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Over the last decade, the treatment of advanced non-small cell lung cancer (NSCLC) has
undergone rapid changes with innovations in oncogene-directed therapy and immune
checkpoint inhibitors. In patients with epidermal growth factor receptor (EGFR) gene
mutant (EGFRm) NSCLC, newer-generation tyrosine kinase inhibitors (TKIs) are providing
unparalleled survival benefit and tolerability. Unfortunately, most patients will experience
disease progression and thus an urgent need exists for improved subsequent lines of
therapies. The concurrent revolution in immune checkpoint inhibitor (ICI) therapy is
providing novel treatment options with improved clinical outcomes in wild-type EGFR
(EGFRwt) NSCLC; however, the application of ICI therapy to advanced EGFRm NSCLC
patients is controversial. Early studies demonstrated the inferiority of ICI monotherapy to
EGFR TKI therapy in the first line setting and inferiority to chemotherapy in the second line
setting. Additionally, combination ICI and EGFR TKI therapies have demonstrated
increased toxicities, and EGFR TKI therapy given after first-line ICI therapy has been
correlated with severe adverse events. Nonetheless, combination therapies including
dual-ICI blockade and ICI, chemotherapy, and angiogenesis inhibitor combinations are
areas of active study with some intriguing signals in preliminary studies. Here, we review
previous and ongoing clinical studies of ICI therapy in advanced EGFRm NSCLC. We
discuss advances in understanding the differences in the tumor biology and tumor
microenvironment (TME) of EGFRm NSCLC tumors that may lead to novel approaches
to enhance ICI efficacy. It is our goal to equip the reader with a knowledge of current
therapies, past and current clinical trials, and active avenues of research that provide the
promise of novel approaches and improved outcomes for patients with advanced
EGFRm NSCLC.
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1 INTRODUCTION

Lung cancer remains the leading cause of cancer-related death in
the United States with an estimated 235,760 new cases and 131,880
new deaths in 2021 (1). Non-small cell lung cancer (NSCLC)
represents approximately 85% of all lung cancer cases in the
United States (2), and includes three major histologic subtypes:
adenocarcinoma (ADC), squamous cell carcinoma (SCC), and
large cell carcinoma (LCC). More than three quarters of patients
with NSCLC have advanced (stage III or IV) disease at time of
diagnosis, where clinical outcomes and survival have remained
suboptimal (3). Fortunately, systemic treatment options for
NSCLC have recently made significant improvements with
advancements in oncogene-directed and ICI therapies. Data
from the Surveillance, Epidemiology, and End Results (SEER)
database demonstrate an approximate two-fold increase in 5-year
survival for patients with lung cancer from 1973 to 2010 from 10.7
to 19.8% (4), consistent with improved treatment options, and this
trend in improved patient outcomes is expected to continue.
Targeted therapies for NSCLC are constantly evolving and there
is significant interest in the potential interplay between
immunotherapy and targeted therapies.

Multiple targetable genetic alterations have been identified in
patients with NSCLC affecting the EGFR, KRAS, BRAF, PIK3CA,
ALK, ROS1,NRAS, andMET genes among others (5). Lung ADC
harbors more recognized oncogene mutations that SCC or LCC
(6, 7), with up to 64% of metastatic lung ADC cases carrying a
recognized oncogene driver mutation (8). The frequency of
driver mutations is increased in females, never-smokers, and
East Asian populations (6). Many clinical trials are underway to
expand the number of targeted therapies, therapy combinations,
and clinical contexts in which targeted therapies can be offered in
NSCLC (9).

EGFRmutations are among the most common NSCLC driver
mutations. EGFR is a receptor tyrosine kinase (RTK) that
activates Ras/MAPK and PI3K/Akt cell signaling pathways and
leads to cell proliferation, metastasis, and resistance to cell death
when dysregulated (10). EGFRmutations are found in 19-23% of
lung ADC in the United States and up to 64-67% of lung ADC in
other regions including South East Asia and Peru (11). EGFR
mutations are less common in lung SCC with a frequency of 2-
10% and have only rarely been reported in cases of LCL (12, 13).
Almost 90% of EGFR mutations are either deletions in exon 19
(ex19del) or leucine to arginine substation in exon 21 (L858R),
with less common mutations occurring in exons 18, 20, and
elsewhere (14). These mutations structurally activate EGFR
signaling via different mechanisms and, critically, increase the
binding affinity of various EGFR TKIs that inhibit mutant EGFR
and spare wild-type EGFR at therapeutic concentrations (15, 16).

First-generation EGFR TKIs including erlotinib and gefitinib
were first approved the U.S. Food and Drug Administration
(FDA) in 2013 for first line use in metastatic EGFR ex19dels or
L858R mutant NSCLC in 2013 after multiple studies
demonstrated improved clinical outcomes compared to
platinum-based chemotherapy (17, 18). The second generation,
irreversible EGFR TKI afatanib was approved for first-line use in
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July 2013 (19). Despite improvement in PFS with first- and
second-generation EGFR TKIs, clinical trials failed to uniformly
demonstrate improvements in overall survival (OS) due to the
development of TKI resistance occurring typically 10-14 months
after treatment initiation (20). The most common mechanism of
acquired resistance is the EGFR T790M mutation that inhibits
the binding of first- and second-generation EGFR TKIs (21),
though other mechanisms of resistance have been described (21).
Given the predominance of EGFR T790M as the escape strategy
for TKI resistance, third-generation EGFR TKIs including
osimertinib were developed that are effective against EGFR
containing the T790M substitution (16). Osimertinib was
initially approved in 2015 for second-line treatment of EGFR
T790M-mutant NSCLC after progression on first-line EGFR-
TKIs; however, this approval was expanded to first-line use after
the landmark FLAURA study demonstrated significantly
increased PFS with osimertinib versus standard EGFR-TKIs of
18.9 versus 10.2 months (HR for PFS 0.46, 95% CI 0.37-0.57,
p<0.001) and improved OS of 38.6 versus 31.8 months (HR for
death 0.80, 95% CI 0.64-1.00, p = 0.046) (22–24). Given the
impressive performance of osimertinib in both first- and second-
line contexts, as well as its favorable side effect profile, it is now
the standard of care for EGFR targeted therapy in EGFRm
NSCLC (25). Active research is defining which EGFR
mutations respond best to different EGFR TKIs and fourth
generation inhibitors have been described that are under active
investigation (26).

In addition to driver-mutation targeted therapies, the
discovery and utilization of immune checkpoint (ICP)
inhibitors in NSCLC has provided new and hopeful treatment
options for many patients (27).The ICP describes an
immunomodulatory process that downregulates T-cell effector
responses and is mediated in part by the B7 ligand binding to the
cytotoxic T-lymphocyte-associated protein-4 (CTLA-4) receptor
and the programmed cell death ligands 1 and 2 (PD-L1 and PD-
L2) binding to the programmed cell death protein 1 (PD-1) (28).
While the ICP is normally a tissue protective mechanism that
prevents autoimmunity, ICP activation is a strategy that many
cancer types including NSCLC utilize to impede effective anti-
tumor T-cell responses (29). Monoclonal antibodies that bind to
CTLA4, PD-1, or PD-L1, known as ICIs, reduce activation of the
PD-1/PD-L1 axis to remove inhibitory signals of anti-tumor T-
cell activation. ICP blockade enhances anti-tumor T-cell
mediated immune responses, especially in immunogenic
tumors that rely on ICP activation to escape immune
destruction (30, 31). An active challenge is to identify patients
who will respond to ICIs before prescribing therapy, as ICIs can
cause potent and wide-ranging immune-mediated adverse events
(irAEs) including rash, endocrine abnormalities, and interstitial
pneumonitis among many others (32).

There are multiple ICIs currently approved by the FDA for
the treatment of NSCLC (33). ICIs were first approved in the
second-line setting for metastatic NSCLC (mNSCLC) in March
2015 after nivolumab demonstrated superiority to docetaxel for
squamous mNSCLC that progressed on platinum therapy (34).
Subsequently, both pembrolizumab and atezolizumab were
November 2021 | Volume 11 | Article 751209
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approved in second-line contexts for mNSCLC by 2016, and
since then ICI indications have expanded and are approved in
different combinations and settings (35). Pembrolizumab,
atezolizumab, and combination of ipilimumab + nivolumab
have obtained approval in first-line contexts (36). As such,
there now exists a potent repertoire of immunotherapy
strategies for patients with advanced NSCLC, though the
question of how to integrate ICI therapy with targeted
therapies in oncogene-driven NSCLC is an active area
of research.

