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Abstract

In a previous study, we investigated the resting-state fMRI effective connectivity

(EC) between the bed nucleus of the stria terminalis (BNST) and the laterobasal (LB),

centromedial (CM), and superficial (SF) amygdala. We found strong negative EC from

all amygdala nuclei to the BNST, while the BNST showed positive EC to the amyg-

dala. However, the validity of these findings remains unclear, since a reproduction in

different samples has not been done. Moreover, the association of EC with measures

of anxiety offers deeper insight, due to the known role of the BNST and amygdala

in fear and anxiety. Here, we aimed to reproduce our previous results in three addi-

tional samples. We used spectral Dynamic Causal Modeling to estimate the EC

between the BNST, the LB, CM, and SF, and its association with two measures of

self-reported anxiety. Our results revealed consistency over samples with regard to

the negative EC from the amygdala nuclei to the BNST, while the positive EC from

BNST to the amygdala was also found, but weaker and more heterogenic. Moreover,

we found the BNST-BNST EC showing a positive and the CM-BNST EC, showing a

negative association with anxiety. Our study suggests a reproducible pattern of nega-

tive EC from the amygdala to the BNST along with weaker positive EC from the

BNST to the amygdala. Moreover, less BNST self-inhibition and more inhibitory influ-

ence from the CM to the BNST seems to be a pattern of EC that is related to higher

anxiety.
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1 | INTRODUCTION

Within the complex network of highly interacting brain regions, the

bed nucleus of the stria terminalis (BNST) and the amygdala with its

basolateral (LB), central (CM), and superficial (SF) nucleus are crucial

structures for on organism to respond adaptively to environmental

threats (Pessoa, 2011). It has become clear in recent years that com-

plex neuronal interactions within the BNST-amygdala circuit mediate

phasic and sustained fear responses (for review, see Davis, Walker,

Miles, & Grillon, 2010). Much progress has been made to understand

the specific micro-circuits involved in these different behavioral and

physiological responses going along with phasic and sustained fear
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(Duvarci & Pare, 2014; Fadok, Markovic, Tovote, & Lüthi, 2018;

Krabbe, Gründemann, & Lüthi, 2017; Tovote, Fadok, & Lüthi, 2015).

The repertoire of methods to study and manipulate neuronal circuits

mostly consisted of lesioning specific regions as well as electrical

stimulation and more recently pharmacological and optogenetic

manipulations. Although these methods enable more precise stimula-

tion with a high spatial and temporal resolution, experiments using

these methods were done in animals and only allowed a limited trans-

fer to human neuronal circuits.

Nevertheless, a variety of studies measuring fMRI BOLD activa-

tions on human subjects investigated the role of the BNST and amyg-

dala in specific experimental settings, mostly designed to induce

specific or anticipated fear or anxiety responses (for an overview, see

Fox & Shackman, 2019; Shackman & Fox, 2016). However, this type

of study did not enable insights into the specific connectivity patterns

and dynamical interactions between these regions. While studies exist

that assessed the connectivity of amygdala (Di, Huang, & Biswal,

2016) and BNST (Brinkmann et al., 2017; Herrmann et al., 2016) with

other brain regions during experimental manipulations as well as dur-

ing the resting-state (Gorka, Torrisi, Shackman, Grillon, & Ernst, 2018;

Kerestes, Chase, Phillips, Ladouceur, & Eickhoff, 2017; Rabellino

et al., 2018; Roy et al., 2009; Tillman et al., 2018; Torrisi et al., 2015;

Weis, Huggins, Bennett, Parisi, & Larson, 2019), these studies were

based on symmetrical measures of statistical dependencies, that is,

functional connectivity (FC). Although the results of these studies

point towards a positive interconnectedness between BNST and

amygdala nuclei, the calculation of FC does not enable inference

about the true, that is, effective connectivity (EC) between regions

and their dynamical interactions (Friston, 2011). For example, two

regions can show substantial FC despite the absence of any true

connection, just because of a common input from a third region

(Friston, 2011). Moreover, since correlations depend on the level of

observation noise, changes in FC arise by merely varying the signal-

to-noise ratio, for example, by increasing the number of time points

or the sample size (Friston, 2011). Moreover, changes in FC also arise

by changing the amplitudes of neuronal fluctuations (Friston, 2011).

Additionally, previous studies investigated the FC of amygdala

and BNST without taking into account the activity of other regions

(i.e., no partial correlations). Because of the lack of FC measures

to capture dependencies and interactions between regions, dynamic

causal modeling (DCM) was developed. DCM models a set of

brain regions as differential equations taking into account neuronal

interactions between regions and also allows to take the effect of

external stimuli into account and can be used for the resting-state as

well (Friston, Harrison, & Penny, 2003; Friston, Kahan, Biswal, &

Razi, 2014). In comparison to electrical stimulation, pharmacological

or optogenetic manipulations, which are mostly limited to animals,

DCM is an approach to understand complex network interactions and

to study alterations in humans by means of fMRI and also EEG and

MEG (Kiebel, Garrido, Moran, Chen, & Friston, 2009).

In a previous study, we investigated the resting-state fMRI EC by

means of DCM between the BNST and amygdala nuclei in a sample

of 391 subjects and reported a pattern of negative EC from the

amygdala nuclei to the BNST and positive EC from the BNST to the

amygdala, shaping partially anti-correlated and out-of-phase dynamics

(Hofmann & Straube, 2019). This pattern was found to be indepen-

dent of the hemisphere. However, up until now, a reproduction of

these results has not been done. Moreover, given the well-researched

relation between BNST, amygdala and anxiety/fear (e.g., Calhoon &

Tye, 2015; Davis et al., 2010; Fox & Shackman, 2019), an investiga-

tion of the association of EC within the BNST-amygdala circuit with

measures of anxiety might provide a deeper insight into how inter-

regional resting-state dynamics contributes in shaping specific cogni-

tive and behavioral manifestations of anxiety/fear in humans. So far,

there has not been an investigation into the relation between resting-

state EC and anxiety, but other fMRI studies in humans point towards

a possible association. For example, a recent study from our lab found

a positive correlation between BNST-amygdala connectivity and trait-

anxiety. The connectivity was measured with psychophysiological

interactions comparing the difference in connectivity for aversive ver-

sus neutral images. Furthermore, several other studies found that

phasic and sustained fear responses in BNST and amygdala in reaction

to the presentation of aversive sounds are altered in a variety of

anxiety disorders (Brinkmann et al., 2017; Brinkmann, Buff, Feldker,

et al., 2017; Buff et al., 2017).

To fill this gap and to build on our previous research, the follow-

ing study aimed to reproduce our earlier results in three additional

fMRI resting-state samples, including a 7 T sample and investigated

the association of the EC parameters with two self-report anxiety

measures.

2 | METHODS

In the following sections, we will describe the methods and samples in

more detail.

2.1 | Resting-state samples

For this study, four freely available samples were used. An overview

of the characteristics of each sample and the used anxiety measures

can be found in Table 1.

2.1.1 | Human connectome project 3 and 7 Tesla
sample

From the final 1,206 Human Connectome Project 3 T sample (HCP

3 T), we selected all subjects that were unrelated (n = 457 in total) and

excluded all subjects that had incomplete resting-state data and miss-

ing age, sex, or anxiety questionnaire data. The sample thus consisted

of 384 unrelated healthy subjects (Table 1). Note that this is the same

sample that was used in our previous study (Hofmann & Straube,

2019), except that we had to exclude seven subjects due to missing

anxiety questionnaire data. The HCP 7 T sample (HCP 7 T) consisted

HOFMANN AND STRAUBE 825



of 184 unrelated subjects, from which we excluded subjects that had

incomplete resting-state data and missing age, sex, or anxiety ques-

tionnaire data. In total, we included 177 subjects (Table 1). We did not

exclude any additional subjects since the HCP samples already con-

sisted of subjects that were free of neurodevelopmental, neuropsychi-

atric and neurologic disorders and met a series of further inclusion

criteria (Van Essen et al., 2013). The data are publicly available at the

HCP online database (https://www.humanconnectome.org). Informa-

tion on the age of the participants was obtained after acceptance of

the open and restricted access agreements put forward by the Con-

sortium of the human connectome project. Subject recruitment proce-

dures and informed consent forms were approved by the Washington

University institutional review board. All data presented in this paper

is not identifiable. Note that 108 of 177 subjects of the 7 T sample,

were also included in the 3 T sample since some subjects both had

7 T and 3 T scanning sessions.

2.1.2 | Nathan Kline Institute sample

The Nathan Kline Institute (NKI)/Rockland sample was acquired from

the Functional Connectomes Project (FCP) website (http://fcon_1000.

projects.nitrc.org/indi/pro/nki.html). Details on recruitment and sam-

pling strategy of the sample can be found on the website (http://

fcon_1000.projects.nitrc.org/indi/enhanced/recruit.html). The available

sample comprised 204 healthy subjects (for details see Nooner et al.,

2012) from which we excluded subjects with missing age, sex and anx-

iety questionnaire information. In total, 137 subjects were used.

