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The profile of blood microbiome
in new-onset type 1 diabetes children

Xiaoxiao Yuan,1 Xin Yang,2,3,4 Zhenran Xu,1 Jie Li,2,5 ChengJun Sun,1 Ruimin Chen,6 Haiyan Wei,7 Linqi Chen,8

Hongwei Du,9 Guimei Li,10 Yu Yang,11 Xiaojuan Chen,12 Lanwei Cui,13 Junfen Fu,14 Jin Wu,15 Zhihong Chen,16

Xin Fang,17 Zhe Su,18Miaoying Zhang,1 JingWu,1 Xin Chen,2 Jiawei Zhou,2 Yue Luo,19 Lei Zhang,2 Ruirui Wang,2,*

and Feihong Luo1,20,*

SUMMARY

Blood microbiome signatures in patients with type 1 diabetes (T1D) remain unclear. We profile blood mi-
crobiome using 16S rRNA gene sequencing in 77 controls and 64 children with new-onset T1D, and
compared it with the gut and oral microbiomes. The blood microbiome of patients with T1D is character-
ized by increased diversity and perturbed microbial features, with a significant increase in potentially
pathogenic bacteria compared with controls. Thirty-six representative genera of blood microbiome
were identified by random forest analysis, providing strong discriminatory power for T1D with an AUC
of 0.82. PICRUSt analysis suggested that bacteria capable of inducing inflammation were more likely to
enter the bloodstream in T1D. The overlap of the gut and oral microbiome with the blood microbiome
implied potential translocation of bacteria from the gut and oral cavity to the bloodstream. Our study
raised the necessity of further mechanistic investigations into the roles of blood microbiome in T1D.

INTRODUCTION

Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by absolute insulin deficiency, with a complex pathogenesis involving

multiple genetic and environmental factors, including dietary components, viral infections, and changes in the microbiota.1,2 Clinically, T1D

patients have been reported with gut microbial composition disturbances3–6 and ‘‘leaky gut’’.7,8 Increased gut permeability can facilitate the

translocation of bacterial products (e.g., gut-derived toxins and lipopolysaccharides) from the gut into the peripheral circulation,9,10 resulting

in an inordinate interaction between the host and microbiome and contributing to a low-grade chronic inflammatory state in metabolic dis-

eases such as diabetes, obesity, and metabolic syndrome.11

Blood in healthy organisms is considered a sterile environment because of the lack of proliferating microbes.12 However, new DNA-

sequencing technologies have uncovered the existence of live microbes or bacterial DNA even at low levels in healthy individuals13 as well

as in patients with non-communicable diseases, such as type 2 diabetes (T2D),14 liver fibrosis,15–17 rheumatoid arthritis,18 cancer,19,20 cardiovas-

cular diseases,21 Parkinson’s disease,22 immune and inflammatory disorders.23 A recent study did not support the existence of a consistent core

blood microbiome based on a population study of 9,770 healthy humans; however, it supported the translocation of commensal microbes from

other body sites into the bloodstream.24 Blood microorganisms or DNA mostly translocate from other parts of the body (gut, oral cavity, skin
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et al.), and the composition and amount of the bloodmicrobiome are thought to be related to intestinal permeability.25,26 Previous studies have

further suggested that the blood microbiome is involved in the pathogenesis of chronic metabolic diseases, such as T2D, cardiovascular dis-

eases, and inflammatory diseases,12,27 and antibiotics including antivirals, have been proposed as therapeutic agents.28

T1D is an autoimmune disease that is caused as a result of T-lymphocyte-mediated destruction of pancreatic b-cells along with the stim-

ulation of self-antigens and exposure to foreign antigens, such as viruses and bacteria. Bacteria, whether live or dead, may be used as anti-

genic substances, which raises the question of the existence of the microbiome in the blood and its impact and role in T1D. However, to the

best of our knowledge, no study has investigated the presence or composition of the circulating microbiome in T1D.21 Extensive changes in

the blood microbiome and metabolome in T2D indicate that the blood microbiome may play a role in the etiology and development of dia-

betes. Sato et al. reported gutmicrobiome dysbiosis and higher blood plasma counts of gram-positive bacteria (specifically,Clostridium coc-

coides and Atopobium cluster) in individuals with T2D than in controls.29 Another study found that participants havingmembers of the genus

Sediminibacterium in their bloodstream showed a higher risk of developing T2D, whereas individuals having members of the genus Bacter-

oides in their bloodstream had a decreased risk of developing T2D.14 In a longitudinal study involving 3280 individuals with a 9-year follow-up,

a significant association was observed between higher baseline blood bacterial 16S rDNA levels and the onset of T2D,30 providing evidence

that tissue bacteria are involved in the onset of diabetes in humans.

