molecular
design, which finds crucial applications in drug discovery and
catalyst design.64,65

V. THE COMING ERA OF QUANTUM COMPUTERS
Quantum computer(s) is a computing device using quantum
mechanics. Its origin can be attributed to Feynman,66 Manin,67

and Benioff,68 who independently proposed the idea of using
quantum mechanics to perform quantum calculations. Unlike
classical computers whose information is stored in bits whose
value can be either 0 or 1, the basic information unit of QC,
quantum bit or qubit, can simultaneously exist in the
superposition state of both 0 and 1. On the other hand, QC

makes use of coherence and entanglement properties from
quantum mechanics for multiple qubits, allowing it to
simultaneously explore qubit space and thus achieve exponential
speedups for a variety of computations. Even though quantum
supremacy of QC has already been demonstrated in the
literature69 and we are certain that it has the potential to
revolutionize many fields including theoretical and computa-
tional chemistry, QC is still in the very early stage of
development right now, the so-called noisy intermediate-scale
quantum (NISQ) era.70 New quantum algorithms and
applications in quantum simulations are to be unveiled as larger
qubit-number and longer coherence-time QC device is
developed.

Applying QC to solve the Schrödinger equation for molecules
employed the VQE (variational quantum eigensolver) algo-
rithm.71 It variationally minimizes the expectation value of the
Hamiltonian for molecular systems with ansatz (trial wave
functions). It does so in a hybrid manner. VQE couples a
classical optimization loop with a subroutine that computes the
expectation value on a QC apparatus. As of now, VQE has been
successfully implemented for several small molecules such as H2,
LiH, H12, etc.

72,73

Even though it is still decades away for us to use QC for
routine quantum simulations, this new technology presents to us
a potential paradigm shift that will fundamentally change how
the Schrödinger equation is solved. The QC device beyond the
NISQ era will have millions of qubits, much longer coherence
time, and much better error correction, gate fidelity, and fault
tolerance capabilities. Also, as QC hardware advances, new and
powerful quantum algorithms will emerge to take full advantage
of the unique properties of the QC device. A significantly
improved VQE algorithm is expected. Even a complete
replacement of this algorithm is not impossible.

Besides VQE, one area of QC developments in the next few
decades should be closely watched. This is quantum machine
learning (QML).74,75 QML harnesses the unique capabilities of
QC to enhance the performance and capabilities of ML
algorithms. One plus one is surely greater than two. QML
holds immense potential for quantum simulations in drug
discovery, catalyst design, materials science and engineering, and
many others.

VI. HOW TO HARVEST CHEMICAL UNDERSTANDING
We need to compute for sure, but we should also understand.
That was the point that we made in Figure 1b as the ultimate
challenge of in silico simulations. Significant progress has been
accomplished in the past decades along the computation axis
using multiscale modeling techniques. Nevertheless, how to
harvest chemical understanding from computation has never
been adequately addressed and appropriately emphasized. In
Figure 4, we present a systematic scheme to describe how
chemical understanding can be harnessed out of computations
from different frameworks. Each square in the figure represents a
projection of the entire chemical space onto a particular
framework characterized by the basic variable of the theory. For
example, in WFT, as shown in Figure 2a, we employed its basic
variable, molecular or bond orbitals, {Øi}, to appreciate chemical
understanding, so the square is featured by the orbitals in Figure
4. Using the orbitals, we can obtain a better understanding about
covalent bond and chemical reactivity in terms of, for instance,
FMO theory andWoodward−Hoffmann rules. In DFT, its basic
variable is the electron density ρ, so the plane in Figure 4 is
symbolized by the density ρ. As shown in Figure 2b, we can

Figure 3. Many-to-many mapping from chemical space to property
space through the feature set {ajk} and deep neural network in machine
learning.
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employ density-related quantities to identify, determine, and
even quantify bonding, stability, reactivity, and other chemical
concepts. These include strong covalent bonds, weak
interactions, acidity, aromaticity, steric effect, electrophilicity,
nucleophilicity, regioselectivity, stereoselectivity, etc. These two
frameworks of chemical understanding shown as the squares
with green and purple sides in Figure 4 resulted from the
projection of the chemical space onto WFT and DFT
frameworks. These two squares represent two different manners
to understand chemical concepts from conventional wisdom.
These understandings are not mutually exclusive to each other.
Instead, they are orthogonal and complementary to each other,
representing different views for the same species in chemical
space.

For ML, its basic variable is the feature set, {ajk}. This set of
features is the quantities that future chemical understandings
will be exploited. For example, following FMO theory in WFT,
we may look for the single or few features that play the most
important role. Alternatively, following DFT, we may borrow
Shannon entropy, Fisher information, or other information-
theoretic quantities50−52 for the purpose. Since current feature
sets available in the literature do not meet all four criteria that we
specified above, we do not exactly know yet what novel chemical
understandings can be obtained from ML. However, we know
what and how we should expect fromML when all the criteria of
features are met, and the paradigm shift is accomplished.