2.1.3 | Muenster sample

The Muenster sample (MS) consisted of 121 healthy subjects rec-

ruited at our own lab. Inclusion criteria for all participants were

German as a native language, normal or corrected-to-normal vision,

and right-handed. Exclusion criteria were psychiatric medication, neu-

rological disorders, presence, or history of psychotic or bipolar disor-

der, drug dependence, or abuse within the last 10 years, suicidal

ideations, and fMRI contraindications. All subjects gave written

informed consent. The study conformed to the Declaration of Helsinki

and was approved by the ethics committee of the University of

Muenster.

2.2 | Data acquisition

A summary of the scanning parameters for each sample can be found

in Table 2.

2.2.1 | Data acquisition HCP 3 T sample

The data was acquired on a 3 T Skyra Siemens system using a

32-channel head coil, a customized SC72 gradient insert (100 mT/m)

and a customized body transmit coil. The anatomical images were

acquired with a high resolution (0.7 mm isotropic) T1-weighted mag-

netization prepared rapid gradient echo (3D-MPRAGE) sequence

(TR 2400 ms, TE 2.14 ms, flip angle: 8�. FOV 224 × 224) and the

functional images were acquired using a multi-band gradient-echo

EPI sequence (TR 720 ms, TE 33.1 ms, resolution 2 mm isotropic,

72 oblique axial slices, flip angle 52�, FOV 208 × 180 mm, matrix

104 × 90, echo spacing 0.58 ms, 1,200 images per rsfMRI run). Specif-

ically, rsfMRI data were acquired in four runs of �15 min each, two

runs in one session and two in another session with eyes open with a

relaxed fixation on a projected bright cross-hair on a dark background.

Within each session, oblique axial acquisition alternated between

phase encoding in a posterior-to-anterior direction in one run and

phase encoding in an anterior-to-posterior direction in the other run.

2.2.2 | Data acquisition HCP 7 T sample

No structural scans were acquired on the 7 T scanner and the data

from the 3 T sample was used. The functional images were acquired

on a Siemens Magnetom 7 T MR Scanner with a Nova32 32-channel

Siemens head coil using a multi-band gradient-echo EPI sequence

(TR 1000 ms, TE 22.2 ms, resolution 1.6 mm isotropic, 85 oblique

axial slices, flip angle 45�, FOV 208 × 208, matrix 130 × 130, echo

spacing 0.64 ms, 900 images per rsfMRI run). Specifically, rsfMRI data

were acquired in four runs of �16 min each, with eyes open with

TABLE 1 Sample characteristics for the different samples

HCP 3 T HCP 7 T NKI MS Overall

N (male / female) 384 (172/212) 177 (72/105) 137 (81/56) 121 (38/83) 819 (363/456)

Age in years (M ± SD) 28.71 ± 3.67 29.41 ± 3.35 39.58 ± 17.17 25.81 ± 6.02 30.25 ± 9.05

Age (minimum – Maximum) 22–36 22–36 18–85 18–60 18–85

STAI-T (M ± SD) N/A N/A 33.42 ± 10.45 30.45 ± 5.86 N/A

DSM anxiety (M ± SD) 5.56 ± 5.16 3.54 ± 2.25 N/A N/A N/A

Note: See section “Description of anxiety questionnaires” for more details. The most right column shows the sample characteristics of all samples

subsumed.

Abbreviations: DSM anxiety, anxiety scale of the achenbach adult self-report; M, mean; N/A, not available; STAI-T, trait scale of the state–trait anxiety
inventory.
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relaxed fixation on a projected bright cross-hair on a dark background.

Within each session, oblique axial acquisition alternated between

phase encoding in a posterior-to-anterior direction in one run and

phase encoding in an anterior-to-posterior direction in the other run.

2.2.3 | Data acquisition NKI sample

The data acquisition was carried out with a Siemens 3 T Magnetom

TrioTrim syngo MR B15. Structural images were acquired using a sag-

ittal magnetization T1-weighted (MPRAGE) sequence (TR = 2,500 ms,

TE = 3.5 ms, voxel size = 1 mm isotropic, flip angle = 8�) with

192 slices. The functional resting-state images were collected by using

260 volumes of a gradient-echo planar sequence sensitive to BOLD

contrast (TR = 2,500 ms, TE = 30 ms, matrix = 72 × 72 voxel, FOV =

216 × 216 mm, flip angle = 80�). Each volume consisted of 38 axial

slices (thickness = 3 mm, gap = 0.33 mm, voxel size = 3 × 3 × 3 mm).

A shimming field was applied before functional imaging to minimize

magnetic field inhomogeneity. The whole resting-state sequence

lasted 10 min. Subjects were instructed to keep their eyes open.

2.2.4 | Data acquisition MS sample

Data acquisition was carried out with a Siemens 3 T Magnetom PRI-

SMA and a 20-channel Siemens head coil. Structural images were

acquired using a sagittal magnetization T1-weighted (MPRAGE)

sequence (TR = 2,130 ms, TE = 2.28 ms, voxel size = 1 mm isotropic,

flip angle = 8�) with 192 slices. The functional resting-state images

were collected by using 202 volumes of a gradient-echo planar

sequence sensitive to BOLD contrast (TR = 2080 ms, TE = 30 ms,

matrix = 92 × 92 voxel, FOV = 208 × 208 mm, flip angle = 90�). Each

volume consisted of 36 axial slices (thickness = 3 mm, gap = 0.3 mm,

voxel size = 2.3 × 2.3 × 3 mm). A shimming field was applied before

functional imaging to minimize magnetic field inhomogeneity. The

whole resting-state sequence lasted 7 min. Subjects were instructed

to keep their eyes closed, not to fall asleep and “let their

thoughts flow.”

2.3 | Data preprocessing

2.3.1 | Data preprocessing of HCP 3 T sample

The data from the HCP 3 T consisted of the extended ICA-FIX

denoised resting-state fMRI data sets from the first two sessions. All

preprocessing of HCP data was carried out in FSL and specifically

designed for the HCP acquisition protocols. For a detailed description

of the HCP preprocessing methods, please see Glasser et al. (2013)

and Smith et al. (2013). Briefly, the minimal preprocessing pipeline for

the fMRI data consisted of gradient distortion correction to remove

spatial distortions, followed by realignment of volumes to compensate

for subject motion, coregistration of the fMRI data to the structural

image, nonlinear registration to MNI space, intensity normalization to

a mean of 10,000, bias field removal and masking of the data with a

final brain mask. No overt volume smoothing was applied, and special

care was taken to minimize smoothing from interpolation. After appli-

cation of the minimal preprocessing pipeline, further processing was

TABLE 2 Description of scanning parameters for the different samples

HCP 3 T HCP 7 T NKI MS

Sequence Gradient-echo EPI Gradient-echo EPI Gradient-echo EPI Gradient-echo EPI

TR 720 ms 1,000 ms 2,500 ms 2080 ms

TE 30.1 ms 22.2 ms 30 ms 30 ms

Flip angle 52� 45� 80� 90�

FOV 208 × 180 mm 208 × 208 mm 216 × 216 208 × 208

Matrix 104 × 90 130 × 130 72 × 72 92 × 92

Slice thickness 2.0 mm 1.6 mm 3 mm 3 mm

Number of slices 72 85 38 36

Voxel size 2 × 2 × 2 mm 1.6 × 1.6 × 1.6 mm 3 × 3 × 3 mm 2.3 × 2.3 × 3 mm

Multiband factor 8 5

Image acceleration factor (iPAT) 2 2 None mSENSE

Partial Fourier (pF) sampling 7/8 7/8 Off Off

Echo spacing 0.64 0.64 0.51 ms 0.5 ms

BW 1924 Hz/Px 1924 Hz/Px 2,240 Hz/Px 2,470 Hz/Px

Runs 4 (only 2 runs were used) 4 (only 2 runs were used) 1 1

Volumes 900 900 260 202

Duration �16 min �16 min �10 min �7 min

Eyes Open/fixated Open/fixated Open Closed
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done for the resting-state data. For this, the data was cleaned of

structured noise by combining independent component analysis (ICA)

with the automated component classifier tool FIX (FMRIB's ICA-based

X-noisifier) (Griffanti et al., 2014; Salimi-Khorshidi et al., 2014). FIX

classifies the ICA-detected components into “good” and “bad” (artifac-

tual) and has been specifically trained on HCP data. The artifactual

components were then removed in a non-aggressive manner, that is,

removing only the unique variance associated with each component.