Here, we aimed to delineate the community structure of the bloodmicrobiome in children with new-onset T1D, laying the groundwork for

future studies on the association between the blood microbiome and systemic inflammation. We further compared the blood microbiome

with the gut and oral microbiomes in patients with T1D to explore the microbial connections.

RESULTS

Study population and clinical parameters

Children with new-onset T1D and non-diabetic controls (CON) were enrolled using a strict pathological diagnostic and exclusion process

(Figure 1). Blood samples were collected, and the microbiome was analyzed using 16S rRNA gene sequencing. We recruited 83 healthy sub-

jects and 75 patients with new-onset T1D aged 3–14 years. Finally, 64 newly diagnosed T1D children and 77 age- and sex-matched healthy

children were enrolled in this study. As we previously reported3 (Table S1), the T1D group showed disorders of glucose and lipid metabolism,

mainly manifested as low C peptide, high fasting blood glucose (FBG), glycated hemoglobin (HbA1c), and triglycerides (TG). The levels of

inflammatory indicators, including white blood cells (WBC) and neutrophils (NEUT), significantly increased in the T1D group.

Significant variation of the blood microbiome profiles in T1D

The taxonomic diversity and profiles of the microbiome DNA were analyzed using high-throughput 16S rRNA gene sequencing. After delet-

ing the unqualified sequences, 9,148,108 valid and trimmed sequences were obtained from all 141 samples, with an average length of 417 bp

per sequence. After taxonomic assignment, 1,476 operational taxonomic units (OTUs) were identified. Rarefaction curves were constructed to

ensure that sufficient samples were chosen for the alpha diversity analysis (Figure S1). Consistently, we observed an overall increase in micro-

bial diversity in the T1D group (Table S2). The Chao, Shannon, and Invsimpson indices, which measure richness and evenness, were signifi-

cantly higher in the T1D group than in the CON group (Figures 2A–2C). To evaluate the extent of similarity between the blood microbiome

communities, beta diversity analysis based on the Bray Curtis distances showed that the microbiome of the T1D group was distinct from that

of the CON group (Figure 2D and 2E). We also observed higher sample-to-sample dissimilarities in the T1D group, indicating a more het-

erogeneous community among T1D individuals than controls (Figure 2F).

Considering that sex and age may be important confounders of the microbiota, we further investigated blood microbiome community

differences by stratifying the CON and T1D groups by sex and age (Figure S2). When the samples were grouped by sex, higher a diversity

was observed for the bacterial microbiome in males than in females in the CON group. In the age-stratified analysis, microbial a diversity

decreased significantly with increasing age in the T1D group. No significant difference was found in the CON group.

Taxonomic profiles of the blood microbial communities in T1D

To further identify the specific bacterial communities in T1D, we assessed the relative taxonomic abundance of the blood microbiome in the

CON and T1D groups (Table S3). Sequences of the overall bloodmicrobiome of T1D belonged mainly to Proteobacteria (82.92%) phyla, to a

Figure 1. Flow chart illustrating the procedures involved in this study
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lesser extent to Firmicutes (4.88%), Bacteroidota (4.31%), unclassified_d__Bacteria (3.43%), and Actinobacteriota (2.75%) phyla. The relative

abundance of most phyla, including Bacteroidota, Firmicutes, and Actinobacteriota, significantly increased in the T1D group (Figure 3A; Fig-

ure S3). We also compared differences in taxa at the genus level (Table S4; Figure S4). The blood microbiome of the T1D group was signif-

icantly enriched in the Cupriavidus, Sphingomonas, Brevundimonas, Caulobacter, Sphingobium, Flavobacterium, Microbacterium, etc. In

addition, other abundant genera, including Pelomonas, Ralstonia, Acinetobacter, unclassified_d_Bacteria, and Brucella, etc., were depleted

in the T1D group compared to those in the CON group (Figures 3B and 3C; Figure S5). Differential genera were used to construct an inter-

action network depicting the correlations between CON and T1D-associated bloodmicrobiota. Notably, T1D-enriched genera such as Sten-

otrophomonas, Sphingomonas, Cupriavidus, Caulobacter, and unclassified_c_Bacteroidia were positively correlated and more highly inter-

connected than the T1D-depleted genera (Figure 3D). Flavobacterium, unclassified_c_Bacteroidia, unclassified_o_Micavibrionales,

OM27_clade, and Flectobacillus, which were enriched in the T1D group, negatively correlated with Ralstonia, Pelomonas, Lactococcus,

and Afipia which were depleted in the T1D group.

