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Left ventricular (LV) mass loss is prevalent in doxorubicin (DOX)-induced cardiotoxicity

and is responsible for the progressive decline of cardiac function. Comparing with the

well-studied role of cell death, the part of cardiomyocyte atrophy (CMA) playing in the

LV mass loss is underestimated and the knowledge of the underlying mechanism is

still limited. In this review, we summarized the recent advances in the DOX-induced

CMA. We found that the CMA caused by DOX is associated with the upregulation of

FOXOs and “atrogenes,” the activation of transient receptor potential canonical 3-NADPH

oxidase 2 (TRPC3-Nox2) axis, and the suppression of IGF-1-PI3K signaling pathway.

The imbalance of anabolic and catabolic process may be the common final pathway of

these mechanisms. At last, we provided some strategies that have been demonstrated

to alleviate the DOX-induced CMA in animal models.
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INTRODUCTION

Doxorubicin (DOX), the most prescribed anthracycline chemotherapy agent, remains one of the
most commonly used anti-cancer drugs among the world while its clinical application is limited
by its cumulative dose-dependent cardiotoxicity (1, 2). The congestive heart failure (CHF) is the
end stage of DOX-induced cardiotoxicity (DIC) and predicts poor prognosis. The incidence of
DOX-related CHF reaches to 26% in patients received DOX at a cumulative dose of 550 mg/m2 (3).
The health of patients with cancer and cancer survivors is threatened by the DIC, unfortunately,
the number of both is large. For cancer survivors only, it was reported that there are more than
16.9 million cancer survivors until January 1, 2019 in the United States; this number is estimated to
reach more than 22.1 million in the next decade based on the growth and aging of the population
alone (4). Nowadays, several strategies are recommended for patients planning to receive high-dose
anthracyclines to prevent DIC, such as the use of dexrazoxane or liposomal formulation of
doxorubicin, continuous doxorubicin infusion (evidence based; strength of recommendation:
moderate) (5). However, there is still lack of evidence to confirm whether these strategies are safe
and effective for all patients with cancer receiving chemotherapy (5–7). Although small clinical
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trials have revealed that conventional drug of heart failure
therapy may be beneficial against DIC (8, 9). Cardinale et al.
reported that with conventional heart failure therapy, only 11%
patients showed complete recovery from DIC in a heterogeneous
cohort study of 2,625 patients (10). Therefore, it is vital to
uncover the key mechanism of DIC and find a new approach to
prevent it.

Several studies have revealed that anthracycline-based
chemotherapy (ANbC) accounts for the left ventricular (LV)
mass loss in patients with cancer and cancer survivors. In
patients receiving ANbC, the LV mass decrease was detected as
early as 1 month after the initiation of the therapy (11) and a
5% reduction in LV mass in 6 month was found based on the
cardiovascular magnetic resonance detection (12). In the studies
focusing on the pediatric and adult cancer survivors, the LV
mass reduction still exists more than 20 years after the ANbC
therapy (13–17). The severity of LV mass loss is correlative
with the cumulative dose of DOX (14, 18). Further, there may
not be a safe dose of DOX to avoid cardiotoxicity for that the
cardiac abnormalities, such as significantly reduced LV mass
and dimension was found in patients who received as low as 45
mg/m2 cumulative dose (18).

Although there are multi-factors that can be resulted into the
LV mass loss, for example, cancer-associated cachexia like food
intake reduction and excess catabolism (19), heart load alteration
(20), denervation (21), and bed rest (22). Jordan et al. found that
the reduction of LV mass is not necessarily accompanied with
the decline of body weight and the heart failure (HF) symptom
is not associated with the body weight decrease in patients who
received ANbC, indicating a process other than cancer-associated
cachexia leads to LV mass loss (12). Consistent finding was
reported in animal models, DOX itself caused the heart weight
loss in healthy mice and the heart weight (HW)/body weight
(BW) index decreases in a dose-dependent fashion of DOX
treatment, implicating the possibility that the HW loss is out
of portion of BW loss and is caused by the chemotherapy (11).
Intriguingly, Pietzsch et al. reported that the cardiac dysfunction
induced by cancer alone would nearly recover to the base line,
while tumor-bearing mice with DOX treatment showed lower
survival rate in the acute phase and long-lasting damage in the
gene expression system (23).