This approach avoids removing potential variance of interest (Smith

et al., 2013). Finally, head motion time series were regressed out

by using a 24 confound time series containing the 6 rigid-body param-

eter time series, their temporal derivatives as well as the resulting

12 regressors squared). In order to profit from the high quality of the

HCP data, we did not apply any additional preprocessing steps except

for filtering low-frequency scanner drifts with a high-pass filter cutoff

of 200 s. For the subsequent DCM analysis, no additional filtering in

the frequency range between 0.01 and 0.1 Hz was applied since the

spectral DCM based analysis explicitly models the cross-spectral den-

sity within this frequency range.

The data for the first two runs was concatenated to obtain a data

set consisting of 2,400 volumes in total. Before concatenation, we

first mean-centered and then variance normalized the data by dividing

by the temporal SD of the unstructured noise. The unstructured noise

temporal SD was obtained by first regressing out all signal compo-

nents of the time series at each voxel, leaving only the noise compo-

nents, and then calculating the temporal SD of the time series at each

voxel. By this, it was ensured that the unstructured noise magnitude

was distributed equally across the brain for each subject. The signal

components were obtained by independent component analysis and

already included in the ICA-FIX extended data set.

2.3.2 | Data preprocessing of HCP 7 T sample

The preprocessing pipeline for the HCP 7 T was mostly equal to the

HCP 3 T pipeline described in the previous section. However, a differ-

ent method for the bias field correction of the fMRI scans was used.

In this sample, the first two sessions were used for each subject (1800

volumes in total).

2.3.3 | Data preprocessing of MS and NKI sample

All preprocessing was carried out using the Data Processing Assistant

for Resting-State fMRI (DPARSF, (Yan, Craddock, Zuo, Zang, & Milham,

2013)), which is based on SPM12 and part of the more comprehensive

toolbox for Data Processing & Analysis of Brain Imaging (DPABI

V3.1_180801, (Yan, Di Wang, Zuo, & Zang, 2016)). The first 5 data vol-

umes were discarded due to spin saturation effects. The remaining vol-

umes were slice-time corrected and realigned using a six-parameter

(rigid body) linear transformation. The anatomical and functional images

were coregistered and then segmented into gray matter (GM), white

matter (WM) and cerebrospinal fluid (CSF). In order to consider possible

confounding effects of head motion, the Friston 24-parameter (i.e., six

head motion parameters, six head motions parameters one point in time

before, and the 12 corresponding squared items) model was used to

regress out head motion effects from the realigned data (Friston,

Williams, Howard, Frackowiak, & Turner, 1996). WM and CSF signals

were regressed out using the CompCormethod (Behzadi, Restom, Liau, &

Liu, 2007). In addition, linear and quadratic trends were included as nui-

sance regressors because of low-frequency drifts of the BOLD signal.

No temporal filtering (0.01–0.1 Hz) was applied. The data was then

nonlinearly normalized to MNI152 standard space with DARTEL

(Ashburner, 2007) and resampled to 2 mm isotropic voxels. No spatial

smoothing was applied.

2.3.4 | Regions of interest selection

For the subsequent DCM analysis, masks of amygdala nuclei were

obtained from the Anatomy Toolbox (AT) version 2.2c available for

SPM (Eickhoff et al., 2005). The masks consisted of the maximum

probability maps (MPM) of the LB, CM, and SF (Amunts et al., 2005;

Eickhoff et al., 2005). The mask for the BNST was obtained from the

probabilistic atlas developed by Torrisi et al. (2015). For the BNST

mask, we included all voxels with at least 80% probability of being

located within the BNST. Different masks were created for the left

and right hemispheres separately as well as for both hemispheres

together. See Figure 1 for an anatomical representation of the loca-

tion of the regions.

2.3.5 | Regions of interest extraction

Region of interest (ROI) time series extraction for the later DCM anal-

ysis was performed using the volume-of-interest tool included in

SPM12 (v7219). ROI time series were obtained by selection of the

F IGURE 1 Amygdala nuclei and BNST regions of interest used in
this study. The LB is shown in blue, the CM in green, the SF in red and
the BNST in yellow. The top right inlay shows the section
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first principal component, that is, the component that explained the

most variance after calculation of a principal component analysis that

included the time series of all voxels within an ROI. Before extraction,

we ensured that all subjects had sufficient EPI coverage of the ROIs,

which was the case for all subjects in our sample.

2.4 | DCM

All analysis was done using SPM12 (v7219) in MATLAB 2017b. After

extraction of the ROI time series, we calculated a one-state spectral

DCM, specifying a model of EC in which all ROIs were connected.

Spectral DCM is a variant of DCM that is suited for the estimation

of EC in resting-state fMRI data and uses a neuronally plausible model

of coupled neuronal states to generate complex cross-spectra (Friston

et al., 2014). In other words, the generative model is identical to

the deterministic DCM used in fMRI time series analysis (Friston

et al., 2003) but is used to predict the sample cross-spectra as

opposed to the time series themselves. In comparison to previous

approaches based on stochastic differential equations (stochastic

DCM), this variant enables faster, more accurate and less computa-

tionally intensive estimation of EC (Razi et al., 2017; Razi, Kahan,

Rees, & Friston, 2014). The DCM used here consists of a system of

random differential equations that model neuronal interactions of

the form:

_x tð Þ=Ax tð Þ+ v tð Þ ð1Þ

Where x(t) = [x1(t), …, x4(t)]
T is a column vector of hidden neuronal

states for the four regions BNST, LB, CM, and SF, whose activity

depends on the other regions and endogenous fluctuations modeled

by v(t). The hidden states are abstract representations of neuronal

activity that correspond to the amplitude of macroscopic variables,

which summarize the dynamics of large neuronal populations. The

endogenous fluctuations are generated from an AR (1) process with

an autoregression coefficient of one half. A is a four by four matrix

with the unknown coupling coefficients between regions, that is, the

effective connectivity parameters in units of Hz to be estimated

given the data. The resulting output values then serve as input to

equations that generate the hemodynamic responses of each ROI.

The equations that generate the hemodynamic response are not

shown here. For details, see Friston et al. (2003). This DCM is then

fitted to the cross-spectra of the extracted ROI time courses of each

subject.

2.5 | Parametric empirical Bayes for group DCM

After fitting each subject's DCM for each sample to their fMRI data,

we ran a second-level analysis in order to estimate the group mean of

each sample and the effects of the covariates age, sex and anxiety for

each connectivity parameter of the model. This analysis was based on

the recently developed parametric empirical Bayes (PEB) method that

models connectivity at the group level by means of a hierarchical

Bayesian model (Friston et al., 2016). The subject-specific connectivity

estimates (consisting of the expected values and covariances) are

taken to the group-level by fitting a Bayesian GLM to the data. Other

than tests based on classical statistics, PEB uses the full posterior den-

sity over the connectivity parameters from each subject's DCM to

inform results on the group-level. It thus takes into account both the

expected strength of the connection and its uncertainty (posterior

covariance). In other words, subjects are weighted by the precision of

their estimates, such that subjects with noisy estimates contribute less

to the group result (Zeidman et al., 2019). This analysis was repeated

for three sets of ROIs, the bilateral ROIs, as well as for the left and

right hemispheric ROIs. Since our previous study revealed that a fully

connected BNST-amygdala model is most plausible (Hofmann &

Straube, 2019), we did not choose to perform a Bayesian model

reduction.

2.6 | Description of anxiety questionnaires

2.6.1 | DSM_anxiety

For the HCP samples, the measure of anxiety used was part of the

Achenbach Adult Self-Report (ASR) Scale. The ASR is a 126-item self-

report scale for adults, which measures aspects of adaptive function-

ing and problems (Rescorla & Achenbach, 2004). The anxiety scale ist

based on the operationalization of anxiety in the Diagnostic and Sta-

tistical Manual of Mental Disorders (DSM). That is, experts rated

the consistency of the items with the DSM diagnostic categories for

anxiety. The items which were rated as most consistent by a majority

of experts were then included in the anxiety scale (Rescorla &

Achenbach, 2004).