Comparative analysis in bacterial profiles between blood and gut/oral microbiota

To further assess the taxonomic association between the blood and oral/gutmicrobiota, we performed a comparative analysis of the bacterial

profiles at the phylum and genus levels, respectively (Figure 4). We found that blood and oral/gut microbiome communities differed signif-

icantly from each other (Figures 4A–4C), indicating that the barrier system of the body, such as the intestinal, mechanical, and immune bar-

riers, might affect bacterial translocation. The number and identity of shared genera were evaluated using Venn diagrams. In the T1D group,

the proportion of overlapping genera number in blood was 18.01% compared with oral microbiota (Figure 4D), and 21.80% compared with

gut microbiome (Figure 4E). The main blood genera that overlapped with the oral microbiome with significant changes between two groups

were Ralstonia, Acinetobacter, Sphingomonas, Brevundimonas, Sphingobium, Rhodococcus, Stenotrophomonas, and Enterobacter, etc.

The main overlapping blood genera with gut microbiome were unclassified_d__Bacteria, Escherichia-Shigella, Enterobacter, Bacteroides,

Enterococcus, Comamonas, Staphylococcus, Lactobacillus, Streptococcus, and Faecalibacterium, etc (Figures 4F and 4G). We further

explored the overlap of genera among blood, oral, and gut microbiota. Thirty-one genera were shared among the three groups (Figure S6).

The bar plot shows the relative abundance of the differentially overlapping genera among the blood, oral, and gut microbiota, ranked by

Comamonas, Enterobacter, Bacteroides, Staphylococcus, Lactobacillus, Corynebacterium, Romboutsia, and Porphyromonas, etc.

Figure 2. Blood microbiome communities in T1D

(A–C) Microbial community richness (Chao 1, A) and diversity (Shannon, B; Invsimpson, C).

(D and E) Two-dimensional (D, PC1 versus PC2 axes; E, PC1 versus PC3 axes) principal coordinates analysis was performed using ANOSIMwith 999 permutations.

(F) Inner-group distance based on analysis of similarities. Violin plots show the median, quartiles, and min/max values. Two-sided Wilcoxon rank-sum test.

***p < 0.001.
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Figure 3. The structural shift of the blood microbiome in T1D

(A and B) Relative abundance of differential microbial taxa at the phylum and genus levels.

(C) Distribution of the microbial community between two groups visualized using the Circos plot at the genus level. The inner circle on the left represents the

microbial structural composition at the genus level of each group. The outer circle on the left represents different groups. The outer circle on the right

represents the percentage of genera in different groups. The width of the bands represents the proportion or relative abundance of the genus.

(D) Co-abundance network constructed from the differential bacteria identified using theWilcoxon rank-sum test. The node size indicates the relative abundance

of each bacteria genera and color indicates the phylum. The thickness of the line between nodes represents the Spearman coefficient. A total of 46 genera are

displayed, with Spearman’s correlation values >0.6 between each other. T1D-depleted genera are arranged on the left, while T1D-enriched genera are arranged

on the right. Two-sided Wilcoxon rank-sum test. *p < 0.05, **p < 0.01, ***p < 0.001.
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(Figure S6C), whichmight play an important role in the interactions between these key bacterial species and themechanisms underlying their

association with T1D.

Blood microbiota-based biomarkers for T1D

To further reveal the signature blood microbiome profiles and predominant microbiota of patients with T1D, we performed a linear discrim-

inant effect size (LEfSe) analysis (Figure 5A). The cladogram represents the significantly different taxa among the CON and T1D groups ac-

cording to a hierarchy that reflects the taxonomic rank from phylum to genus (Figure S7). A total of 75 taxa with differential abundance

Figure 4. The comparison between the blood microbiome and the gut/oral microbiome

(A) Blood bacterial composition at the phylum level.

(B) Oral bacterial composition at the phylum level.

(C) Gut bacterial composition at the phylum level.

(D) Venn showing the overlap of genera between blood and oral microbiota.

(E) Venn showing the overlap of genera between blood and gut microbiota.

(F and G) The relative abundance of the top 15 overlapping genera between blood and oral/gut microbiota. Two-sided Wilcoxon rank-sum test. *p < 0.05,

**p < 0.01, ***p < 0.001.
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between the CON and T1D groups were identified (LDA >3, p < 0.05). Higher proportions of Cupriavidus, Caulobacter, Sphingobium, Fla-

vobacterium, andMicrobacteriumwere observed in the T1D group, whereas Pelomonas, Ralstonia, Brucella, Acinetobacter, and Vibrionimo-

naswere depleted in the T1D group (Table S5). The differential species identified by the two different analysis methods (Mann-Whitney U test

and LEfSe) were consistent, revealing the stability of the blood microbiome profiling data.