The role of ICI therapy in EGFRm advanced NSCLC is the
focus of this review. We have discussed the role of ICI therapy in
NSCLC with ALK, ROS1, BRAF, c-MET, RET, and NTRK
mutations is separate, companion review in this journal. Below,
we detail past and current clinical trials evaluating ICI therapy in
advanced EGFRm NSCLC. We highlight different treatment
sequences and combinations as well as subgroups that
experienced either improved outcomes or unexpected
toxicities. While the role of ICI therapy in EGFRm NSCLC is
controversial, there is intriguing and hopeful evidence that
certain combinations may prove beneficial, and active research
is elucidating properties of EGFRm tumor biology and TME
composition that we anticipate will lead to novel therapies in the
near future.
2 CLINICAL TRIALS OF IMMUNE
CHECKPOINT THERAPY IN ADVANCED
EGFR MUTANT NSCLC

A number of clinical trials have been performed utilizing ICIs in
advanced EGFRm NSCLC. Initial studies on ICI first-line
therapy were overall disappointing and did not reach the
efficacy of EGFR TKIs. However, second- and later-line ICI
therapy has demonstrated promise in certain contexts, with
select subgroups demonstrating improved response to ICI
strategies. Active clinical studies are addressing important
questions including combinations of dual ICIs and ICI +
Vascular Endothelial Growth Factor (VEGF) inhibitors +
chemotherapy in progressive EGFRm NSCLC that are of
significant interest to researchers and clinicians in the field.
Clinical trials are summarized in Tables 1, 2 and are described
in detail below.
2.1 First-Line ICI Therapy
Several small studies or subgroups of larger studies have
evaluated first-line ICIs either alone or as combination therapy
in advanced EGFRm NSCLC (Table 1). Overall, ICI first-line
therapy is unhelpful compared to EGFR TKI monotherapy,
especially given the outstanding safety profile of the third-
generation EGFR TKI osimertinib for advanced EGFRm
NSCLC patients with PFS reported at 18.9 months and OS
reported at 38.6 months in the FLAURA trial (23).
Additionally, combination ICI + EGFR TKI may have
enhanced toxicity and ICI treatment before EGFR TKI
Frontiers in Oncology | www.frontiersin.org 3
administration may prime patients for significant later
toxicities with second-line EGFR TKI treatment.

2.1.1 ICI Monotherapy
Based on a subgroup of the KEYNOTE-001 trial, in which a
small number of EGFRm, TKI-naïve patients experienced
improved objective response rate (ORR) compared to TKI-
pretreated patients, the follow up Phase II NCT02879994 trial
evaluated pembrolizumab first-line therapy in TKI-naïve,
EGFRm advanced NSCLC patients with PD-L1 positivity (TPS
≥ 1%) (38, 58). This trial was halted early due to futility, as only
1/11 initial patients experienced an OR and this patient was
found on subsequent analysis to be EGFRwt. Importantly, 6/7
patients that switched to second line TKI therapy after PD on
pembrolizumab experienced treatment-related adverse events
(TRAEs) from the TKI (erlotinib), including one patient who
experienced grade 5 pneumonitis. These results suggested
potential toxicity of EGFR TKI therapy after pembrolizumab
treatment in EGFRm NSCLC patients.

A small subgroup of patients in the CheckMate 012 study
examining first-line nivolumab monotherapy were EGFRm (6/
56, 11%). The ORR for EGFRm versus EGFRwt patients was 14%
versus 30%, indicating a comparatively decreased efficacy of ICI
therapy in the first-line for EGFRm patients (37).

2.1.2 ICI + Chemotherapy
The CheckMate 012 trial compared niviolumab + platinum-
doublet chemotherapy in EGFRwt versus EGFRm advanced
NSCLC patients as first-line treatment (39). EGFRm patients
experienced worse PFS (4.8 vs 7.5 months) and median OS (20.5
versus 24.5 months) compared to EGFRwt.

2.1.3 ICI + EGFR TKI Therapy
The results of the phase 1 NCT02088112 study, a two-part, dose-
escalation study with durvalumab + gefitinib as first-line therapy
in advanced EGFRm NSCLC patients, were recently published
(40). All patients in the study received gefitinib daily. In the dose
escalation portion of the study (Part A), 3 patients were
randomized to additionally receive durvalumab 3 mg/kg every
3 weeks and 13 were randomized to receive durvalumab 10mg/kg
every 3 weeks. Grade 3/4 TRAEs were reported in 68.8% of dose-
escalation patients, leading to discontinuation of combined
treatment in 94% of patients in this phase. In the dose-
expansion phase (Part B), 40 patients were recruited to one of
two treatment strategies: 1) gefitinib + durvalumab 10 mg/kg
every 2 weeks (Arm 1, 30 patients), or 2) gefitinib for 4 weeks
followed by addition of durvalumab 10 mg/kg every 2 weeks
(Arm 2, 10 patients). Median PFS was 10.1 months in Arm 1
(95% CI 5.5-15.2 months) and 12.0 months in Arm2 (95% CI:
2.7-15.6 months), which was not considered improved compared
to gefitinib monotherapy studies. For example, the phase 4
update of the NCT01203917 first-line gefitinib study
demonstrated PFS of 9.7-10.2 months with gefitinib
monotherapy (59). 17/40 of the dose-expansion phase patients
experienced high-grade hepatic events, suggesting an additive
effect of gefitinib and durvalumab for hepatotoxicity. The
authors noted a trend towards favorable PFS in patients with
November 2021 | Volume 11 | Article 751209
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TPS ≥ 20% (HR 0.46, 95% CI 0.19-1.03), but overall concluded
that their study did not support combination gefitinib +
durvalumab as first line treatment in EGFRm advanced NSCLC.

The ongoing open-label, multicohort phase 1/2 KEYNOTE-
021 study (NCT02039674) is evaluating pembrolizumab in
combination with chemotherapy or immunotherapy in
previously untreated stage IIIB/IV EGFRm NSCLC patients
(41). Two cohorts were reported early and evaluated
pembrolizumab + EGFR TKI: Cohort E included 12 patients
treated with pembrolizumab + erlotinib and Cohort F included 7
patients treated with pembrolizumab + gefitinib. The
pembrolizumab + gefitinib arm was permanently discontinued
early due to safety concerns, as 5/7 patients (71.4%) had
treatment-related elevations in ALT and AST. However, the
pembrolizumab + erlotinib arm was found to be tolerated and
this arm experienced an objective response rate (ORR) of 41.7%,
which is similar to the ORR seen with erlotinib and
pembrolizumab monotherapies. All (4/4) patients with TPS ≥
50% had an objective response, whereas only 1/4 patients with
TPS 1%-49% and 0/2 patients with TPS <1% responded to
pembrolizumab + erlotinib (41).

The phase 1b NCT02013219 study evaluated first-line
erlotinib + atezolizumab in TKI-naïve patients with EGFRm
NSCLC (42). The preliminary report included 28 patients and
demonstrated a median PFS of 11.3 months, which was similar to
erlotinib monotherapy. However, 50% of patients experienced
serious TRAEs including 39% of patients who experienced grade
3/4 events. These data suggest that combination atezolizumab +
erlotinib enhances toxicity without significant additive benefit.
Frontiers in Oncology | www.frontiersin.org 4
We await the publication of full trial results make a more
comprehensive assessment of this combination.

The Phase 1/2 CheckMate 370 study (NCT02574078) is
evaluating nivolumab as maintenance or first-line + other
standard of care therapies (60). Group D will compare erlotinib
versus nivolumab+ erlotinib. Results have not yet been announced.

2.1.4 Dual ICI Therapy
As part of the multi-arm phase 1 CheckMate 012
(NCT01454102) trial, patients with chemotherapy-naïve Stage
IIIB/IV NSCLC were randomized to receive different dose
schedules of nivolumab and ipilimumab as first line treatment.
10-11% of patients in different arms had EGFR activating
mutations. Of these, 50% (4/8) had objective responses with
combined nivolumab + ipilimumab, including 3/3 (100%) of
patients with TPS ≥ 50% (43). PFS data are not available. These
results, while limited by small sample size, suggest that
combination immune checkpoint inhibition therapy may more
effectively sensitize EGFR-mutant, PD-L1-expressing NSCLC to
immune-mediated destruction than ICI monotherapy.