2.6.2 | STAIT-T

For the MS and NKI samples, the state–trait anxiety inventory (STAI)

was available (Spielberger, Gorsuch, & Luschene, 1970). The scale

measures both state and trait anxiety. Here we used only the scale for

trait anxiety. For the MS sample, the German version of the STAI was

used (Laux, Glanzmann, Schaffner, & Spielberger, 1981).

3 | RESULTS

In the following, we present the results of the DCM estimation for

the different samples for the bilateral as well as left and right hemi-

spheric ROI selection. Figure 3 shows the estimated EC values and

the strength of association of the EC with anxiety. Figure 2 shows the

posterior probability (Pp) of these estimates. In Figures S1 and S2 and

the supplementary excel tables, the reader will find a detailed over-

view of the DCM results for each site separately and the exact EC

parameter values with 95%-credible intervals.
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3.1 | EC

As can be seen from Figure 2, there was a relatively high coherence

of EC parameter values between the different sites and hemispheres

for some connections, while for others, it was more heterogenic.

The CM-BNST and LB-BNST negative EC can be found in all sites

irrespective of the ROI selection with high Pp. The SF-BNST EC was

also mostly negative, except in the HCP7T_LR sample where it was

positive with a Pp of 0.52 of being unequal to zero. Moreover,

Figure 3 indicates that the EC strengths for these connections were

largest for the HCP 3 T sample.

The positive EC from the BNST to the amygdala nuclei (BNST-

CM, BNST-LB, and BNST-SF) was also mostly coherent over samples

but was more heterogenic for the BNST-CM and BNST-SF. That is, in

the NKI_LR sample, the BNST-CM was negative with a Pp of 0.7 and

the BNST-SF EC was negative with a Pp of 0.97 in the NKI_LR as

well as in the NKI_L sample. Generally, the EC strengths for these

connections were weaker as compared with the negative EC from the

amygdala to the BNST.

As can also be seen, the within-amygdala EC (CM-LB, CM-SF, LB-

CM, LB-SF, SF-CM, SF-LB) was mostly incoherent over the different

samples and ROI selections. An exception was the SF-CM and SF-LB

EC, which was mainly positive, except in the MS_R and NKI_LR sam-

ple, where it was negative with a Pp of 0.98 and 0.69.

3.2 | Association of EC with self-reported anxiety

For the results of the analysis of the association between EC and anxi-

ety, it is important to note, that the anxiety measures used are differ-

ent between the HCP samples and the MS and NKI samples, each

scale capturing a different aspect of anxiety. We will restrict our

F IGURE 2 Similarities between sites for each EC parameter (left) and its association with anxiety (right). Site names are shown as column
headers, connections between regions are shown as row headers. The numbers in the boxes show the posterior probability. The blue color tones
represent the posterior probabilities of positive EC values and positive anxiety associations, respectively, while the red color tones represent the
posterior probabilities of negative EC values and negative anxiety associations, respectively. Note that the suffixes L, R, and LR in the column

headers indicate the type of ROIs that were used (L: left hemispheric, R: right hemispheric, LR: both hemispheres combined)
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report of the results to the commonalities over the samples since a

connection that is associated with both anxiety measures, captures

common aspects of the different anxiety conceptualizations.

As can be seen in the right subfigure of Figure 2, the only

connections that were largely coherent between samples, were the

BNST-BNST and the CM-BNST connections. In other words, the

BNST-BNST connection was positively associated with anxiety in all

samples, except the MS_R sample, with a maximum Pp of 0.94 in the

NKI_LR sample and a minimum Pp of 0.56 in the NKI_L sample. The

CM-BNST connection was negatively associated with anxiety, except

in the HCP3T_R and MS_L sample, with a maximum Pp of 0.99 in the

NKI_R sample and a minimum Pp of 0.74 in the HCP7T_L sample.

4 | DISCUSSION

Our investigation of the commonalities of the resting-state EC within

the BNST-amygdala circuit in four different data sets, suggests a

partially reproducible pattern of EC with only minor association

strengths of some EC parameters with measures of anxiety.

To summarize, we found a robust negative EC from the amygdala

(LB and CM) to the BNST. This pattern was present in all sites and in

both the bilateral (left and right hemisphere combined) and unilateral

(left and right hemisphere separated) DCMs. Moreover, we found a

negative SF-BNST EC in all but the HCP7T_LR DCMs. These findings

suggest a mostly coherent pattern of negative EC between amygdala

nuclei and the BNST independent of the hemisphere. However, there

were large variations in the relative EC strengths between the sam-

ples, most likely due to the different sample sizes.

The positive EC was less coherent between sites and hemi-

spheres, only showing a consistent influence from the BNST to the LB

in all samples. The other connections (BNST-CM, BNST-SF) could not

be reliably reproduced. However, the positive BNST-CM EC was pre-

sent in all DCMs except the NKI_LR sample, and the BNST-SF EC was

present in all but the NKI_LR and NKI_L sample. It is not clear, at the

moment, why the NKI sample shows these discrepancies. However,

F IGURE 3 EC estimates (left) and association strength with anxiety (right). Site names are shown as column headers, connections between
regions are shown as row headers. The blue color tones represent positive EC estimates and positive anxiety associations, respectively, while the
red color tones represent negative EC estimates and negative anxiety associations, respectively. Note that the suffixes L, R, and LR in the column
headers indicate the type of ROIs that were used (L: left hemispheric, R: right hemispheric, LR: both hemispheres combined)
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despite these discrepancies, the results indicate a tendency toward a

positive influence from the BNST to the amygdala.

The within-amygdala EC could not be reliably reproduced, show-

ing large differences between the samples. However, the SF-CM EC

was found to be positive in all, but the MS_R sample and the SF-LB

EC was found to be positive in all but the NKI_LR sample. This indi-

cates that most of the samples showed a positive influence from the

SF to the CM and LB.

As has been discussed in our previous work (Hofmann &

Straube, 2019), the pattern of EC within the BNST-amygdala circuit

points towards a strong negative influence from the amygdala to the

BNST, while the BNST exerts a smaller positive influence on the

amygdala nuclei. As has also been pointed out in our previous

work, this pattern of EC still seems to shape a partially antagonistic

“information flow” between BNST and amygdala. In other words, acti-

vation of the amygdala leads to a strong and fast inhibition of the

BNST, in turn generating slower inhibitory feedback to the amygdala

through the smaller positive EC arriving from the BNST. This down-

regulation of the amygdala then upregulates BNST activity, which in

turn leads to an upregulation of amygdala activity but on a slower

time scale, thus generating a partially desynchronized activity pattern.

Therefore, it seems that—in the resting-state—BNST and amygdala

are somewhat functionally dissociated. As of yet, it is not clear what

this dissociation means, but one plausible assumption could be that

both structures take part in different computational processes, most

likely through association with different brain regions. Evidence from

FC studies seems to substantiate this assumption partially. That is, the

BNST was found to be functionally connected to regions involved in

the Default Mode Network, while the CM and LB do not entirely

share the same connectivity structure, despite certain overlaps (Gorka

et al., 2018; Tillman et al., 2018; Torrisi et al., 2015; Weis et al., 2019).

However, as has been pointed out, a direct comparison of EC and FC

is not easily possible.

Although it is speculative at the moment how DCM results are

related to the activity on a neuronal level, functional dissociations of

BNST and amygdala have been observed in phasic and sustained fear

responses (Davis et al., 2010). Specifically, Davis et al. (2010) pro-

posed that a fear-eliciting stimulus rapidly activates the laterobasal

amygdala and the medial part of the central amygdala and triggers a

phasic fear response. This response is paralleled by activation of

the lateral central amygdala that results in a release of corticotropin-

releasing factor into the BNST to produce a more slowly acting

sustained fear response. This phasic fear response is then turned off

by inhibitory feedback from the BNST, and possibly the lateral central

amygdala, to the medial central amygdala. This pattern of neuronal

activity also suggests a partially desynchronized activity pattern

between BNST and amygdala, with a rapid response of the amygdala,

followed by a slower sustained BNST response.