The LV mass loss is correlative to the decline of life quality
(12) and the increase ofmajor adverse cardiovascular events, such
as cardiovascular death, implantable cardioverter-defibrillator
therapy, and decompensated heart failure (14). Generally, the LV
afterload decreases, the LV mass reduces (20). However, a high
afterload was paradoxically found in ANbC-treated patient (12).
The same phenomenon was found in animal models. Matsumura
et al. found that DOX caused the cardiac atrophy and induced
higher blood pressure after angiotensin II treatment (24). In
addition, DOX-treated juvenile mice failed to develop cardiac
hypertrophic response to late-onset hypertension induced by
angiotensin II, which resulted into higher blood pressure,
cardiac output decline, and overt mortality (24). Maayah et al.
also reported that DOX treatment led to the impairment of
the adaptive hypertrophic response to hypertrophic stimuli
(25). Insufficient ventricular mass plus high chronic afterload

contributes to the progressive contractile deficit, decreased
cardiac output, and the establishment of cardiomyopathy (18).
These may explain why hypertension markedly increased the risk
for coronary artery disease, HF, valvular disease, and arrhythmia
in aging adult survivors of childhood cancer (26).

The LV mass loss derives from both cell death (27, 28) and
cardiomyocyte atrophy (CMA) (11), leads to cardiac atrophy.
It should be noted that cardiac atrophy is different from CMA.
The term of cardiac atrophy generally defined as an acquired
reduction in the size and mass of the heart (29), is usually
evaluated by HW, HW/BW ratio, or HW/tibia length (TL) ratio
in animal DIC model. A great number of studies have revealed
that DOX caused cardiac atrophy, as indicated by the decrease of
HW, HW/TL ratio or HW/BW ratio (30–35). However, several
studies reported that DOX caused a reduction of HW and
BW, did not affect or increase the HW/BW ratio (36–38). It
was reported that the delivery of DOX through intraperitoneal
route resulted into peritoneal damage, which interfered the food
intake and absorption and caused BW loss (39). Therefore, the
preserved or increased HW/BW ratio may originate from the
greater BW reduction. Therefore, it may be more appropriate to
evaluate the cardiac atrophy byHW/TL ratio or HWalone, which
is more evident mostly.

Despite numerous studies focusing on the cell death, less
attention was paid on the CMA in DIC studies. However, the
weight of cardiomyocyte apoptosis in DIC might be overstated
(40). Several studies demonstrated that the contribution of
cardiomyocyte apoptosis is low in acute DIC model. Willis
et al. reported that CMA rather than cell death determines the
cardiac atrophy in acute DIC mice model. They sacrificed mice
7 days after injected with DOX (20 mg/kg) and found that
there were barely no increase of serum Troponin-I level and
TUNEL-stained cell number in DOX treated mice, however, a
44% reduction of cell cross-section area and an obvious cardiac
atrophy were detected (11). Little doxorubicin-induced apoptotic
effect in acute DIC model was reported by other groups (41–
44). However, it was also reported that DOX caused a great
amount of apoptotic cardiomyocyte in an acute DIC model
(45–47). Maybe apoptosis plays less important role in cardiac
atrophy of acute DIC than we thought. While in a chronic DIC
model, cardiomyocyte may undergo a hypertrophy response in
a compensated manner (48), CMA was also found in a chronic
DICmodel (49–51). The controversial results will require further
research to clarify, and the role of CMA in the DIC model should
be evaluated. In a study including 27 women with breast cancer,
patients received the cardiac magnetic resonance image exam at
351–700 days after anthracycline therapy (240 mg/m2). Ferreira
et al. found that the LV mass index in these patients is correlated
with intracellular water lifetime (τ ic; a cardiomyocyte sizemaker)
other than with extracellular volume (ECV), indicating that the
cardiac atrophy originates from CMA (52). Cell size shrinkage
alone accounted for an ∼44% reduction in LV mass, while the
increased ECV may attenuate the LV mass loss (52). Except
for apoptosis, other forms of cell death had been found and
demonstrated to participate in DIC (27), the relative contribution
of cell death and CMA in DOX-induced cardiac atrophy needs
further studies to illustrate.
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Here, we aim to emphasize the importance of CMA in cardiac
atrophy, summarize the current knowledge of the effect of DOX
on CMA, and provide insight into the underlying molecular
mechanism of it, finally discuss some approaches that have been
identified to protect it.