2.2 Second-Line or Later ICI Therapy
Multiple clinical trials have been performed with single or dual
agent ICI therapy after patients experienced progressive disease
(PD) with EGFR TKIs (Table 2). Most of the earlier studies were
single agent trials that did not demonstrate benefit versus
chemotherapy. However, more recent trials have added
intriguing combination ICI strategies that may yield
enhanced benefit.
TABLE 1 | First-line ICI Clinical Trials in EGFRm NSCLC.

Trial Phase Intervention Outcome Safety Reference

ICI Monotherapy

CheckMate
012

1 Nivolumab ORR: 14% for EGFRm vs 30%
for EGFRwt
PFS: 1.8 vs 6.6 mo

G3-4#: 17%, G5: 0% (37)

NCT02879994 2 Pembrolizumab ORR: 0%* TRAE: 46%, no G4-5
6/7 patients had a TRAE on second-line EGFR TKI,
including one G5 pneumonitis

(38)

ICI + Chemotherapy
CheckMate
012

1 Nivolumab + PT-DC ORR: 17% for EGFRm vs 47%
for EGFRwt
PFS: 4.8 vs 7.5 mo
OS: 20.5 vs 24.5 mo

G3-4#: 50%, G5: 0%. Pneumonitis most common TRAE
(7%)

(39)

ICI + EGFR TKI Therapy
NCT02088112 1 Gefitinib + durvalumab dose

escalation
ORR: 63.3%-70%
PFS: 10.1-12.0 mo

TRAE: 100%, 17/40 high-grade hepatic AEs (40)

KEYNOTE-
021

3 Pembrolizumab (P) + erlotinib (E)
or gefitinib (G)

ORR: 41.7% P+E, 14.3% P +
G
PFS: 19.5 mo P+E, 1.4 mo P
+ G

P+E: TRAE: 100%, G3: 33.3%, no G4-5
P+G: TRAE: 85.7%, G3-4: 71.4% hepatotoxic AEs

(41)

NCT02013219 1b Atezolizumab + erlotinib ORR: 75%
PFS: 11.3 mo

G3-4#: 39% (42)

Dual ICI Therapy
CheckMate
012

1 Nivolumab + ipilimumab ORR: 50% TRAE#: 72-82%, G3-4: 33-37%, no G5 (43)
November 2021 | Volume 11 | Art
icle 75
Indicated categories of trials with respective trial parameters are given. *1/11 patients initially reported to respond but was found to be EGFRwt. ORR, overall response rate; PFS,
progression-free survival; OS, overall survival; TRAE, Treatment related adverse event; G, grade of toxicity; PT-DC, platinum-doublet chemotherapy; #TRAEs for entire study population
and not selected for EGFRm patients.
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2.2.1 ICI Monotherapy
In regard to single agent ICI as a second-line agent after PD on
EGFR TKI, three studies explored different single agent ICIs versus
docetaxel. KEYNOTE-010 included a small number of EGFRm
advanced NSCLC patients (9%) who were randomized to receive
2mg/kg pembrolizumab, 10mg/kg pembrolizumab, or 75 mg/m2

docetaxel every three weeks after having progressed on at least two
cycles of platinum-based chemotherapy and treatment with an
EGFR TKI. The EGFRm patients experienced worse PFS with
pembrolizumab versus docetaxel (HR for PFS 1.79, 95% CI 0.94-
3.42, p not given), in contrast to the EGFRwt patients who had an
improved pooled PFS (HR for PFS 0.83, 95% CI 0.71-0.98, p not
given) (44). CheckMate 057 (NCT01673867) was a large phase 3
study of nonsquamous NSCLC patients who had progressed on or
after platinum-doublet therapy that compared nivolumab 3mg/kg
every two weeks versus docetaxel 75 mg/m2 every three weeks.
EGFRm patients were allowed to have received previous treatment
with anEGFRTKI. 14%of study participants wereEGFRmpositive
Frontiers in Oncology | www.frontiersin.org 5
and experienced worse OS with nivolumab compared to docetaxel
(HR 1.18, 95% CI 0.69-2.00, p not given), whereas the EGFRwt
patients experienced significant benefit to OS with nivolumab (HR
0.66, 95% CI 0.51-0.86, p not given) (45). The POPLAR phase 2
study compared atezolizumab versus docetaxel as second line
therapy for NSCLC. Similar to the PD-1 inhibitor studies,
atezolizumab improved OS compared to docetaxel among all
NSCLC patients (HR 0.73, 95% CI 0.53-0.99, p=0.04) (46).
However, as reported by Lee et al., the subgroup of EGFRm
patients did not see an improvement in OS (HR for OS 0.70 in
WT versus 0.99 in EGFR-mutant, compared to docetaxel) (47).
Thus, PD-L1 inhibition, as with PD-1 inhibition, failed to
demonstrate improvement in EGFRm patients in the second-line
context, though ICI therapywasmore well tolerated across all three
studies with less TRAEs compared to docetaxel.

A meta-analysis published by Lee et al. combined the results
of these three studies utilizing ICI single therapy versus docetaxel
as second-line therapy. The EGFRm NSCLC patients overall did
TABLE 2 | Second-line or later ICI Clinical Trials in EGFRm NSCLC.

Trial Phase Intervention Outcome Safety Reference

ICI Monotherapy

KEYNOTE-
010

3 Pembrolizumab (P) vs docetaxel (D) HR for PFS$ with P vs D: 1.79 in EGFRm
vs 0.83 in EGFRwt
HR for OS with P vs D: 0.88 vs 0.66

P: G3-5#: 13-16%
D: G3-5: 35%

(44)

CheckMate
057

3 Nivolumab (N) vs docetaxel (D) HR for OS$ with N vs D: 1.18 for EGFRm
vs 0.66 in EGFRwt

N: G3-5#: 10%
D: G3-5: 54%

(45)

POPLAR 2 Atezolizumab (A) vs docetaxel (D) HR for OS$ with A vs D: 0.99 for EGFRm
vs 0.70 in EGFRwt

A: G3-4#: 40%, G5: 4%
D: G3-4: 53%, G5: 4%

(46, 47)

KEYNOTE-
001

1b Pembrolizumab PFS$: 6.0 mo in EGFRm vs 12.1 mo in
EGFRwt

N.R.** (48)

PACIFIC 3 Durvalumab HR for PD$ or death: 0.76 in EGFRm vs
0.47 in EGFRwt

TRAE: 96.8%, G3-4: 29.9% (49)

ATLANTIC 2 Durvalumab ORR for EGFRm/ALKm: 3.6% PD-L1 TPS
<25%, 12.2% for PD-L1 ≥25%
OS for EGFRm/ALKm: 9.9 mo PD-L1 TPS
<25%, 13.3 mo for PD-L1 ≥25%

G3-4: 5% (50)

ICI + Chemotherapy
NCT03513666 2 Toripalimab + PT-DC ORR: 50%

PFS: 7.0 mo
G3-5: 55%, including neutropenia (48%),
leukopenia (20%), and anemia (13%)

(51)

ICI + EGFR TKI Therapy
CheckMate
012

3 Nivolumab + erlotinib ORR: 15%&

PFS: 5.1 mo
OS: 18.7 mo

G3: 24%, no G4-G5 (52)

TATTON 1b Durvalumab + osimertinib ORR: 43% TRAE: 100%, G3-5: 48%. ILD occurred in
22% with G≥3 ILD in 8.7%

(53)

CAURAL 3 Durvalumab + osimertinib ORR: 64% TRAE: 100%, G3-5: 8%. One G2 ILD
reported

(54)

Dual ICI Therapy
KEYNOTE-
021

1/2 Pembrolizumab + ipilimumab ORR: 10% for EGFRm vs 30% for EGFRwt TRAE#: 98%, G3-G5: 49%, one G5
pancreatitis

(55)

ICI + VEGF Inhibitor + Chemotherapy
IMpower150 3 Atezolizumab (A) + bevacizumab (B)

+ carboplatin-paclitaxel (CP)
ORR##: 70.6% for ABCP, 35.6% for ACP,
41.9% for BCP
OS: NR for ABCP##, 17.5 mo for BCP

G3-4: 64% of ABCP, 68% of ACP, and
64% of BCP

(56)

NCT03647956 2 Atezolizumab + bevacizumab +
pemetrexed-carboplatin

ORR: 62.5%
PFS: 9.43 mo

G3-5: 37.5%, One G5 myocardial infarction,
7.5% blood clot

(57)
November 2021 | Volume 11 | Art
icle 75
Indicated categories of trials with respective trial parameters are given. ORR, overall response rate; TRAE, Treatment related adverse event; G, grade of toxicity. #TRAEs for entire study
population and not selected for EGFRm patients. $ORR data not given for EGFRm subgroup. **Safety data were not reported in this long-term survival update report. PD, progressive
disease; PT-DC, platinum-doublet chemotherapy. &Authors note that these patients were all TKI treated for first-line. NR, not reached. ##These numbers refer to the subgroup of patients
with sensitizing EGFR mutations.
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not benefit from ICI monotherapy compared to docetaxel,
whereas EGFRwt patients experienced a significant benefit
from ICI therapy (HR for OS 1.05 for EGFRm vs 0.66 for
EGFRwt) (47), confirming that ICI monotherapy is not
advantageous over chemotherapy in the second-line setting for
EGFRm patients with PD on TKI/chemotherapy.