Evidence from fMRI studies using aversive stimuli also points

towards a delayed and sustained BOLD activity of the BNST (Alvarez,

Chen, Bodurka, Kaplan, & Grillon, 2011; Brinkmann, Buff, Feldker,

et al., 2017; Brinkmann, Buff, Neumeister, et al., 2017; Herrmann

et al., 2016; Straube, Mentzel, & Miltner, 2007) and also indicates a

complex interaction between BNST and amygdala, such that both

contribute to shaping phasic and sustained fear responses (for

reviews, see Fox & Shackman, 2019; Shackman & Fox, 2016). Our

data also seems to support the view of a dynamic interaction between

BNST and amygdala and offers an explanation of how this interaction

unfolds in terms of EC between these structures. However, although

there are some similarities between our results and the model of

Davis et al. (2010), our DCMs were explicitly fit to resting-state data

without any aversive external stimuli. This makes a direct comparison

difficult. Nevertheless, our results suggest that even in an experimen-

tal setting of an absence of fear-eliciting stimuli, BNST and amygdala

seem to show a pattern of dynamical interaction that shapes partially

antagonistic activity. This may reflect some form of baseline informa-

tion processing between these structures, which is subject to alter-

ations by external stimuli.

To gain more insight into the relationship between EC and anxi-

ety, we investigated the association of the EC with two measures of

self-reported anxiety. The results of the common associations of both

anxiety measures with the EC showed small effect sizes and high vari-

ability between sites, which could also not be reliably reproduced in

the different DCMs separated by hemisphere. Although caution

should be taken in interpreting these results, two of them deserve

mentioning. Firstly, the CM-BNST connection was present in all

DCMs, but the HCP3T_R and MS_L sample (see Figure S2) and was,

therefore, more coherent than other connections. Under the assump-

tion that these results reflect some ground truth, this points towards a

small negative association between anxiety and the influence of the

CM onto the BNST, that is, the higher anxiety the stronger the inhibi-

tory influence from the CM onto the BNST. Secondly, the association

of the BNST self-connection (BNST-BNST) with anxiety deserves fur-

ther mentioning. This connection showed a positive association with

anxiety in all DCMs but the MS_R sample. It is, therefore, relatively

consistent over sites and the two different anxiety measures. Again

assuming a true effect, the finding of higher anxiety with less self-

inhibition of the BNST points toward increased BNST baseline activity

as a potential contributor to higher anxiety.

These results are consistent with findings from a study at our lab

using the same methodology to compare panic disorder patients with

healthy controls. The results of this study showed that patients also

have less BNST self-inhibition and increased inhibition from the CM

to the BNST compared with controls (Hofmann, Feldker, & Straube, in

prep). It, therefore, seems that higher BNST baseline activity, along

with stronger inhibitory influence from the CM to the BNST, is related

to increased anxiety. In other words, due to the reduction in self-

inhibition of the BNST, its activation decays more slowly, while the

increased inhibition by the CM results in even stronger BNST inhibi-

tion, which then leads to more inhibitory feedback from the BNST to

the amygdala. This is then followed by stronger positive feedback

back to the BNST and, therefore, generally higher and more sustained

BNST activity. It is plausible that the resulting increase in amygdala

and BNST activation may then contribute to intensified and prolonged

states of anxiety due to the hyperactivation of downstream targets

involved in autonomic, neuroendocrine, and/or behavioral regulation.
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For example, both the BNST and CM influence hypothalamic–

pituitary–adrenal (HPA) axis activity (Choi et al., 2007; Crestani et al.,

2013; Forray & Gysling, 2004; Herman, Ostrander, Mueller, &

Figueiredo, 2005) and an increase in the activity amplitude of the

BNST-amygdala circuit might result in elevated HPA-axis activity

of subjects with higher anxiety scores. Interestingly, as has been

reported by several studies from our lab, exaggerated phasic amygdala

and sustained BNST activity in reaction to aversive stimuli seem to be

characteristic of many anxiety disorders. For example, female patients

with posttraumatic stress disorder as well as panic disorder patients

and patients with generalized anxiety disorder showed increased ini-

tial phasic amygdala and increased sustained BNST fMRI BOLD

responses during the anticipation of aversive versus neutral sounds

as compared with controls (Brinkmann, Buff, Feldker, et al., 2017;

Brinkmann, Buff, Neumeister, et al., 2017; Buff et al., 2017). Although

these similarities do not seem to be purely coincidental, all of these

studies did investigate BNST or amygdala task-related BOLD activa-

tion and a direct comparison between resting-state and task condi-

tions is not easily possible. Nevertheless, our findings might provide

insights into how the interaction between BNST and amygdala gener-

ates phasic and—possibly prolonged—sustained responses.

Based on our results, certain future directions of research can be

formulated. Firstly, it is important to investigate the differences and

similarities of EC in different types of disorders, especially anxiety dis-

orders. Moreover, the resting-state condition is not suited to examine

task-induced changes in EC. The investigation of the changes by spe-

cific tasks will provide a deeper understanding of the task-related

alterations of EC within the BNST-amygdala circuit.

A final point that has to be discussed pertains to the possible rea-

sons for the lack of reproducibility between samples with regard to

the within-amygdala EC. As can be seen from the results (Figures 1,

S1), some connections show high variability between samples (CM-

LB, CM-SF, LB-CM, and LB-SF). In particular, the HCP samples mainly

showed a positive EC, while the NKI and MS samples showed a nega-

tive EC of these connections. This contrast of EC values is interesting,

but at the moment, not well understood and needs further investiga-

tion. However, the different quality of the data might be a possible

explanation of these discrepancies. That is, the amygdala is a region

that is highly susceptibility to signal artifacts caused by magnetic field

inhomogeneities due to its proximity to air-filled cranial spaces, espe-

cially in the medial part of the amygdala. Although the HCP data qual-

ity was high and corrections for magnetic field inhomogeneities were

used, it was less optimal for the MS and NKI sample. Moreover,

the MR sequences were not specifically designed for measuring sig-

nals in artifact susceptible regions. This might have affected the

parameter estimation to some degree, thus causing some of the

observed discrepancies between the HCP and MS/NKI samples.

Future studies focusing on the BNST-amygdala circuit should use

MR sequences specifically designed to measure BNST and amygdala

BOLD responses. For example, Khatamian, Golestani, Ragot, and

Chen (2016) demonstrated that spin-echo echo-planar imaging, as

compared with gradient-echo echo-planar imaging, shows higher sen-

sitivity, specificity, and inter-subject reproducibility in regions that are

highly susceptible to artifacts, when calculating resting-state FC.

Given the found heterogeneity in the within-amygdala EC between

samples, future studies should be cautious when interpreting the

results of an estimation of within amygdala EC (or FC).

5 | LIMITATIONS

Several limitations of this study have to be mentioned. Firstly, the results

of modeling neuronal circuits by a DCM, do not directly allow inferences

about certain subpopulations of neurons or specific circuits on the neu-

ronal level. At present, the used DCM model is, therefore, a highly

simplified model, that summarizes the neuronal population activity in

abstract variables. For example, our results show that the BNST is posi-

tively connected to the CM. This result is in contraction to the results

from Gungor, Yamamoto, and Pare (2015), showing that projection neu-

rons from the BNST to the CM are predominantly GABAergic in rats

and therefore elicit inhibitory responses. Interestingly, recent develop-

ments of DCM for fMRI consist of more detailed neural mass models

that allow for an assessment of neocortical neuronal populations, includ-

ing spiny stellate cells, superficial pyramidal cells, inhibitory interneurons,

and deep pyramidal cells (Friston et al., 2019). However, since the amyg-

dala and BNST consist of a large variety of neuronal subpopulations

(Babaev, Piletti Chatain, & Krueger-Burg, 2018; Krabbe et al., 2017)

future developments of DCM should be specifically designed to match

the neuronal environment of these regions and thus provide a much

more detailed understanding of the neuronal interactions.

In addition, we did only focus on calculating the EC between

BNST and amygdala nuclei. Since the BNST and amygdala have affer-

ents and efferents to a multitude of other brain regions, the EC

reported does not take the influence of these other regions into

account. Future studies should, therefore, study the influence of other

regions on BNST and amygdala activity to gain a more in-depth

understanding of the dynamical interaction between regions and the

association of EC with anxiety.

Moreover, our ROI selection did not include further subdivision of

BNST and amygdala. The BNST is a heterogeneous structure consisting

of several subnuclei and intermingled cell populations (Gungor &

Pare, 2016) that are involved in different functions. For example, BNST

subnuclei were found to be involved in opposing circuits that mediate

anxiogenic and anxiolytic responses (Kim et al., 2013), fear learning

(Haufler, Nagy, & Pare, 2013) or differentially regulate the HPA axis

(Choi et al., 2007). In addition, we did not distinguish between the

centrolateral and centromedial amygdala, two subdivisions that also

have been found to play essential differential roles in the mediation of

fear and anxiety responses (Ciocchi et al., 2010; Davis et al., 2010;

Duvarci & Pare, 2014). The same is true for a separation between the

lateral, basal and basomedial nuclei of the basolateral complex of the

amygdala, which also have been shown to mediate different aspects of

fear learning and fear expression (Duvarci & Pare, 2014). Our results

are therefore limited because the signal components used in the DCM

comprise a mixture of signals from several subnuclei. However, at the

moment, a distinction between BNST subnuclei as well as subnuclei of
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the central amygdala is not possible due to the limited spatial resolution

of fMRI, although a recent work did differentiate subnuclei of the

amygdala in greater detail than previously done (Tyszka & Pauli, 2016).