Furthermore, to explore the predictive power of the blood microbiome in discriminating T1D status, we used Random Forests to build a

predictive model based on genus-level relative abundance and conducted cross-validation tests (Figures 5B and 5C; Table S6). A total of 36

genera were considered predictive of T1D, ranked as Ralstonia, Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium, Pelomonas, Flavo-

bacterium, Afipia,Microbacterium, Vibrionimonas, Flectobacillus, Pannonibacter, and Cupriavidus, etc. To explore the potential value of the

identified key microbiota for clinical discrimination, we constructed receiver operating characteristic (ROC) curves and computed the area

under the curve (AUC) values. This model had a robust and statistically significant diagnostic accuracy, with an AUC of 0.82 (Figures 5C

and 5D). A heatmap was generated based on T1D predictive biomarker abundance (Figure 5B). These results confirm that the blood micro-

biota-based classifier can excellently distinguish T1D patients from controls, indicating that the discovered key microbiota may provide the

possibility and reliability for clinical transformation and potential value in risk assessment.

Associations between blood bacteria and clinical indicators

Our study demonstrated the compositional changes in the blood microbiomes of patients with T1D. To evaluate whether the T1D clinical

parameters were related to the bloodmicrobiota, we performed Spearman’s rank correlation analysis (Figure 6A; Figure S8). Glycolipidmeta-

bolism indicators such as HbA1c, FBG, and TG were negatively correlated with T1D-depleted genera, including Pelomonas, Ralstonia, Bru-

cella, Afipia, Vibrionimonas, and Acinetobacter, and positively correlated with T1D-enriched genera, including Cupriavidus, Sphingomonas,

Caulobacter, Brevundimonas, Sphingobium, Flavobacterium, and Microbacterium, whereas HDL showed the opposite trend. WBC, NEUT,

and LYMPH, the indices for systemic inflammation, were inversely related to Ralstonia, Afipia, Pelomonas, and Acinetobacter but positively

related to unclassified_d_Bacteria. The redundancy analysis (RDA) plot further showed the correlations between clinic characteristics and the

bacterial communities at the genus level (Figure 6B). The broad correlation betweenmetabolic parameters and key bacteria indicates that the

blood microbiome may be associated with glucose metabolism, lipid metabolism, and inflammatory response in T1D.

Predicted functions of the blood microbiome in T1D

To characterize the predicted functional profiles of the blood microbiota, a phylogenetic investigation of communities by the reconstruction

of unobserved states (PICRUSt) method was used to predict the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways between the

microbiomes of the CON and T1D groups (Figure 7). The principal coordinates analysis (PCoA) plot based on the Bray-Curtis distances of the

KEGGorthologs (KOs) indicated significant differences between the CONand T1D groups at the functional level, with a higher compositional

dissimilarity in the T1D group than in the control group (Figures 7C and 7D). At KEGG level 1 (Figure 7A), the metabolism pathway was the

most abundant (74.48% in the T1D group), followed by environmental information processing, cellular processes, genetic information pro-

cessing, human diseases, and organismal systems pathways (Table S7). At the KEGG level 2, we detected 33 upregulated and 13 downregu-

lated pathways in the T1D group compared to those in the controls, which were mainly involved in carbohydrate, amino acid, nucleotide

metabolism, and cellular processes (Figure 7B; Table S8). Interestingly, immune disease-related and infectious disease-related pathways

were significantly upregulated in the T1D group compared to those in the CONgroup (Figure 7E). KEGGpathway analysis showed thatmeta-

bolic pathwayswere themost enriched in the T1Dgroup.We further focused onmetabolic pathways and found that these functions, including

biosynthesis of secondary metabolites, carbon metabolism, butanoate metabolism, valine, leucine and isoleucine degradation, propanoate

metabolism, glycolysis/gluconeogenesis, fatty acid degradation, citrate cycle, were primarily upregulated in T1D than controls. However,

glyoxylate and dicarboxylate metabolism, pyruvate metabolism, fatty acid metabolism, glycine, serine and threonine metabolism, amino

sugar, and nucleotide sugar metabolism, and pyrimidine metabolism were significantly downregulated in T1D (Figure S9; Table S9).