Hui et al. reported updated results from the KEYNOTE-001
study, which examined pembrolizumab efficacy across several
settings for patients with NSCLC and PD-L1 TPS ≥ 1% (48). The
subgroup of EGFRm patients who had previously received
treatment had significantly less benefit from pembrolizumab
than EGFRwt patients (median OS 12.1 months versus 6.0
months). PD-L1 overexpression (TPS ≥ 50%) did not rescue
response to pembrolizumab in the EGFRm vs EGFRwt patients
(median OS 6.5 versus 15.7 months) (48). These results suggested
that PD-L1 is an imperfect biomarker to predict ICI response in
previously treated EGFRm patients, as discussed in further
detail below.

The PACIFIC trial (NCT02125461) was a phase 3 trial that
assessed the addition of durvalumab consolidation therapy after
definitive chemoradiotherapy (CRT) for patients with stage III
NSCLC (49). EGFRm NSCLC patients did not have significant
benefit from durvalumab consolidation therapy (HR for PD or
death 0.76, 95% CI: 0.35-1.64) whereas the EGFRwt patients did
experience benefit (HR for PD or death 0.47, 95% CI: 0.36-0.60).
In the recently published four-year survival update of the
PACIFIC trial, EGFRm NSCLC patients again did not
demonstrate benefit from durvalumab consolidation (HR for
PFS 0.84, 95% CI: 0.40-1.75) whereas the EGFRwt patients again
demonstrated significant benefit (HR for PFS 0.51, 95% CI: 0.40-
0.65) (61).

Similar to the PACIFIC trial, Aredo et al. recently published
the results of a multi-center retrospective study of patients
(n=13) with unresectable EGFRm NSCLC who received
consolidation durvalumab after CRT (62). They compared
these patients to a cohort of EGFRm NSCLC patients who
instead received consolidation EGFR TKI after CRT (n=24).
Median PFS was 10.3 months for the CRT + durvalumab cohort
versus 26.1 months for the CRT + EKGFR TKI group (p = 0.023).
Notably, six patients opted to switch to EGFR TKI after
experiencing PD on CRT + durvalumab and one of these
patients developed Grade 4 pneumonitis 17 days after
initiating osimertinib, again highlighting the safety signal of
initiating EGFR TKIs after ICI therapy.

The ATLANTIC trial was a phase 2 open-label trial of
durvalumab monotherapy as third-line or later treatment in
patients with advanced NSCLC (63). Enrolled patients had to
have received at least two previous lines, with one platinum-
containing regimen and a TKI if indicated. Cohort 1 included
bothEGFRmandALKmNSCLCpatients andwas stratified by PD-
L1 TPS: median OS was 13.3 months in the TPS ≥ 25% subcohort
versus 9.9 months in the TPS < 25% subcohort. Notably, this was
higher than in theEGFRwt andALKwtCohort 2 that demonstrated
medianOS of 10.9 versus 9.3months for TPS≥ 25% andTPS <25%
subcohorts, respectively. The safety profile of EGFRm/ALKm
cohort was similar to the EGFRwt/ALKwt profile, with 6-8% of
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patients experiencing Grade 3-4 TRAEs, supporting the safety of
ICI administration after EGFR TKI treatment. Of note, the
ATLANTIC trial has multiple limitations, including lack of
descriptive statistics, single-arm design, and variations in testing
platform for PD-L1 that made direct comparisons with other trials
not possible (64). Despite this, the ATLANTIC trial suggested that
ICI therapy may have efficacy in heavily pre-treated EGFRm
NSCLC patients and further supported the safety of ICI therapy
after patients progressed on TKI therapy.

2.2.2 ICI + Chemotherapy
The NCT03513666 trial was a phase 2 study that evaluated
toripalimab (anti-PD-1) + platinum doublet chemotherapy in
patients with EGFRm advanced NSCLC who developed PD on
first- and second-generation EGFR TKIs without T790M
mutation (51). Median PFS was 7.0 months, and interestingly
the authors identified that TP53 co-mutation patients
experienced significantly improved ORR compared to TP53wt
patients (62% vs 14%, p = 0.04). This combination was found to
have manageable safety profile and efficacy, and a follow up
randomized Phase III trial (NCT03924050) that will compare
this combination to standard chemotherapy with planned
enrollment for 350 patients (65).

The CheckMate 722 trial (NCT02864251) is a currently active
phase 3 study of patients with EGFRm, T790M-negative
recurrent or stage IV NSCLC who have previously been treated
with EGFR TKI therapy (66). Arm A comprises nivolumab +
platinum-doublet therapy and Arm C involves platinum-doublet
alone. Additionally, the KEYNOTE-789 trial (NCT03515837) is
another currently active Phase III trial evaluating pemetrexed-
platinum combined with pembrolizumab versus placebo in
EGFRm advanced NSCLC that has progressed on EGFR TKI
(67). The results of these studies will provide highly valuable
information on the efficacy and safety of second line ICI +
chemotherapy. The CheckMate 722 trial has the additional
benefit of comparing this strategy to dual ICI therapy (Arms A
versus B).

2.2.3 ICI + EGFR TKI Therapy
A number of trials have evaluated combination ICI therapy and
EGFR-targeted therapy in the second-line and beyond. These
studies were predicated on pre-clinical studies that suggested
added benefit to the combined approach in animal models (68–
71). However, results have mostly been disappointing and in
many cases demonstrated increased and severe toxicities.
Nonetheless, several ongoing trials are assessing different
combination therapies that will be of interest when results
are available.

2.2.3.1 Nivolumab + EGFR TKI
Arm E of the CheckMate012 study evaluated nivolumab +
erlotinib in 21 EGFRm NSCLC patients (52). 20/21 patients
had discontinued prior erlotinib treatment due to PD, and 1/21
patients was TKI-naïve. 3/21 patients had an OR to nivolumab +
erlotinib, including the treatment naïve patient who also had
atypical EGFR mutation status (double L858R, S768I). 24-week
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PFS was rate was 48%. The PFS for the previously TKI-tread
patients (n=20) was 5.1 months. Overall, most patients had PD
and were switched to other treatment regimens (52). Of note, the
patients who responded were either PD-L1 positive (10% or
65%) or had unknown PD-L1 status. While not significantly
efficacious in this small study, the dual nivolumab + erlotinib
therapy was overall tolerated well, with no grade 4 or 5 TRAEs
reported and 2/21 patients discontinuing study drugs due
to toxicity.

2.2.3.2 Durvalumab + EGFR TKI
The TATTON phase 1b study (NCT02143466) is highly
significant in regard to the safety of combination EGFR-
targeted + ICI combination therapy. In TATTON, osimertinib
was combined with durvalumab in one of the three study arms to
treat 23 patients with advanced EGFRm NSCLC that had
progressed on previous EGFR TKI therapy (53). The ORR was
43%; however, significant safety concerns arose as 48% of
patients had at least one grade 3 TRAE and 5/23 patients
developed interstitial lung disease (ILD), leading all patients to
discontinue the study. This study is very relevant now that
osimertinib is the standard of care for first-line EGFRm
NSCLC and as second-line for EGFRm NSCLC that progressed
on a previous EGFR TKI.