A final limitation that was pointed out by one of our reviewers per-

tains to the possible effects of early adversity on the BNST-amygdala

circuit EC. Notably, a history of physical abuse has been found to be

correlated with stressor-evoked changes in mean arterial pressure and

BOLD activity in the BNST and amygdala (Banihashemi, Sheu, Midei, &

Gianaros, 2015) and, therefore, might also affect the resting-state. Since

the effects of physical abuse on EC have not been explicitly addressed

in our study, it cannot be ruled out that subjects with a history of physi-

cal abuse show altered within BNST-amygdala EC. However, since the

sample sizes in this study were large, representative of the general pop-

ulation and from different sites, the effects of a history of physical abuse

in some subjects likely did not induce a strong bias in the estimation of

EC within the BNST-amygdala circuit. Nevertheless, the effects of phys-

ical abuse on resting-state EC within the BNST-amygdala circuit should

be systematically addressed in future studies.

6 | CONCLUSION

In conclusion, our results point towards strong inhibitory influence

from the amygdala to the BNST and positive EC from the BNST to

the amygdala, while higher BNST baseline activity and stronger nega-

tive CM-BNST EC is weakly associated with higher anxiety. These

results are mostly reproducible over the different samples. Our study,

therefore, adds to our previous investigation and enables further

insight into the complex neuronal interaction within the BNST-

amygdala circuit and the relation of EC with anxiety. However, much

work has yet to be done and the field is faced with trying to bridge a

gap between animal studies directly targeting neuronal structures

through stimulation, or optogenetic and pharmacological methods,

and modeling of BOLD responses in humans using DCM. Research

that focuses on the BNST-amygdala circuit and how certain condi-

tions and stimuli alter the EC between these structures, as well as

their dynamical interaction, will likely enable a more in-depth insight

and comparison with results from animal research.

ACKNOWLEDGMENTS

This work was supported by the German Research Foundation (DFG:

SFB/TRR 58: C06, C07).

DATA AVAILABILITY STATEMENT

The data that supports the findings of this study are available in the

supplementary material of this article.

ORCID

David Hofmann https://orcid.org/0000-0003-3494-634X

REFERENCES

Alvarez, R. P., Chen, G., Bodurka, J., Kaplan, R., & Grillon, C. (2011). Phasic

and sustained fear in humans elicits distinct patterns of brain activity.

NeuroImage, 55, 389–400. https://doi.org/10.1016/j.neuroimage.

2010.11.057

Amunts, K., Kedo, O., Kindler, M., Pieperhoff, P., Mohlberg, H., Shah, N. J.,

… Zilles, K. (2005). Cytoarchitectonic mapping of the human amygdala,

hippocampal region and entorhinal cortex: Intersubject variability and

probability maps. Anatomy and Embryology (Berlin), 210, 343–352.
Ashburner, J. (2007). A fast diffeomorphic image registration algorithm.

NeuroImage, 38, 95–113. http://www.sciencedirect.com/science/

article/pii/S1053811907005848

Babaev, O., Piletti Chatain, C., & Krueger-Burg, D. (2018). Inhibition in the

amygdala anxiety circuitry. Experimental & Molecular Medicine, 50, 18.

https://doi.org/10.1038/s12276-018-0063-8

Banihashemi, L., Sheu, L. K., Midei, A. J., & Gianaros, P. J. (2015). Child-

hood physical abuse predicts stressor-evoked activity within central

visceral control regions. Social Cognitive and Affective Neuroscience, 10,

474–485.
Behzadi, Y., Restom, K., Liau, J., & Liu, T. T. T. (2007). A component based

noise correction method (CompCor) for BOLD and perfusion based

fMRI. NeuroImage, 37, 90–101. http://www.sciencedirect.com/

science/article/pii/S1053811907003837

Brinkmann, L., Buff, C., Feldker, K., Tupak, S. V., Becker, M. P. I.,

Herrmann, M. J., & Straube, T. (2017). Distinct phasic and sustained

brain responses and connectivity of amygdala and bed nucleus of the

stria terminalis during threat anticipation in panic disorder. Psychologi-

cal Medicine, 47, 2675–2688.
Brinkmann, L., Buff, C., Neumeister, P., Tupak, S. V., Becker, M. P. I.,

Herrmann, M. J., & Straube, T. (2017). Dissociation between amygdala

and bed nucleus of the stria terminalis during threat anticipation in

female post-traumatic stress disorder patients. Human Brain Mapping,

38, 2190–2205.
Buff, C., Brinkmann, L., Bruchmann, M., Becker, M. P. I., Tupak, S.,

Herrmann, M. J., & Straube, T. (2017). Activity alterations in the bed

nucleus of the stria terminalis and amygdala during threat anticipation

in generalized anxiety disorder. Social Cognitive and Affective Neurosci-

ence, 12, 1766–1774.
Calhoon, G. G., & Tye, K. M. (2015). Resolving the neural circuits of anxi-

ety. Nature Neuroscience, 18, 1394–1404.
Choi, D. C., Furay, A. R., Evanson, N. K., Ostrander, M. M., Ulrich-

Lai, Y. M., & Herman, J. P. (2007). Bed nucleus of the Stria Terminalis

subregions differentially regulate hypothalamic-pituitary-adrenal Axis

activity: Implications for the integration of limbic inputs. The Journal of

Neuroscience, 27, 2025–2034. https://doi.org/10.1523/JNEUROSCI.

4301-06.2007

Ciocchi, S., Herry, C., Grenier, F., Wolff, S. B. E., Letzkus, J. J., Vlachos, I., …
Lüthi, A. (2010). Encoding of conditioned fear in central amygdala

inhibitory circuits. Nature, 468, 277–282.
Crestani, C. C., Alves, F. H. F., Gomes, F. V., Resstel, L. B. M.,

Correa, F. M. A., & Herman, J. P. (2013). Mechanisms in the bed

nucleus of the Stria Terminalis involved in control of autonomic and

neuroendocrine functions: A review. Current Neuropharmacology, 11,

141–159.
Davis, M., Walker, D. L., Miles, L., & Grillon, C. (2010). Phasic vs sustained

fear in rats and humans: Role of the extended amygdala in fear vs anxi-

ety. Neuropsychopharmacology, 35, 105–135. https://doi.org/10.

1038/npp.2009.109

Di, X., Huang, J., & Biswal, B. B. (2016). Task modulated brain connectivity

of the amygdala: A meta-analysis of psychophysiological interactions.

Brain Structure & Function, 222, 619–634. https://doi.org/10.1007/
s00429-016-1239-4

Duvarci, S., & Pare, D. (2014). Amygdala microcircuits controlling learned

fear. Neuron, 82, 966–980. https://doi.org/10.1016/j.neuron.2014.

04.042

Eickhoff, S. B., Stephan, K. E., Mohlberg, H., Grefkes, C., Fink, G. R.,

Amunts, K., & Zilles, K. (2005). A new SPM toolbox for combining

probabilistic cytoarchitectonic maps and functional imaging data.