DISCUSSION

In this cross-sectional study, we explored the blood microbial landscape of T1D and, more importantly, assessed the correlations shared mi-

crobial signatures between the blood and gut/oral microbiome profiles in T1D. Our study revealed bloodmicrobial structures and signatures

in T1D, which were characterized by increased bacterial richness and perturbed microbiome structures, with a significant increase in patho-

genic bacteria such as Sphingomonas, Caulobacter, and Stenotrophomonas. Blood microbiome communities were partially similar to those

of the corresponding gut and oral microbiota, suggesting that the gut/oral microbiome is a potential source. Functional prediction showed

that inflammatory and immune disease-related pathways were upregulated in T1D and that the key blood microbiome was strongly associ-

ated with inflammatory and glycolipid metabolism indicators, indicating the involvement of the blood microbiome in inflammatory states in

T1D. The identified key microbiota exhibited remarkable discriminatory power in differentiating patients with T1D from controls.

Figure 5. Blood microbiome-based biomarkers identified using LefSe and the random forest classification model

(A) LEfSe taxonomic cladogram generated from 16S rRNA gene sequences.

(B) Classification performance of the 36 most discriminant genera of the T1D group by a random forest model and heatmap based on the relative abundance of

the genera.

(C and D) The area under the curve (AUC) based on the cross-validation of the random forest model.
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The microbiome plays a fundamental role in the regulation of immune response and inflammation.31 The blood microbiome in healthy

individuals is considered dormant because it does not induce inflammation or sepsis; however, it may play a vital role in physiology and im-

munity.12 In 2001, Nikkari et al. reported that blood specimens from healthy individuals contained bacterial DNA in healthy individuals.32 An

increasing number of studies have shown that blood contains an authentic microbiome and is one of the major microbial niches in hu-

mans.30,33,34We observed a remarkable change in the bloodmicrobial community of patients with T1D.We found an overall increase in blood

microbial a and b diversity in the T1D group than the CONgroup, indicating amore heterogeneousmicrobial community in T1D. Correlation

network analysis also indicated that more positive correlations occurred within blood bacteria in the T1D group than in controls. The relative

abundances of most differential phyla, including Firmicutes, Bacteroidota, and Acidobacteriota, were significantly increased in the T1D

group. The increased abundance of Actinobacteria in diabetic nephropathy is considered an independent risk factor for cardiovascular

Figure 6. Association of the blood microbial genera with clinical indicators

(A) Heatmap of the Spearman’s correlation between clinical indices and genera. Red squares indicate positive correlations, whereas blue squares indicate

negative correlations.

(B) Redundancy analysis (RDA) of the relationship between the clinical indices and genus-level composition. *p < 0.05, **p < 0.01, ***p < 0.001.
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Figure 7. Alteration of predicted blood microbial functions in children with T1D

(A and B) KEGG pathway level 1 (A) and level 2 (B) function classification predicted by PICRUSt between the CON and T1D groups. Foldchange of the top 25

pathways with significant differences in KEGG Level 2 are shown.

(C and D) PCoA plot based on the Bray-Curtis distances of KOs (C, left) and inner-group distance by ANOSIM (D, right).

(E) The abundance of genes involved in the immune disease based on the KEGG database. Violin plots show the median, quartiles, and min/max values. Two-

sided Wilcoxon rank-sum test. *p < 0.05, ***p < 0.001.
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mortality.35 Remarkable differences in blood microbial composition are also found in acute and chronic coronary syndrome, whereby the

former has more phyla Proteobacteria and Acidobacteriota, while the latter has more phyla Firmicutes and the genus Lactobacillus.36 Proteo-

bacteria was the most abundant phylum in the blood, and no difference was found between the two groups. This result is similar to the find-

ings reported in T2D studies.21 Some potentially pathogenic bacteria were also enriched in T1D, such as Sphingomonas, Caulobacter, and

Stenotrophomonas. Correlation analysis revealed that the differential bloodmicrobiome was strongly associated with glycolipid metabolism

and inflammatory indicators. Previous studies have revealed that decreased oxygenation, reduced immunity, and hyperglycemia in patients

with diabetes could increase susceptibility to blood infection induced by pathogenic microbiomes such as Pneumonia, Staphylococcus, and

Mycobacterium.37,38 Our KEGG annotation revealed significant differences in the predicted biological functions of the blood microbiome in

T1D, characterized by increased inflammatory, immune-related, and metabolic pathways. Similar functional differences have been observed

in somemetabolic diseases, such asmyocardial infarction and atherosclerosis, where posttranslational modifications, protein turnover, amino

acid transport, andmetabolic pathways were significantly increased in the bloodmicrobiota of myocardial infarction.39,40 However, the blood

microbiome, such as Pelomonas, is an understudied genus41 with few reports concerning its function and metabolism. Therefore, further

studies on the interactions between key blood bacterial species and the mechanisms underlying their association with T1D could help us un-

derstand the roles of the blood microbiome in T1D.