In the CAURAL phase III study (NCT02454933), patients
with EGFRm T790M-positive advanced NSCLC with PD after
initial EGFR TKI therapy were randomized to receive either
osimertinib or osimertinib + durvalumab (54). CAURAL was
terminated early after one patient developed ILD given the
contemporaneously reported results of the TATTON trial,
though partial results were reported. In all, 15 patients received
osimertinib and 14 received osimertinib + durvalumab. The ORR
in the osimertinib arm was 80% versus 64% in the combination
arm, and the median 12-month PFS rates were 82% and 76% for
the osimertinib and combination arms respectively, indicating
no evidence of increased efficacy of the combined approach.
Aside from the one patient who developed grade 2 ILD in the
combination arm (after receiving only a single dose of
durvalumab and remaining on osimertinib), the safety profile
was otherwise relatively unremarkable with no other ILD
events reported.

2.2.3.3 Atezolizumab + EGFR TKI
A phase 1b/2 study (NCT02630186) evaluating rociletinib, a
third generation EGFR TKI, + atezolizumab in EGFRm patients
who progressed after prior EGFR TKI was terminated after only
three patients were recruited (72). No efficacy data were reported,
and it was noted that 1/3 patients experienced a serious AE
(pancreatitis), and all patients experienced AEs that included
diarrhea (3/3), nausea (2/3), and bilateral hearing loss (1/3)
among others.

2.2.3.4 Tremelimumab + EGFR TKI
The phase 1 GEFTREM trial (NCT02040064) evaluated the
safety of dose-escalat ion of the CTLA-4 inhibitor
tremelimumab (3 mg/kg, 6 mg/kg, and 10 mg/kg) in
combination with gefitinib in previously treated EGFRm
NSCLC patients (73). The preliminary report indicated that
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dose-limiting toxicities occurred in 5/26 patients, and multiple
grade 3/4 TREAs were reported that resolved upon
discontinuation of tremelimumab. However, the overall safety
profile of the 3 mg/kg tremelimumab + gefitinib combination
was considered acceptable and an expansion cohort is planned.

2.2.3.5 Ipilimumab + EGFR TKI
The phase 1 NCT01998126 study evaluated the addition of
ipilimumab to erlotinib in EGFRm mNSCLC patients already
on erlotinib for at least 28 days (74). Dose limiting toxicity (DLT)
was reached in 3/8 patients, and excessive toxicity led to the
study being closed after 14 patients. 4/11 EGFRm patients
developed grade 3 colitis. However, PFS from start of
ipilimumab was 17.9 months in 11 EGFRm patients, well
above the typical observed for monotherapy, leading the
authors to conclude that while ipilimumab + erlotinib caused
excessive toxicity, targeted therapies with immunotherapy
merited further study.

2.2.4 Dual ICI Therapy
Cohort H of the KEYNOTE-021 phase 1/2 study assessed
pembrolizumab 2 mg/kg plus ipilimumab 1 mg/kg as second-
line or later therapy (55). Of the 10 EGFRm patients, only 1
(10%) patient responded to therapy compared to an ORR of 30%
for the entire study population. 98% of patients experienced a
TRAE, including 49% with grade 3-5 AEs.

Multiple active studies are investigating dual ICI therapy in
second line or later EGFRmNSCLC. The ILLUMINATE Phase 2
study (NCT03994393) is evaluating the safety and tolerability of
combined durvalumab and tremelimumab plus platinum-
pemetrexed in EGFRm NSCLC following progression on EGFR
TKIs (75). 100 patients will receive induction durvalumab +
tremelimumab with platinum-pemetrexed every three weeks,
followed by maintenance durvalumab + pemetrexed every four
weeks until disease progression. EGFRm T790M negative and
positive patients will be included. Additionally, two arms of the
CheckMate 722 phase 3 trial, described above, will compare
nivolumab + ipilimumab (Arm B) to platinum-doublet
chemotherapy (Arm C). We eagerly await the results from
these study that will leverage the potentially enhanced immune
response of dual ICI therapy.

2.2.5 ICI + VEGF inhibitor + Chemotherapy
The IMpower150 Phase 3 study (NCT02366143) assessed the
addition of PD-L1 inhibition with atezolizumab and VEGF
inhibition with bevacizumab to carboplatin + paclitaxel (CP)
in patients with mNSCLC. Regimens included bevacizumab +
CP (BCP), atezolizumab + CP (ACP), and atezolizumab + BCP
(ABCP) (76). A subgroup analysis was performed of EGFRm
patients; notably, 85-88% of the patients had previously received
at least one EGFR TKI therapy (56). In the initial subgroup
analysis, median OS was not reached with the ABCP group in
EGFRm patients. Fortunately, the updated results were recently
published and demonstrated that among EGFRm patients who
had received prior TKI therapy a significant increase in median
OS was observed with the ABCP regimen (27.8 months versus
14.9 months with ACP and 18.1 months with BCP) (77). The HR
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for ABCP versus BCP was 0.74. The toxicity profile was similar
between different regimens in EGFRm patients: 64-68% of
patients across all three regimens experienced at least one
Grade 3-4 TRAE, and 1-3% experienced a Grade 5 TRAE.
These results suggested the hopeful possibility of an effective
ICI-combination therapy for patients who experienced PD on an
EGFR TKI.

Lam et al. recently reported the results of the Phase II
NCT03647956 trial that enrolled 40 patients with metastatic
EGFRm NSCLC that had progressed on EGFR TKI (57.5%
osimertinib) (57). Patients were treated with atezolizumab +
bevacizumab + pemetrexed-carboplatin until progression.
Median PFS was 9.43 months and median OS was not mature
yet at time of publication (1-year OS was 72.5%). 37.5% of
patients experienced a grade 3 or above TRAE but only 1/40
patients discontinued treatment due to toxicity. These
encouraging results, coupled with the IMpower150 EGFRm
subgroup results, support the potential efficacy of adding
VEGF inhibition to ICI and chemotherapy as second-line in
EGFRm NSCLC that has progressed on EGFR TKI.

The phase 2 NCT04517526 trial is planning to enroll 60
patients with stage IV EGFRm NSCLC with PD after first-line
osimertinib. Patients will receive platinum-based chemotherapy +
bevacizumab + durvalumab + stereotactic radiotherapy to
oligometastatic or oligoprogressive sites (78). The results of this
study will be of great interest as it will combine advanced
combination immunotherapy and radiation therapy approaches.
3 DISCUSSION

The treatment of EGFRm NSCLC has made significant progress
with the advent of osimertinib, a third-generation TKI, that is
now the standard of care for first-line treatment. Unfortunately,
patients will almost uniformly experience PD. Meanwhile, the
role of ICI therapy in EGFRm NSCLC is complex, with many
studies describing additive toxicities without clinical benefit in
combination ICI + EGFR TKI treatment models as described
above. Given this, there is controversy around the standard of
care for EGFRm NSCLC patients who have progressed on EGFR
TKIs, with some advocating for chemotherapy alone and some
advocating for chemotherapy combined with ICI therapy (79,
80). The National Comprehensive Cancer Network (NCCN)
guidelines recommend tailoring response by symptomatology
and location and number of metastatic sites, with osimertinib
continuation recommended for asymptomatic EGFRm patients
with PD on EGFR TKI and consideration of definitive local
therapy for oligometastatic disease (81). For patients with
symptomatic and widely metastatic PD on osimertinib, the
NCCN guidelines recommend standard therapeutic strategies
and clinical trial enrollment. The European Society of Molecular
Oncology (ESMO) 2020 clinical practice guidelines recommend
osimertinib as second-line if another EGFR TKI was utilized
first-line and resistance is found to be due to the EGFR T790M
mutation, followed by platinum doublet chemotherapy after
progression on osimertinib (82). The ESMO guidelines briefly
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mention ICI therapy as a non-EMA approved option that can be
considered after targeted therapies have been exhausted.
Fortunately, active research is delineating important and
unique characteristics in the tumor biology and TME of
EGFRm NSCLC as well as identifying subgroups of EGFRm
NSCLC patients who may have an improved response to ICI
therapy, as discussed below.