834 HOFMANN AND STRAUBE

https://orcid.org/0000-0003-3494-634X
https://orcid.org/0000-0003-3494-634X
https://doi.org/10.1016/j.neuroimage.2010.11.057
https://doi.org/10.1016/j.neuroimage.2010.11.057
http://www.sciencedirect.com/science/article/pii/S1053811907005848
http://www.sciencedirect.com/science/article/pii/S1053811907005848
https://doi.org/10.1038/s12276-018-0063-8
http://www.sciencedirect.com/science/article/pii/S1053811907003837
http://www.sciencedirect.com/science/article/pii/S1053811907003837
https://doi.org/10.1523/JNEUROSCI.4301-06.2007
https://doi.org/10.1523/JNEUROSCI.4301-06.2007
https://doi.org/10.1038/npp.2009.109
https://doi.org/10.1038/npp.2009.109
https://doi.org/10.1007/s00429-016-1239-4
https://doi.org/10.1007/s00429-016-1239-4
https://doi.org/10.1016/j.neuron.2014.04.042
https://doi.org/10.1016/j.neuron.2014.04.042


NeuroImage, 25, 1325–1335. http://www.ncbi.nlm.nih.gov/pubmed/

15850749

Fadok, J. P., Markovic, M., Tovote, P., & Lüthi, A. (2018). New perspectives on

central amygdala function. Current Opinion in Neurobiology, 49, 141–147.
Forray, M. I., & Gysling, K. (2004). Role of noradrenergic projections to the

bed nucleus of the stria terminalis in the regulation of the

hypothalamic-pituitary-adrenal axis. Brain Research Reviews, 47,

145–160.
Fox, A. S., & Shackman, A. J. (2019). The central extended amygdala in fear

and anxiety: Closing the gap between mechanistic and neuroimaging

research. Neuroscience Letters, 693, 58–67. https://doi.org/10.1016/j.
neulet.2017.11.056

Friston, K. (2011). Functional and effective connectivity: A review.

Brain Connectivity, 1, 13–36. http://www.ncbi.nlm.nih.gov/pubmed/

22432952

Friston, K., Harrison, L., & Penny, W. (2003). Dynamic causal modelling.

NeuroImage, 19, 1273–1302. http://linkinghub.elsevier.com/retrieve/

pii/S1053811903002027

Friston, K., Kahan, J., Biswal, B., & Razi, A. (2014). A DCM for resting state

fMRI. NeuroImage, 94, 396–407. https://doi.org/10.1016/j.

neuroimage.2013.12.009

Friston, K., Litvak, V., Oswal, A., Razi, A., Stephan, K. E., Van Wijk, B. C. M.,

… Zeidman, P. (2016). Bayesian model reduction and empirical Bayes

for group (DCM) studies. NeuroImage, 128, 413–431. https://doi.org/
10.1016/j.neuroimage.2015.11.015

Friston, K., Preller, K. H., Mathys, C., Cagnan, H., Heinzle, J., Razi, A., &

Zeidman, P. (2019). Dynamic causal modelling revisited. NeuroImage,

199, 730–744. https://doi.org/10.1016/j.neuroimage.2017.02.045

Friston, K., Williams, S., Howard, R., Frackowiak, R. S., & Turner, R. (1996).

Movement-related effects in fMRI time-series. Magnetic Resonance in

Medicine, 35, 346–355. /spm/doc/papers/fMRI_1/welcome.html

Glasser, M. F., Sotiropoulos, S. N., Wilson, J. A., Coalson, T. S., Fischl, B.,

Andersson, J. L., … Jenkinson, M. (2013). The minimal preprocessing

pipelines for the human connectome project. NeuroImage, 80,

105–124. http://www.ncbi.nlm.nih.gov/pubmed/23668970

Gorka, A. X., Torrisi, S., Shackman, A. J., Grillon, C., & Ernst, M. (2018).

Intrinsic functional connectivity of the central nucleus of the amygdala

and bed nucleus of the stria terminalis. NeuroImage, 168, 392–402.
Griffanti, L., Salimi-Khorshidi, G., Beckmann, C. F., Auerbach, E. J.,

Douaud, G., Sexton, C. E., … Smith, S. M. (2014). ICA-based artefact

removal and accelerated fMRI acquisition for improved resting state

network imaging. NeuroImage, 95, 232–247.
Gungor, N. Z., & Pare, D. (2016). Functional heterogeneity in the bed

nucleus of the Stria Terminalis. The Journal of Neuroscience, 36,

8038–8049. https://doi.org/10.1523/JNEUROSCI.0856-16.2016

Gungor, N. Z., Yamamoto, R., & Pare, D. (2015). Optogenetic study of the

projections from the bed nucleus of the Stria Terminalis to the central

amygdala. Journal of Neurophysiology, 114, 2903–2911. https://doi.

org/10.1152/jn.00677.2015

Haufler, D., Nagy, F. Z., & Pare, D. (2013). Neuronal correlates of fear con-

ditioning in the bed nucleus of the stria terminalis. Learning & Memory,

20, 633–641. https://doi.org/10.1101/lm.031799.113

Herman, J. P., Ostrander, M. M., Mueller, N. K., & Figueiredo, H. (2005).

Limbic system mechanisms of stress regulation: Hypothalamo-pituitary-

adrenocortical axis. Progress in Neuro-Psychopharmacology & Biological

Psychiatry, 29, 1201–1213.
Herrmann, M. J., Boehme, S., Becker, M. P. I., Tupak, S. V., Guhn, A.,

Schmidt, B., … Straube, T. (2016). Phasic and sustained brain responses

in the amygdala and the bed nucleus of the stria terminalis during

threat anticipation. Human Brain Mapping, 37, 1091–1102.
Hofmann D, Feldker K, Straube T (in prep): Resting-state effective connec-

tivity of the bed nucleus of the stria terminalis and amygdala nuclei in

panic disorder.

Hofmann, D., & Straube, T. (2019). Resting-state fMRI effective connectiv-

ity between the bed nucleus of the stria terminalis and amygdala

nuclei. Human Brain Mapping, 40, 1–13. https://doi.org/10.1002/hbm.

24555

Kerestes, R., Chase, H. W., Phillips, M. L., Ladouceur, C. D., &

Eickhoff, S. B. (2017). Multimodal evaluation of the amygdala's func-

tional connectivity. NeuroImage, 148, 219–229. http://linkinghub.

elsevier.com/retrieve/pii/S1053811916307455

Khatamian, Y. B., Golestani, A. M., Ragot, D. M., & Chen, J. J. (2016). Spin-

Echo resting-state functional connectivity in high-susceptibility

regions: Accuracy, reliability, and the impact of physiological noise.

Brain Connectivity, 6, 283–297.
Kiebel, S. J., Garrido, M. I., Moran, R., Chen, C. C., & Friston, K. (2009).

Dynamic causal modeling for EEG and MEG. Human Brain Mapping,

30, 1866–1876.
Kim, S.-Y., Adhikari, A., Lee, S. Y., Marshel, J. H., Kim, C. K., Mallory, C. S.,

… Deisseroth, K. (2013). Diverging neural pathways assemble a behav-

ioural state from separable features in anxiety. Nature, 496, 219–223.
http://www.ncbi.nlm.nih.gov/pubmed/23515158

Krabbe, S., Gründemann, J., & Lüthi, A. (2017). Amygdala inhibitory circuits

regulate associative fear conditioning. Biological Psychiatry, 83,

800–809. https://doi.org/10.1016/j.biopsych.2017.10.006
Laux, L., Glanzmann, P., Schaffner, P., & Spielberger, C. D. (1981).

Das State-Trait-Angstinventar (Testmappe mit Handanweisung,

Fragebogen STAI-G Form X 1 und Fragebogen STAI-G Form X 2).

Weinheim: Beltz.

Nooner, K. B., Colcombe, S. J., Tobe, R. H., Mennes, M., Benedict, M. M.,

Moreno, A. L., … Milham, M. P. (2012). The NKI-Rockland sample: A

model for accelerating the pace of discovery science in psychiatry.

Frontiers in Neuroscience, 6, 1–11.
Pessoa, L. (2011). Reprint of: Emotion and cognition and the amygdala:

From “what is it?” to “ what's to be done?”. Neuropsychologia, 49,
681–694.

Rabellino, D., Densmore, M., Harricharan, S., Jean, T., McKinnon, M. C.,

& Lanius, R. A. (2018). Resting-state functional connectivity of

the bed nucleus of the stria terminalis in post-traumatic stress

disorder and its dissociative subtype. Human Brain Mapping, 39,

1367–1379.
Razi, A., Kahan, J., Rees, G., & Friston, K. (2014). Construct validation of a

DCM for resting state fMRI. NeuroImage, 106, 1–14. http://linkinghub.
elsevier.com/retrieve/pii/S1053811914009446

Razi, A., Seghier, M. L., Zhou, Y., McColgan, P., Zeidman, P., Park, H.-J., …
Friston, K. (2017). Large-scale DCMs for resting-state fMRI. Netw Neu-

rosci, 1, 222–241.
Rescorla, L. A., & Achenbach, T. (2004). The Achenbach system of empiri-

cally based assessment (ASEBA) or ages 18 to 90+ years. In M. E. Mar-

uish (Ed.), The use of psychological testing for treatment planning and

outcomes assessment: Volume 3: Instruments for adults (p. 115). New

Jersey, London: Routledge.