Increasing attention has been paid to the association between the gut microbiome and diseases; however, the role of the blood micro-

biome and microbial connections in disease pathogenesis remains obscure. We assessed the taxonomic association between the blood and

gut/oral microbiota. We found that the genera in the blood were partly similar to the microbiome detected in the feces and oral cavity, sug-

gesting that the blood microbiome may originate from other parts, such as the oral cavity and intestinal tract. The gut microbiome has been

reported to translocate into the blood in non-infectious diseases, including T2D,29 obesity,42 portal hypertension,43 liver cirrhosis,44 athero-

sclerosis, and schizophrenia. Studies have shown that changes in the diversity and composition of the blood microbial species can influence

systemic inflammation.34 Our functional prediction of blood and gut microbiomes both showed that immune and inflammation-related path-

ways, such as immune disease and infectious disease pathways, were upregulated in the microbiota, suggesting that bacteria capable of

inducing inflammation are more prone to entering the bloodstream. In addition, our studies have found that the serum levels of inflammatory

parameters, including LPS-binding protein, IL-1b, WBC, NEUT, and LYMPH were all significantly elevated in the T1D group compared with

controls, suggesting the increased systemic inflammation in T1Dmay originate fromgut/oral bacterial translocation into the blood. Addition-

ally, as previously reported,15,45 our study found that blood, oral, and gut microbiome communities differ from each other, indicating that the

intestinal barrier, immune cells, and liver might play a role in filtering and affecting bacterial translocation.46 Our study, together with previous

studies, suggests that the microbiome present in the blood may originate from the gut and oral microbiomes as a result of bacterial trans-

location. A longitudinal study of paired saliva, stool, and blood specimens is required to determine the true prevalence andmolecular mech-

anisms of the gut/oral blood translocation of bacterial microbiota.

Recently, next-generation sequencing techniques andmetabolomic technologies have been used to investigate variations in bloodmicro-

biome communities and circulating metabolites. The blood microbiome has been reported to be a biomarker and target for diabetes and

cardiovascular diseases.21 A longitudinal study revealed a significant association between higher baseline blood bacterial 16S rDNA levels

and the onset of T2D, indicating that high concentrations of blood-derived bacterial DNA could potentially be considered an independent

biomarker of the risk of T2D.30 Another prospective cohort studywith primarily Chinese participants revealed the predictive value of the blood

genera Sphingomonas, Acinetobacter, and Staphylococcus for hypertension.47 In our study, among the altered abundances of genera, the

combination of 36 genera, including Ralstonia, Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium, Pelomonas, Flavobacterium, Afipia,

Microbacterium, Vibrionimonas, Flectobacillus, Pannonibacter, andCupriavidus yielded an efficient discriminating performance for T1D, with

an AUC of 0.82. These candidate biomarkers may be powerful tools for the clinical diagnostic and prognostic screening of T1D. Common

blood microbiota have been identified in certain diseases, for example, Bacteroides in cirrhosis, Legionella and Devosia in kidney diseases,

and Staphylococcus and Escherichia/Shigella in inflammatory diseases.23 Moreover, the significant correlation between these key circulating

bacteria and clinical manifestations offers evidence that the bloodmicrobiomemay play an important role in T1D, even in the absence of gut/

oral-blood translocation. Disease-specific alterations in the blood microbiome could constitute a relevant, inexpensive, and easy-to-sample

approach for screening and characterizing T1D in high-risk populations.

In summary, to our knowledge, for the first time we profiled the blood microbiome in T1D and assessed the taxonomic association be-

tween the blood and gut/oral microbiota. T1D is characterized by increased blood bacterial richness and perturbed microbiome structures,

with a significant increase in the abundance of pathogenic bacteria, such as Sphingomonas, Caulobacter, and Stenotrophomonas. Bloodmi-

crobiome communities were partly similar to the corresponding oral and gut microbiomes, suggesting that oral and gut microbiomes are

potential sources of the blood microbiome. The identified key blood microbiota exhibited excellent discriminatory power for differentiating

patients with T1D from controls. Here, we comprehensively delineated the blood microbiome signatures of T1D, but the physiological and

pathophysiological functions of the blood microbiome in T1D require further investigation.