3.1 Unique Biology of EGFRm NSCLC and
Future Research Directions
There is a growing appreciation that the TME is the master regulator
of response to ICI therapy (83), and EGFRmNSCLC tumors are no
exception with their unique and complex tumor biology. On average,
EGFRm tumors generate an immunosuppressive TMEwith less PD-
L1 expression, reduced TMB and neoantigen presentation, decreased
TIL infiltration, and activation of the immunosuppressive CD73/
adenosine axis, all of which decrease ICI efficacy (Figure 1).
Furthermore, the standard biomarker for ICI therapy, PD-L1 TPS,
has less straightforward utility in EGFRm tumors and biomarkers to
predict ICI response are not yet standardized in EGFRm NSCLC
patients. The unique aspects of EGFRm NSCLC tumor biology are
active areas of research, with multiple areas of interest for current
and future clinical trials (Table 3).

3.1.1 PD-L1 Expression
PD-L1 TPS is a standard biomarker for stratifying patients in
clinical trials of ICI therapy in EGFRwt cells, with evidence from
multiple trials that higher PD-L1 TPS tumors (e.g. with TPS ≥
50%) have an enhanced response to ICI therapy (84, 85). Of note,
PD-L1 expression is not uniformly prognostic of response to ICI
therapy (86), and it has been demonstrated that NSCLC patients
without PD-L1 immunohistochemical staining can still derive
benefit from ICI therapy (87), supporting the now widely
accepted notion that PD-L1 status by itself is insufficient to
predict ICI response.

In EGFRmNSCLC, the value of PD-L1 expression is even less
clear. Mechanistic studies have demonstrated that upregulation
of EGFR signaling in vitro leads to increased PD-L1 expression
by pathways including the IL-6/JAK/STAT3 pathway (88).
However, immunohistochemical and mRNA expression
profiling analysis of EGFRm NSCLC patient tumor samples
demonstrated decreased PD-L1 expression across multiple
datasets (89, 90), leading to an unresolved discrepancy between
preclinical and clinical studies. Of note, a weakness of these
studies is the inability to assess the half-life of PD-L1
between subgroups.

In regard to treatment response, multiple studies have
demonstrated that increased PD-L1 expression on EGFRm
NSCLC cells predicts worse outcomes with TKIs but improved
outcome with ICI therapy (91–93). Liu et al. recently published a
correlation analysis of 57 EGFRm NSCLC patients who received
ICI treatment after developing PD on EGFR TKIs (94).They
identified by using a TKI-PFS cutoff of 10 months that EGFRm
patients with <10 month TKI-PFS had significantly improved
ICI-PFS of 15.1 versus 3.8 months, respectively (HR 0.26, 95%
CI: 0.12-0.5, p = 0.0002), strongly suggesting that EGFRm tumors
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TABLE 3 | Active or planned clinical trials addressing important questions of ICI use in advanced EGFRm NSCLC.

Trial Phase Population n Intervention Primary End Point(s) Status

Question: Activity of second-line dual ICI therapy
ILLUMINATE/NCT03994393 2 EGFRm NSCLC

that failed third
generation TKI

100 Durvalumab + Tremelimumab + Platinum-Pemetrexed OTRR* Recruiting

CheckMate722/
NCT02864251

3 EGFRm NSCLC
that failed first-
or second-line
EGFR TKI
therapy

365 (Arm B) Nivolumab + Ipilimumab vs (Arm C)
Platinum-doublet

PFS Active

Question: Activity of second-line combination ICI + chemotherapy
NCT03924050 3 Advanced

EGFRm NSCLC
that has
progressed on
EGFR TKI

350 Toripalimab + standard chemotherapy PFS Recruiting

CheckMate722/
NCT02864251

3 EGFRm NSCLC
that failed first-
or second-line
EGFR TKI
therapy

365 (Arm A) Nivolumab + Platinum-doublet vs (Arm C)
Platinum-doublet

PFS Active

KEYNOTE-789/
NCT03515837

3 EGFRm
NSCLC
resistant to
EGFR TKI

492 Pembrolizumab + Pemetrexed + Chemotherapy vs
Placebo + Pemetrexed + Chemotherapy

PFS, OS Active

Question: Activity of second-line ICI + chemotherapy + antiangiogenic therapy
NCT04517526 2 Stage IV

EGFRm NSCLC
that has
progressed on
EGFR-TKI

60 Pemetrexed + Cisplatin/Carboplatin + Bevacizumab +
Durvalumab + SBRT

PFS, OS Not yet recruiting

Question: Activity of CD73/adenosine axis inhibition + ICI therapy in EGFRm NSCLC
No active studies*
Question: Activity of TNF-a agents + ICI therapy in EGFRm NSCLC
No active studies
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Trial information obtained from ClinicalTrials.gov *A phase 1b/2 trial of oleclumab (CD73-ab) + osimertinib versus AZD4635 is currently recruiting (NCT03381274). This study does not have
an ICI arm, but will provide helpful information on the utility and tolerability of oleclumab in EGFR NSCLC patients. OTRR, overall treatment response rate; PFS, progression-free survival;
OS, overall survival; SBRT, stereotactic body radiation therapy.
FIGURE 1 | Factors that may influence immune checkpoint inhibitor response in advanced EGFRm NSCLC. ICI, immune checkpoint inhibitor; TIL, tumor infiltrating
lymphocyte; TMB, tumor mutational burden; PD-L1, programmed cell death 1 ligand. Figure created with BioRender.com.
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are either TKI or ICI responsive. Intriguingly, this relationship
was independent of PD-L1 status, again reiterating the
importance of other elements of the TME in treatment
response. To further probe differences in the TME between
these groups, they performed single-cell RNA sequencing of
patients with TKI-PFS <10 months (group A) and >10 months
(group B). Group A demonstrated significantly higher
proportion of T-cell TILs along with increased CD8+ effector
proportion of T-cells. These results suggest a critical role for CD8
+ effector TILs in determining response to ICI therapy in EGFRm
NSCLC, as discussed in more detail below.

While PD-L1 expression is not uniformly predictive of ICI
response, there is some evidence that EGFRm NSCLC tumors
with increased PD-L1 TPS have improved response to third or
later line ICI therapy (63). Thus, while ICI monotherapy is
inappropriate for first line treatment as described above, PD-L1
analysis may be a valuable component of a holistic evaluation of
the TME in EGFRm, along with other elements including TMB,
TILs, and other discussed below to assist oncologists in deciding
on later-line ICI treatment strategies for EGFRm patients who
fail EGFR TKI therapy. As such, future clinical trials should
continue to gather and report PD-L1 expression data so that
these relationships can be better elucidated.

3.1.2 Tumor Infiltrating Lymphocytes
The efficacy of ICI therapy depends on the intratumoral
migration and activation of CD8+ effector T-cells where they
perform cytotoxic functions after interaction of the T-cell
receptor with tumor-specific peptides displayed on MHC-I
complexes on tumor cells (29). Multiple studies have
demonstrated that EGFRm NSCLC tumors have reduced CD8+

TIL presence compared to EGFRwt tumors (89, 95, 96).
Interestingly, Zhao et al. recently published an analysis of 190
surgical lung ADC samples that demonstrated increased
apoptosis in the EGFRm patient tumor samples (96). They
further went on to demonstrate that exosomes secreted from
EGFRm cells were more capable of inducing CD8+ T-cell
apoptosis in vitro than exosomes from EGFRwt cells. These
results suggest that, in addition to reduced TIL density in
EGFRm tumors, there may also be increased TIL apoptosis
that impairs immune-mediated tumor destruction. Further
study of this mechanism may provide valuable new
information on the TME in EGFRm NSCLC and possibly
provide a novel therapeutic avenue to enhance antitumor
immunotherapy (97).