The situation is the same for QC, whose basic variable of
modeling is qubits, {qi}. Qubits will be the quantities to be
exploited to obtain new chemical understandings from QC. We
may employ the same strategy as ML to search for new
understanding. Figure 4 also shows the additional two squares
with red and blue sides, respectively, representing the
complementary and orthogonal roles of feature sets {ajk} in
ML and qubits {qi} in QC to harvest chemical understandings.
Again, these understanding planes are not mutually exclusive.
They provide news insights not accessible from WFT and DFT
frameworks.

VII. OUTLOOK: HIERARCHICAL MODELING
Looking ahead, we envision that ML and QC will make it
possible to perform hierarchical modeling across multiple scales
in theoretical and computational chemistry, as shown in Figure
5. Not new in other disciplines such as computer science and
statistics yet to be formally introduced and thoroughly explored
in theoretical and computational chemistry, hierarchical
modeling is in stark contrast to multiscale modeling. Multiscale
modeling is a bottom-up approach that starts with fine-grained
models for the lower scale and then gradually aggregates to
coarse-grained models for the upper scale. On the contrary,
hierarchical modeling is a top-down approach whose compo-
nents across different hierarchical levels are associated with one

another in a nested or disjointed manner. In hierarchical
modeling, more attention is paid to the relationship among
components at a given hierarchical level or across different
hierarchical levels.

Historically, hierarchy is known as reductionism. However,
hierarchical modeling can be a combination of reductionism and
holism. It offers a flexible framework for representing complex
systems and allows for both decomposition and integration at
different hierarchical levels. Hierarchical modeling is particularly
suited to capturing and studying emergent properties at higher
hierarchical levels that arise from interactions among
components at lower levels. These emergent properties are
not directly predictable from the properties of individual
components at lower hierarchical levels, so they go beyond
reductionism and align with holism.

The reason why hierarchical modeling will emerge and thrive
in the ML and QC era is because ML and QC can accomplish
the many-to-many mapping in Figure 4 for a given hierarchical
level. With this done, more attention can be shifted to and then
focused on the relationship among different components or
levels of hierarchical structures. There are many kinds of
hierarchy in nature, such as structure hierarchy, data hierarchy,
chirality hierarchy,76,77 taxonomy hierarchy, organization
hierarchy, etc. The new modeling approach is aimed at dealing
with hierarchical structures, which are prevalent in nature, from
atoms to molecules to cells to tissues to organs to humans to
societies to ecosystems to the solar system to the Milky Way.
Hierarchical modeling captures the impact of one hierarchical
level influenced by others, so this approach is particularly
insightful and productive when dealing with hierarchical
structures that exhibit patterns and principles across multiple
hierarchical levels. These hierarchical structures are often
bounded together through weak interactions, where the effect
of cooperation and frustration are ubiquitous,78−80 and the
examination and understanding about the concepts of synergy,
cybernetics, self-organization, emergence, complexity, and
evolution from both reductionistic and holistic perspectives
will become inevitable.81−84

Moreover, with the general scheme in Figure 4 on how
chemical understanding can be harnessed from different
frameworks, novel insights pertaining to chemical and biological
processes can be harvested through the fundamental descriptors
across different hierarchical levels in complicated phenomena.
These phenomena could include, but are not limited to,
macromolecular self-assembly, asymmetrical synthesis, enzymic
catalysis, and many more. This is done through the feature set in
ML or QC or QML from different levels of hierarchical
structures. If the same feature set can be applied to describe

Figure 4. Schematic representation of how chemical understanding can
be harnessed from wave function theory, density functional theory,
machine learning, and quantum computer using orbitals {Øi}, electron
density ρ, features {ajk}, and qubits {qi}, respectively.

Figure 5. Impact of machine learning and quantum computer on
hierarchical modeling.
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different levels of a hierarchical structure, this structure exhibits
the key characteristics of a scale-free network85 in a holographic
manner, which has found profound implications in nature such
as protein−protein interactions, gene regulatory networks, and
the World Wide Web.

To wrap up, we recall that, in 1929, the late U.K. theoretical
physicist and Nobel Laureate Paul A. M. Dirac claimed that “the
underlying physical laws necessary for the mathematical theory
of...the whole of chemistry are thus completely known, and the
difficulty is only that the exact application of these laws leads to
equationsmuch too complicated to be soluble.”86 Based on what
we have presented in previous sections, after about one century,
we finally foresee plausible pathways to tackle this problem. ML
and QC will assist us in overcoming Dirac’s above pessimistic
view and provide viable options to make those “much too
complicated” equations soluble. We do not solve them
analytically though. We will make use of artificial intelligence
for this purpose. Plus, this may not happen in the next few years
because there are still obstacles to conquer, but we are cautiously
optimiztic that it will become likely in the next few decades.
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