Limitations of the study

Nevertheless, this study has some limitations that deserve discussion. First, our study was based on the sequencing of 16S rRNA genes,

which is not sufficient to determine whether a live microbiome is present in the circulation. Further studies are required to validate the

absence of a live bacterial microbiome in the blood as well as its functionality and potential role in host metabolism. Moreover, the

cross-sectional nature of the study prevented us from elucidating the relevant mechanisms and longitudinal views. Further studies using
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metagenomics, metabolomics, and transcriptomics are needed to explore the potential mechanisms underlying the association between

blood microbiome and T1D.
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and fulfilled by the lead contact, Feihong Luo (luofh@

fudan.edu.cn).

Materials availability

This study did not generate new unique reagents.

Data and code availability

� All data reported in this paper will be shared by the lead contact on request.

� This paper does not report original code.
� Any additional information required to reanalyze the data reported in this paper is available from the lead contact on request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Study participants

This was a cross-sectional, observational, multicenter study. A total of 158 participants were recruited between January 2018 and June 2019,

including 75 children with new-onset T1D and 83 age-matched healthy individuals. Finally, 64 T1D patients and 77 healthy subjects were

REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

Human blood samples Nine sampling regions including Harbin,

Changchun, Taiyuan, Jinan, Zhengzhou,

Suzhou, Shanghai, Nanchang, and

Fuzhou in China

N/A

Critical commercial assays

OMEGA Soil DNA Kit Omega Bio-Tek, Norcross, GA, USA Cat# M5635-02

Takara Ex Taq Takara, Japan Cat# RR820A

Quant-iT PicoGreen dsDNA Assay Kit Invitrogen, Carlsbad, CA, USA N/A

Deposited data

Blood microbiome sequencing raw data This paper NCBI Sequence Read Archive

database: PRJNA1075939.

Gut microbiome sequencing raw data This paper NCBI Sequence Read Archive

database: PRJNA664632.

Oral microbiome sequencing raw data This paper NCBI Sequence Read Archive

database: PRJNA876606.

Oligonucleotides

Forward primer 338F (5’-ACTCCTACGGGAGGCAGCA-3’) This paper N/A

Reverse primer 806R (5’-GGACTACHVGGGTWTCTAAT-3’) This paper N/A

Software and algorithms

FastQC v0.11.7 Babraham Bioinformatics FastQC v0.11.7 Babraham Bioinformatics FastQC v0.11.7 Babraham

Bioinformatics

QIIME2 https://qiime2.org Version 2019.4

R version http://www.r-project.org Version 3.1.0

SPSS Chicago, IL, USA Version 21.0

GraphPad Prism GraphPad Software Inc., USA Version 8
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enrolled in this study. Profiling of the gut microbiome of this cohort has been described in our previous study.3 Patients in this study were

diagnosed with T1D according to the diagnostic criteria of the American Diabetes Association.48 Patients were recruited and samples

were collected within one week of the diagnosis of T1D. Participants were excluded if they suffered from acute infections, chronic diseases,

or metabolic diseases, or if they tookmedications regularly or any othermedical treatment within 1month. After fasting the participants for 10

h, 3mL peripheral venous bloodwas collected from each participant in the early morning and frozen at -80�C as per detailed instructions. This

study was approved by the Institutional Review Board and Ethics Committee of the Children’s Hospital of Fudan University ([2016]210 and

[2019]210). All participants were informed of the purpose of the study and provided written informed consent.

METHOD DETAILS

Sample Collection and DNA Extraction

Blood samples from each participant were collected and immediately stored at -80�C at each hospital until they were shipped to the Chil-

dren’s Hospital of Fudan University by a cold-chain shipping company. FBG, HbA1c, C-peptide, WBC, NEUT, LYMPH, HDL-C, LDL-C, TC,

and TG levels were measured using standard procedures.

16S rRNA gene amplification and sequencing

Total blood microbial DNA was extracted using the OMEGA Soil DNA Kit (M5635-02) (Omega Bio-Tek, Norcross, GA, USA) following the

manufacturer’s instructions. The quantity and quality of extracted DNA were measured using a NanoDrop 2000 spectrophotometer and

agarose gel electrophoresis, respectively. The extracted DNA was used as a template for the PCR amplification of bacterial 16S rRNA genes

using barcoded primers and Takara Ex Taq. PCR amplification of the V3-V4 region of bacterial 16S rRNA genes was performed using the for-

ward primer 338F (5’-ACTCCTACGGGAGGCAGCA-3’) and the reverse primer 806R (5’-GGACTACHVGGGTWTCTAAT-3’). PCR amplicons

were purified using Vazyme VAHTSTM DNA Clean Beads and quantified using Quant-iT PicoGreen dsDNA Assay Kit (Invitrogen, Carlsbad,

CA, USA). After the individual quantification step, amplicons were pooled in equal amounts, and pair-end 23250 bp sequencing was per-

formed using the Illumina NovaSeq platform with the NovaSeq 6000 SP Reagent Kit at Shanghai Personal Biotechnology Co., Ltd. (Shanghai,

China).