Roy, A. K., Shehzad, Z., Margulies, D. S., Kelly, A. M. C., Uddin, L. Q.,

Gotimer, K., … Milham, M. P. (2009). Functional connectivity of the

human amygdala using resting state fMRI. NeuroImage, 45, 614–626.
https://doi.org/10.1016/j.neuroimage.2008.11.030

Salimi-Khorshidi, G., Douaud, G., Beckmann, C. F., Glasser, M. F.,

Griffanti, L., & Smith, S. M. (2014). Automatic denoising of functional

MRI data: Combining independent component analysis and hierarchi-

cal fusion of classifiers. NeuroImage, 90, 449–468. https://doi.org/10.
1016/j.neuroimage.2013.11.046

Shackman, A., & Fox, A. (2016). Contributions of the central extended

amygdala to fear and anxiety. The Journal of Neuroscience, 36,

8050–8063. http://www.ncbi.nlm.nih.gov/pubmed/27488625

Smith, S. M., Beckmann, C. F., Andersson, J., Auerbach, E. J.,

Bijsterbosch, J., Douaud, G., … Glasser, M. F. (2013). Resting-state

fMRI in the human Connectome project. NeuroImage, 80, 144–168.
Spielberger, C. B., Gorsuch, R. L., & Luschene, R. E. (1970). STAI manual for

the state-trait anxiety inventory. Palo Alto, CA: Consulting Psycholo-

gists Press.

HOFMANN AND STRAUBE 835

http://www.ncbi.nlm.nih.gov/pubmed/15850749
http://www.ncbi.nlm.nih.gov/pubmed/15850749
https://doi.org/10.1016/j.neulet.2017.11.056
https://doi.org/10.1016/j.neulet.2017.11.056
http://www.ncbi.nlm.nih.gov/pubmed/22432952
http://www.ncbi.nlm.nih.gov/pubmed/22432952
http://linkinghub.elsevier.com/retrieve/pii/S1053811903002027
http://linkinghub.elsevier.com/retrieve/pii/S1053811903002027
https://doi.org/10.1016/j.neuroimage.2013.12.009
https://doi.org/10.1016/j.neuroimage.2013.12.009
https://doi.org/10.1016/j.neuroimage.2015.11.015
https://doi.org/10.1016/j.neuroimage.2015.11.015
https://doi.org/10.1016/j.neuroimage.2017.02.045
http://welcome.html
http://www.ncbi.nlm.nih.gov/pubmed/23668970
https://doi.org/10.1523/JNEUROSCI.0856-16.2016
https://doi.org/10.1152/jn.00677.2015
https://doi.org/10.1152/jn.00677.2015
https://doi.org/10.1101/lm.031799.113
https://doi.org/10.1002/hbm.24555
https://doi.org/10.1002/hbm.24555
http://linkinghub.elsevier.com/retrieve/pii/S1053811916307455
http://linkinghub.elsevier.com/retrieve/pii/S1053811916307455
http://www.ncbi.nlm.nih.gov/pubmed/23515158
https://doi.org/10.1016/j.biopsych.2017.10.006
http://linkinghub.elsevier.com/retrieve/pii/S1053811914009446
http://linkinghub.elsevier.com/retrieve/pii/S1053811914009446
https://doi.org/10.1016/j.neuroimage.2008.11.030
https://doi.org/10.1016/j.neuroimage.2013.11.046
https://doi.org/10.1016/j.neuroimage.2013.11.046
http://www.ncbi.nlm.nih.gov/pubmed/27488625


Straube, T., Mentzel, H.-J., & Miltner, W. H. R. (2007). Waiting for spiders:

Brain activation during anticipatory anxiety in spider phobics.

NeuroImage, 37, 1427–1436. http://www.ncbi.nlm.nih.gov/pubmed/

17681799

Tillman, R. M., Stockbridge, M. D., Nacewicz, B. M., Torrisi, S., Fox, A. S.,

Smith, J. F., & Shackman, A. J. (2018). Intrinsic functional connectivity

of the central extended amygdala. Human Brain Mapping, 39,

1291–1312. https://doi.org/10.1002/hbm.23917

Torrisi, S., O'Connell, K., Davis, A., Reynolds, R., Balderston, N.,

Fudge, J. L., … Ernst, M. (2015). Resting state connectivity of the bed

nucleus of the stria terminalis at ultra-high field. Human Brain Mapping,

36, 4076–4088.
Tovote, P., Fadok, J. P., & Lüthi, A. (2015). Neuronal circuits for fear and

anxiety. Nature Reviews. Neuroscience, 16, 317–331. https://doi.org/
10.1038/nrn3945

Tyszka, J. M., & Pauli, W. M. (2016). In vivo delineation of subdivisions of

the human amygdaloid complex in a high-resolution group template.

Human Brain Mapping, 37, 3979–3998.
Van Essen, D. C., Smith, S. M., Barch, D. M., Behrens, T. E. J., Yacoub, E., &

Ugurbil, K. (2013). The WU-Minn human connectome project: An

overview. NeuroImage, 80, 62–79. http://www.ncbi.nlm.nih.gov/

pubmed/23684880

Weis, C. N., Huggins, A. A., Bennett, K. P., Parisi, E. A., & Larson, C. L.

(2019). High-resolution resting-state functional connectivity of the

extended amygdala. Brain Connectivity, 42, 1.

Yan, C. G., Craddock, R. C., Zuo, X. N., Zang, Y. F., & Milham, M. P. (2013).

Standardizing the intrinsic brain: Towards robust measurement of

inter-individual variation in 1000 functional connectomes. NeuroImage,

80, 246–262. https://doi.org/10.1016/j.neuroimage.2013.04.081

Yan, C. G., Di Wang, X., Zuo, X. N., & Zang, Y. F. (2016). DPABI: Data

Processing & Analysis for (resting-state) brain imaging. Neu-

roinformatics, 14, 339–351.
Zeidman, P., Jafarian, A., Seghier, M. L., Litvak, V., Cagnan, H.,

Price, C. J., & Friston, K. (2019). A guide to group effective connectiv-

ity analysis, part 2: Second level analysis with PEB. NeuroImage, 200,

12–25. https://doi.org/10.1016/j.neuroimage.2019.06.032

SUPPORTING INFORMATION

Additional supporting information may be found online in the

Supporting Information section at the end of this article.

How to cite this article: Hofmann D, Straube T. Effective

connectivity between bed nucleus of the stria terminalis and

amygdala: Reproducibility and relation to anxiety. Hum Brain

Mapp. 2021;42:824–836. https://doi.org/10.1002/hbm.

25265

836 HOFMANN AND STRAUBE

http://www.ncbi.nlm.nih.gov/pubmed/17681799
http://www.ncbi.nlm.nih.gov/pubmed/17681799
https://doi.org/10.1002/hbm.23917
https://doi.org/10.1038/nrn3945
https://doi.org/10.1038/nrn3945
http://www.ncbi.nlm.nih.gov/pubmed/23684880
http://www.ncbi.nlm.nih.gov/pubmed/23684880
https://doi.org/10.1016/j.neuroimage.2013.04.081
https://doi.org/10.1016/j.neuroimage.2019.06.032
https://doi.org/10.1002/hbm.25265
https://doi.org/10.1002/hbm.25265

	Effective connectivity between bed nucleus of the stria terminalis and amygdala: Reproducibility and relation to anxiety
	1  INTRODUCTION
	2  METHODS
	2.1  Resting-state samples
	2.1.1  Human connectome project 3 and 7 Tesla sample
	2.1.2  Nathan Kline Institute sample
	2.1.3  Muenster sample

	2.2  Data acquisition
	2.2.1  Data acquisition HCP 3 T sample
	2.2.2  Data acquisition HCP 7 T sample
	2.2.3  Data acquisition NKI sample
	2.2.4  Data acquisition MS sample

	2.3  Data preprocessing
	2.3.1  Data preprocessing of HCP 3 T sample
	2.3.2  Data preprocessing of HCP 7 T sample
	2.3.3  Data preprocessing of MS and NKI sample
	2.3.4  Regions of interest selection
	2.3.5  Regions of interest extraction

	2.4  DCM
	2.5  Parametric empirical Bayes for group DCM
	2.6  Description of anxiety questionnaires
	2.6.1  DSM_anxiety
	2.6.2  STAIT-T


	3  RESULTS
	3.1  EC
	3.2  Association of EC with self-reported anxiety

	4  DISCUSSION
	5  LIMITATIONS
	6  CONCLUSION
	ACKNOWLEDGMENTS
	  DATA AVAILABILITY STATEMENT

	REFERENCES