MOLECULAR MECHANISM

Forkhead Box O1 (FOXO1)
Forkhead box O (FOXO) proteins are transcription factors
regulating multi physiological and pathological processes
included in cardiovascular system. The family contains four
members in human, FOXO1, FOXO3, FOXO4, and FOXO6 (53).
FOXOs are key regulators in maintaining the muscle mass (54).
Depletion of FOXOs has been reported to prevent the muscle loss
and weakness through suppressing autophagy–lysosome systems
(ALS) and ubiquitin–proteasome systems (UPS) via inhibiting
the AKT activity (55). Sengupta et al. reported that FOXOs
activation may reduce the cardiomyocyte size by promoting
autophagy (56). Additionally, Skurk et al. (57) reported that
AKT-FOXO3a signaling regulates cardiomyocyte cell size against
hypertrophy via mediating the expression of atrophy-related
genes “atrogenes”. Actually, FOXOs regulates half of the
atrogenes by binding their promoters, such as muscle RING
finger 1 (MuRF1), muscle atrophy gene-1 (atrogin-1/MAFbx),
and Bcl-2 19-kDa interacting protein 3 (Bnip3) (55). Atrogin-1
and MuRF-1 are two members of E3 ubiquitin ligases mastering
the ubiquitin-mediated protein degradation (58). Bnip3, an
autophagy-related gene, has been reported to regulate CMA in a
model of mechanical unloading (59).

It has been reported that high dose (20 mg/kg) of
DOX treatment activated FOXO1 phosphorylation at Ser-249
and upregulated nuclear FOXO1 levels, accompanied with
the increased expression of its target gene, MuRF1 within
24 h. Pharmacological inhibition of FOXO1 with AS1842856
decreased MuRF1 and prevented DOX-induced CMA and LV
mass loss (60). Consistently, Willis et al. reported that DOX
treatment resulted into a significant upregulation of MuRF1 and
Bnip3, while MuRF1 depletion reversed DOX-induced cardiac
atrophy in mice (11). Yamamoto et al. reported that DOX-
induced CMAwas abrogated byMG-132, a proteasome inhibitor,
indicating that the atrophy response is involved in the UPS
(61). Wang et al. reported that 3-MA, an autophagy inhibitor,
alleviated the DOX-induced CMA in vitro and Ghrelin, a multi-
functional peptide hormone, attenuated DOX-induced CMA by
inhibiting the excessive autophagy (62) (Figure 1).

The expression of FOXO1 and its target genes might be
induced by DOX in a time- and dose-dependent manner. Low
dose (5 mg/kg) of DOX failed to induce MuRF1 expression at
24 h (60). In addition, the mRNA levels of FOXO1and Atrogin-1
were not upregulated in mice 7 days after injected with 20 mg/kg
DOX (11).

In conclusion, DOX triggers catabolic process involving the
induction of ALS and UPS via activating FOXO1 and its target
genes, which contributes to the CMA. However, FOXOs are
classified as tumor suppressor genes (63), inhibition of FOXOs
may compromise the anti-tumor effect of DOX. Therefore, more

precise and comprehensive studies need to be conducted to figure
out if FOXOs inhibition is benefit in DIC therapy in patients with
cancer (Figure 1).