Strategies to increase TIL trafficking and activity in tumors
including NSCLC are an active area of research (98). Possible
approaches include targeted tumor necrosis factor a (TNF-a)
delivery and anti-angiogenic drugs including inhibitors of VEGF.
TNF-a causes endothelial cell activation and increased vessel
permeability that can enhance the ability of both chemotherapy
and immune cells to penetrate solid tumors (99); however,
systemic TNF-a administration is quite toxic (100). A
compound containing the tumor vasculature-homing peptide
Cys-Asn-Gly-Arg-Cys (NGR) has been fused to TNFa to create
a tumor vasculature-homing version of TNF-a that avoids the
toxicity of systemic TNFa administration (NGR-hTNF) (101). A
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phase II trial of NGR-hTNF combined with chemotherapy in
patients with chemotherapy-naïve NSCLC was previously
reported. Patients with nonsquamous NSCLC in the
chemotherapy + NGR-hTNF arm experienced improved PFS
at 8 months (38% versus 18% with chemotherapy alone) and a
tolerable safety profile (102). While preclinical models support
the ability of TNF-a to also enhance ICI therapy (103), there are
no active clinical trials involving NGR-hTNF and ICI therapy in
NSCLC due to the manufacturer of NGR-hTNF discontinuing
the product after a Phase III mesothelioma trial did not meet its
primary endpoint (104). Importantly, an NGR-TNF derivative
with an additional serine at the N-terminus that demonstrates
increased stability, S-NGR-TNF, has been recently developed
(105). It will be intriguing to see if TNF-a strategies such as S-
NGR-TNF can restore TIL trafficking, enhance ICI therapy, and
augment chemotherapy delivery to EGFRm NSCLC tumors.

VEGF is also known to suppress TILs via multiple
mechanisms, including suppressing endothelial cell activation,
inhibiting TNFa-mediated gene regulation, and blocking
dendritic cell maturation thereby reducing T-cell activation
(106, 107). In preclinical models, VEGF inhibition synergized
with PD-1 blockade and reduced T-cell exhaustion, and in
clinical studies combinations of therapies including ICIs and
TKIs have demonstrated improved TIL recruitment and
improved PFS (108). The IMpower150 study, for example,
demonstrated improved PFS of EGFRm NSCLC patients who
had disease progression on or did not tolerate an EGFR TKI
when they were treated with a combination of chemotherapy, ICI
therapy, and VEGF-inhibition as described above (56, 76). The
success of VEGF-inhibition in second-line combination
chemotherapy + ICI therapy for EGFRm NSCLC patients with
PD on EGFR TKI is one of the few bright signals currently in the
field, and we eagerly await the results of current trials that are
ongoing further exploring this question (Table 3).

3.1.3 Tumor Mutation Burden
On average, EGFRm NSCLC patients have a decreased TMB
compared to EGFRwt patients (89, 109). This is thought to be at
least partly due to the fact that EGFRm patients tend to have a
lighter smoking history. Increased TMB classically correlates to
decreased response to chemotherapy and an increased response
to ICI therapy in NSCLC (110, 111), and in EGFRm NSCLC
patients increased TMB correlates negatively with response to
EGFR TKIs (112). Increased TMB is thought to potentiate ICI
therapy by creating an environment where more tumor-specific
neoantigens are generated, thus creating more targets for TILs to
recognize and enhancing the adaptive anti-tumoral response.
Indeed, significantly fewer candidate MHC class-I neoantigens
were identified in EGFRm versus EGFRwt NSCLC tumors in a
whole-genome DNA sequencing study (113). While the
decreased TMB in EGFRm NSCLC patients overall may
contribute to decreased efficacy of ICI therapy, there is some
evidence that TMB may still be of significance in this population.
For example, Hastings et al. retrospectively analyzed 171 cases of
EGFRm NSCLC and demonstrated that EGFRD19 tumors had a
lower TMB and a worse response to ICI therapy compared to
EGFRL858R tumors (114). Additionally, certain hypermutator
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phenotypes such as DNA mismatch repair (MMR) deficient
tumors and DNA polymerase delta and epsilon proofreading
mutants, while uncommon in NSCLC, may respond well to ICIs
(115, 116). As such, subgroups of EGFRm patients with increased
TMB, while less common than in EGFRwt context, are predicted
to still receive increased benefit from ICI therapy compared to
their low TMB counterparts. TMB analysis is an intriguing and
significant element that should be strongly considered for clinical
studies of EGFRm NSCLC patients.

3.1.4 CD73/Adenosine Axis
CD73 is an ecto-nucleotidase that catabolizes the breakdown of
extracellular ATP to adenosine (117). There is a growing
appreciation that the CD73/adenosine axis plays a significant
and complex role in the TME. Increased intratumoral adenosine
contributes to localized immunosuppression and impairment of
T-cell effector function (118, 119), and the CD73/adenosine axis
is becoming considered an immune checkpoint in its own right
(120). Pre-clinical data demonstrated that anti-CD73
monoclonal antibodies (mAbs) significantly enhanced the
activity of anti-CTLA-4 and anti-PD-1 mAbs in animal studies
of colon, prostate, and breast cancer (118). An intriguing,
recently published study by Le et al. analyzed upregulated
genes in EGFRm NSCLC tumors and found that two of the
top upregulated genes (NT5E and ADORA1) belonged to the
CD73/adenosine pathway (89), suggesting that EGFRm NSCLC
may leverage the CD73/adenosine axis to generate an
immunosuppressive TME. They assessed the efficacy of an
anti-CD73 mAb in a mouse model of EGFRm murine lung
cancer and found that anti-CD73 treatment significantly reduced
tumor size. As such, an active question is whether suppression of
the CD73/adenosine axis can enhance the treatment of EGFRm
NSCLC. Along these lines, a human mAb targeting CD73,
Oleclumab, is being assessed in a phase 1b/2 study
(NCT03381274) in combination with either osimertinib or
AZD4635, which is an adenose 2a receptor (A2aR) inhibitor
(121). Given the encouraging preclinical data, we eagerly look
forward to further clinical trials utilizing anti-CD73 mABs or
A2aR inhibitors in conjunction with ICI therapy.

3.1.5 Role of Specific EGFR Mutations
There is intriguing evidence that the specific EGFR mutation
impacts the immunogenicity of the TME and response to ICI
therapy. Chen et al. performed a large single-study of 600 NSCLC
patients in China with EGFRm NSCLC and identified 49 with
uncommon mutations (Ex20ins, S767I, L861Q, G719X, and
double mutations) (91). They found a much higher proportion
of PD-L1 expressing tumors with uncommon mutations
compared to classic mutations (49% versus 12.2%), and CD8+

TIL infiltration was more abundant in this group (91). They
reported worse OS for patients with PD-L1 positive EGFRm
NSCLC versus PD-L1 negative (median OS 15.2 versus 29.3
months, p = 0.006), though most of these patients received
EGFR TKI monotherapy across all lines of treatment. Negrao
et al. reported that metastatic EGFRm exon 20 mutation NSCLC
patients had increased benefit from ICIs compared to classic
mutation patients (exon 19 del, exon 21 L858R) with an ORR of
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25% versus 0% and disease control rate (DCR) of 50% versus 15%
(122). Mazieres et al. analyzed the IMMUNOTARGET registry
and compared the molecular characteristics of EGFRm patients to
response to ICIs (123). EGFR exon21 mutation patients derived
significantly longer PFS from single-agent ICI therapy (2.5
months) in this database than patients with T790M and exon 19
mutations (1.4 and 1.8 months, respectively, p <0.001). As such,
these studies suggest that uncommon EGFR mutations including
exon 21 mutations may have increased immunogenicity and
response to ICIs. Future clinical trials should ensure that the
specific EGFR genetic alterations are reported and provide
mutation subgroup data so that further evidence on this subject
can be obtained.

3.1.6 ICI Response Prediction
One of the greatest needs in the field currently is the
development of a scoring/stratification system that will predict
which EGFRm patients will benefit from ICI therapy. As more
studies publish the results of detailed molecular and
immunohistochemical analysis, this will empower a more
comprehensive understanding of the cellular composition of
EGFRm TMEs and tumor biologies (Figure 1). Complex
multivariate analyses should be employed to delineate
subgroups of EGFRm patients that will benefit from ICI
therapy. The use of artificial intelligence (AI) including
artificial neural networking is being studied for the analysis of
TMEs (124, 125), and may prove invaluable to identify signatures
of EGFRm tumors that predict ICI response. The value of
machine learning in EGFRm tumor biology was recently
demonstrated by Song et al. who utilized a machine learning
model to analyze pre-treatment computed tomography (CT)
images of stage IV EGFRmNSCLC patients (126). Their machine
learning approach successfully identified an imaging signature
able to stratify EGFRm patients most likely to rapidly progress
despite TKI therapy. It is a logical next step to apply machine
learning to stratify patients likely to respond to ICI therapy based
on tumor biological characteristics.