QUANTIFICATION AND STATISTICAL ANALYSIS

Sequencing and bioinformatic analysis

Bioinformatics of the microbiome were analyzed using QIIME2 (2019.4), with slight modifications according to official tutorials.49 Raw

sequence data were demultiplexed using the demux plugin, followed by primer cutting using the Cutadapt plugin.50 The sequences were

trimmed, quality-filtered, denoised, merged, chimeric, and dereplicated using the DADA2 plugin.51 The raw 16s rRNA gene data were pro-

cessed to formOTUs with 97% identity using UPARSE. Beta diversity analysis was performed to investigate the structural variation in microbial

communities across samples using Bray–Curtis metrics52 and UniFrac distance metrics.53,54 Beta diversity was visualized via principal coordi-

nates analysis. The differential abundance of bacterial taxa at different levels (phylum, class, order, family, and genus) between the groups was

calculated using the Wilcoxon rank-sum test. Linear discriminant analysis effect size (LEfSe) was used to detect differentially abundant taxa

between groups using the linear discriminant analysis (LDA) score.55 The random forest classifier model was generated using the AUC-RF

algorithm for feature reduction and maximizing model performance.56 Phylogenetic Investigation of Communities by Reconstruction of Un-

observed States (PICRUSt) (http://picrust.github.io/picrust) was used to predict the abundance of functional categories in the Kyoto Encyclo-

pedia of Genes and Genomes orthologs using the MetaCyc (https://metacyc.org/) and KEGG (https://www.kegg.jp/) databases. Raw reads

were deposited in the NCBI Sequence Read Archive database under the accession number PRJNA1075939. The acquired data were further

reprocessed using the following criteria: (1) OTU with sequence numbers greater than or equal to 1 in at least 10% of samples; (2) sequences

were aligned against Greengenes to remove contaminated sequences, including mitochondrial and chloroplast sequences that also contain

16S rRNA gene.

Retrieval of sequencing data

16S rRNA sequencing data of the gut microbiome were obtained from the same cohort as in our previous study3 and sequencing data of the

oral microbiome were obtained from our previous study57 for comparison. Gut and oral microbiome sequencing data were deposited in the

NCBI Sequence Read Archive (SRA) database (http://www.ncbi.nlm.nih.gov/sra), with the accession numbers PRJNA664632 (gut microbiome

data) and PRJNA876606 (oral microbiome data).

Statistics

Statistical analyses were performed using SPSS version 21.0 (IBM SPSS Statistics, Chicago, IL, USA), GraphPad Prism version 8, and R version

3.1.0. The investigators were not blinded to the allocation during the experiments, but the outcome assessments were blinded. The age-strat-

ified analysis focused on three age subgroups, i.e., the young-age subgroup (age%7), themiddle-age subgroup (7< age%11), and the high-

age subgroup (age >11). Outliers were identified as values outside of meanG3SD and removed from further analysis. Non-parametric Wil-

coxon rank-sum tests were used to compare continuous variables between groups. The non-parametric Spearman rank correlation test was

used to evaluate the correlations between parameters. A p-value < 0.05 was considered significant.

ll
OPEN ACCESS

iScience 27, 110252, July 19, 2024 15

iScience
Article

http://picrust.github.io/picrust
https://metacyc.org/
https://www.kegg.jp/
http://www.ncbi.nlm.nih.gov/sra

	ISCI110252_proof_v27i7.pdf
	The profile of blood microbiome in new-onset type 1 diabetes children
	Introduction
	Results
	Study population and clinical parameters
	Significant variation of the blood microbiome profiles in T1D
	Taxonomic profiles of the blood microbial communities in T1D
	Comparative analysis in bacterial profiles between blood and gut/oral microbiota
	Blood microbiota-based biomarkers for T1D
	Associations between blood bacteria and clinical indicators
	Predicted functions of the blood microbiome in T1D

	Discussion
	Limitations of the study

	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References
	STAR★Methods
	Key resources table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Experimental model and study participant details
	Study participants

	Method details
	Sample Collection and DNA Extraction
	16S rRNA gene amplification and sequencing

	Quantification and Statistical analysis
	Sequencing and bioinformatic analysis
	Retrieval of sequencing data
	Statistics