Transient Receptor Potential Canonical 3
(TRPC3)-NADPH Oxidase 2 (Nox2) Axis
Transient receptor potential canonical (TRPC) proteins,
regulating intracellular Ca2+, K+, and Na+, are involved
in a variety of physiological and pathological processes in
cardiovascular system (64). It has been reported that TRPC3 is
a risk factor deteriorating the pathological cardiac remodeling
(65, 66). TRPC3 was upregulated underlying the DOX-induced
hypoxia stress, silence of TRPC3 ameliorated DOX-induced
CMA (29). NADPH oxidase 2 (Nox2) is a key regulator
accounting for the major reactive oxygen species (ROS)
generation in response to cardiac injury. Nox2 knock-out mice
exhibited ameliorated CMA and improved the cardiac function
against accumulative DOX toxicity, which may be associated
with the decrease of NADPH oxidase activity and oxidation (67).

Transient receptor potential canonical 3 (TRPC3) protects
Nox2 from proteasome-dependent degradation via interacting
with it at the specific C-terminal sites and promotes its
activation by regulating Ca2+ entry (65). The functional
interaction of TRPC3 and Nox2 is required for DOX-induced
CMA, as the supplement of the TRPC3-C terminal fragment
peptide, which disrupted the TRPC3-Nox2 complex without
affecting the TRPC3 channel activity, attenuated DOX-induced
CMA (29). Further, pharmacological inhibition of TRPC3-Nox2
complex by pyrazole-3 (Pyr3) abrogatedDOX-induced CMA and
ameliorated cardiotoxicity (29).

However, the downstream mechanism of TRPC3-Nox2 in
DOX-induced CMA remains poorly known. It was reported
that the mitochondrial dysfunction promoted muscle disuse
atrophy by increasing oxidation stress, impairing Ca2+ handling,
and activating associated cellular degradation processes (68, 69).
TRPC3 was found to translocate to the mitochondria to mediate
mitochondrial Ca2+ homeostasis and regulate the mitochondrial
function (70). The number of evidence has revealed that the
TRPC3-induced ROS emission and mitochondrial dysfunction
participate in cardiac remodeling (65, 66, 71). Ca2+ overload
is one of the major causes of DIC, Chen et al. reported
that the upregulation of TRPC3 and TRPC6 contributed to
the Ca2+ overload in DIC (72). Calmodulin is a ubiquitously
expressed calcium binding protein which plays a key role in
transducing intracellular calcium signal (73). Trifluoperazine, a
strong calmodulin antagonist, was found to alleviate myofibril
degeneration and cardiac atrophy induced by DOX (74).
Calpains are Ca2+-activated neutral cysteine proteases and
comprise two major molecules, calpain-1 and calpain-2 (75).
Min et al. reported that DOX-induced skeleton and cardiac
atrophy requiring the increased mitochondrial emission of ROS
and calpain activation (76). Therefore, it can be speculated
that DOX might induce CMA through TPRC3-Nox2 axis by
disrupting the mitochondrial function, increasing Ca2+ entry,
and activating the Ca2+-associated calpain protein degradation
system (Figure 1).
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FIGURE 1 | The related molecular mechanism of doxorubicin (DOX)-induced cardiomyocyte atrophy (CMA). ALS, autophagy–lysosome systems; atrogin-1/MAFbx,

muscle atrophy gene-1; Bnip3, Bcl-2 19-kDa interacting protein 3; DOX, doxorubicin; FOXO1, forkhead box O1; IGF-1, insulin-like growth factor; IGF-1R, IGF-1

receptor; MuRF1, muscle RING finger 1; mTOR, mammalian target of rapamycin; Nox2, NADPH oxidase 2; PI3K, phosphoinositide 3-kinase; p38 MAPK, p38

mitogen-activated protein kinase; TRPC3, transient receptor potential canonical 3; UPS, ubiquitin–proteasome systems.