3.1.7 Effect of EGFR TKIs on the TME
Multiple lines of pre-clinical evidence suggested synergy between
EGFR TKI inhibition and ICI therapy. In pre-clinical studies,
EGFR inhibition enhanced antigen presentation to T-cells,
stimulated immunogenic apoptosis of tumor cells, boosted
T-cell chemoattractants, and stimulated MHC-1 upregulation,
all of which are predicted to enhance the anti-tumor immune
response (68–71). Despite this, early clinical studies
demonstrated that preclinical studies would not translate in a
straightforward manner. IHC analysis of tumors from early
EGFRm patients treated with ICIs, against expectation,
demonstrated decreased PD-L1 expression and decreased
CD8+ TILs (95), data that has since been recapitulated in
multiple studies described above. This has led to the active
research question of the effect of EGFR TKIs on the TME of
EGFRm NSCLC in vivo during and after therapy.

Multiple groups have addressed this question with TME
analysis at various time points of treatment. Isomoto et al.
performed serial immunohistochemical analysis of 138 patients
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who underwent rebiopsy after progression on EGFR TKI
treatment (127). They found multiple significant changes in
the TME after PD, including an expanded proportion of high
(≥50%) PD-L1 expressing tumors and decreased CD8+ TILs in
PD-L1 <50% tumors. Notably, they identified subgroups with
opposing clinical courses: tumors with high PD-L1 expression
after progressing on EGFR TKI had significantly longer PFS with
ICI therapy (7.1 versus 1.7 months, p = 0.0033) and increased
CD8+ TIL presence. In contrast, PD-L1 <50% tumors had
significantly decreased CD8+ TIL density. Also of interest, the
PD-L1 high tumors had increased FOXP3+ and CD73 TIL
density, suggesting that regulatory T-cell (Treg) and CD73 axis
activation may contribute to ICI treatment failure.

Sugiyama et al. analyzed surgically resected EGFRm tumors
and found decreased CD8+ TILs and increased FOXP3+CD4+
Tregs, further supporting a role for Treg suppression of the
immune response in EGFRm tumors (128). Gurule et al.
performed RNA sequencing of patient tumors before and 2
weeks after TKI treatment and demonstrated induction of an
interferon response program (71). Interestingly, higher
enrichment of interferon gamma (IFNg) was correlated with
longer time to progression. Taken together, these results suggest
that EGFRmNSCLC tumors undergo diverse responses to EGFR
TKIs with some tumors becoming more immunogenic and some
becoming more immunosuppressive with resulting divergent
responses to ICI therapy (129). While the mechanism behind
the divergent TME responses to TKI therapy in EGFRm NSCLC
is unclear, these studies suggest that rebiopsy may have clinical
benefit in identifying subpopulations of patients who are more
likely to respond to ICI as subsequent therapy.

3.2 ICI + EGFR TKI Toxicity
Despite the pre-clinical evidence of synergy between EGFR TKIs
and ICI therapy, the clinical trials of combined or sequential ICI
and EGFR TKI therapies as described above failed to
demonstrate additive clinical benefit and generated safety
concerns in two major regards. First, multiple combination of
ICI + EGFR TKI therapies were found to generate severe
toxicities. As described above, durvalumab + gefitinib and
pembrolizumab + gefitinib were correlated with high grade
hepatotoxicity (40, 41), durvalumab + osimertinib was
correlated with an increased incidence of ILD (53), and both
azetolizumab + erlotinib and ipilimumab + erlotinib were poorly
tolerated with an increased risk of various grade 3/4 TRAEs (42,
74). In line with these studies, Oshima et al. performed an
analysis of adverse events reported through the FDA adverse
event reporting system and compared the incidence of interstitial
pneumonitis (IP) between patients treated with and EGFR TKI,
nivolumab, or combination nivolumab + EGFR TKI (130). Their
analysis identified a significant elevation in IP in the combination
group (25.7%) versus 6.4% for nivolumab alone and 4.6% for
EGR TKI alone, suggesting an additive interaction between
EGFR TKIs and nivolumab in favor of developing IP. We note
that certain ICI + EGFR combinations were well tolerated,
including pembrolizumab + erlotinib and nivolumab +
erlotinib (41, 52). Given the small number of patients in most
of these studies, caution must be taken in interpreting these
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results, though a clear theme of concerning safety signals without
added benefit for most tested ICI + EGFR TKI strategies emerges.

Second, the sequence of ICI and TKI therapies appears critical
in determining toxicity. Schoenfeld et al. analyzed 126 patients
treated with ICI and EGFR TKI at a single institution in various
sequences and found that 15% of patients treated with ICI
followed by osimertinib developed severe irAEs whereas 0% of
patients treated with osimertinib followed by ICI therapy
developed severe irAEs (131). In other words, osimertinib after
ICI was dangerous, whereas ICI after osimertinib was tolerated.
This study is congruent with findings reported above, including
the increased incidence of TRAEs in patients who experienced
PD on first-line ICI monotherapy and then switched to second-
line EGFR TKI in the KEYNOTE-001 study (38, 58), as well as
the lack of any increased toxicity noted in patients who switched
to either pembrolizumab, nivolumab, or atezolizumab after PD
on first-line EGFR TKI therapy (44–46). Given these combined
results, we urge oncologists not to empirically start advanced
NSCLC patients on ICI therapy until the oncogene status of their
cancer is known, as inadvertent ICI treatment of EGFRmNSCLC
will increase the risk of severe TRAEs on subsequent EGFR
TKI therapy.

While the mechanism for checkpoint inhibitor toxicity is
currently unknown, Zhai et al. recently reviewed possible causes
that may include increased immune activity against cross-
antigens in tumor and normal tissues, increased levels of pre-
existing autoantibodies, and increased inflammatory cytokines in
patients who experience irAEs (132). Given that EGFR inhibitors
have been demonstrated to increase the expression of MHC class
I and class II molecules (133), this suggests that increased
autoreactivity stimulated by increased expression of cross-
antigens via MHC class I and II molecules may at least a
partially explain severe TRAEs such as IP. One possible
approach to combine ICI and EGFR TKI therapy more safely
would be to target treatments specifically to tumor cells, for
example by tumor-homing nanoparticles (134), thereby
bypassing adverse effects due to systemic impact of the drugs.
Alternatively, if biomarkers predicting which patients are at risk
of developing severe TRAEs from combination ICI + EGFR TKI
can be identified, then patients could be stratified by likelihood to
develop severe combination TRAEs so that combination therapy
could be applied more safely in a first line setting. In this way,
future clinical trials could attempt to realize the potential of
combination ICI + EGFR TKI therapy seen in preclinical studies.
4 CONCLUDING REMARKS

NSCLC remains the deadliest malignancy on the planet. 15-67%
of NSCLC tumors harbor EGFR mutations based on geographic
region, lending urgency to the development of better therapeutic
strategies for EGFRm NSCLC patients. First-line ICI therapy is
clearly inferior to EGFR-targeted therapy, and first-line
combination EGFR TKI + ICI therapy has so far demonstrated
synergy only in regard to toxicity without any consistent clinical
benefit. Furthermore, pre-treatment of EGFRm NSCLC patients
with ICIs can prime patients for serious TRAEs on subsequent
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EGFR TKI therapy due to an unknown mechanism. As such,
oncologists must take great caution to avoid treating NSCLC
patients with ICI therapy until molecular analysis has been
performed and EGFR mutation status is ascertained.

While first-line ICI monotherapy and ICI + EGFR TKI
combination therapy in EGFRm NSCLC patients has thus far
been disappointing, intriguing results have been obtained from
trials of second-line ICI therapy combinations and multiple open
research questions are under clinical investigation (Table 3).
Recent trials have demonstrated encouraging signals with dual
ICI blockade and combination of ICI, chemotherapy, and VEGF
inhibitors. Furthermore, accumulating evidence suggests that
multiple components of EGFRm tumor biology may predict
response to ICI therapy, including specific EGFR mutation,
TMB, PD-L1 expression, and TIL density among others
(Figure 1). Multiple active areas of research are identifying
other significant EGFRm TME differences including CD73/
adenosine axis activation that may prove fruitful for the
development of novel therapeutic interventions to enhance the
Frontiers in Oncology | www.frontiersin.org 13
immunogenicity of EGFRm tumors (135). As such, there exists a
great deal of hope for improved therapies for EGFRm NSCLC
patients in the near future. We believe that as researchers and
clinicians continue to advance our understanding of EGFRm
NSCLC tumor and TME biology that outcomes for patients will
only continue to improve.
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