Phosphoinositide 3-Kinase (PI3K)
Insulin-Like Growth Factor 1 (IGF-1) and PI3K

Insulin-like growth factor 1 (IGF-1), a key growth factor
controlling both anabolic and catabolic pathways, plays a
critical role in modulating the muscle size and function
(76). IGF-1 binding to IGF-1 receptor (IGF-1R) leads to
increased phosphorylation of insulin receptor substrate-1 (ISR-
1), which recruits phosphoinositide 3-kinase (PI3K) and activates
downstream the AKT signaling pathway (77). Besides, IGF
binding protein (IGFBP) regulated IGF-1 activity by keeping it
away from IGF-1R (78). DOX was reported to impair IGF-1R
and upregulate IGFBP via p53 activation in H9C2 cells (79, 80).
Restoration of IGF-1R-PI3K-AKT signaling pathway increased
the cell survival ability against DIC (79, 80). Apart from that,
exogenous IGF-1 (81) or insulin (82) were reported to alleviated
DOX-induced cardiomyocyte apoptosis via stimulating PI3K-
AKT. Interestingly, Mousa et al. discovered that the co-treatment
of human umbilical cord blood mesenchymal stem cells

(hUCB-MSCs) and carvedilol alleviated DOX-induced decrease
of cardiac muscle fiber diameter, which is accompanied with
the elevation of IGF-1, GATA-binding protein 4 (GATA-4),
and vascular endothelial growth factor (VEGF) (83). Studies
have uncovered that IGF-1 is a pro-hypertrophic inducer in
cardiomyocyte (84, 85). Further, exogenous IGF-1 reversed
cisplatin-induced skeleton muscle atrophy through inhibiting
PI3K-AKT-FOXO mediated UPS (86). Overexpression of IGF-1
was also found to ameliorate cardiac atrophy in spinal muscular
atrophy mice (87). However, whether IGF-1/IGF-1R have the
potent to rescue CMA induced by DOX remains unknown
(Figure 1).

PI3K and AKT

The PI3K-AKT signaling pathway plays a vital role in regulating
the muscle hypertrophy and atrophy response (77). Studies have
revealed that DOX inhibited PI3K-AKT activity both in vivo
and in vitro (79, 88–90). PI3K, a lipid kinase family transducing
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receptor tyrosine kinase signaling, is aberrantly upregulated
in human cancers frequently (91). Though targeting PI3K is
effective in cancer therapy, inadvertently increases its side effect
on the heart (92). PI3K is a key note in growth factor signaling
as well as a modulator in heart muscle mass and contractility
(93). Brent et al. found that specific inhibition of PI3Kα by
BYL719 decreased the cross-sectional area of cardiomyocyte
and induced cardiac atrophy (94). The use of PI3K inhibitor
enhanced the anti-tumor effect of chemotherapy drugs, such as
DOX (95, 96), while cotreatment of DOX and BYL719 aggravated
CMA and cardiotoxicity compared with DOX alone (94). In
addition, several studies shed the relationship of PI3K-AKT and
cardiac atrophy as well. For example, Chen et al. found that total
flavonoids stimulated PI3K-AKT and attenuated DOX-induced
HW loss, while inhibition of PI3K-AKT abrogated the protection
of total flavonoids against DIC (97). Meeran et al. revealed that
nerolidol, a sesquiterpene from the essential oils of aromatic
plants, alleviated DOX-induced cardiac atrophy possibly via
the PI3K-AKT pathway (88). Intriguingly, both upregulation
and downregulation of PI3K-AKT triggered by DOX has been
reported (98, 99). The discrepancy may be explained by different
DIC models and detected time. Interestingly, Cao et al. found
that AKT activity was induced by DOX in the beginning, while
this was suppressed in the long term (100). In addition, it
was reported that PI3Kγ inhibition ameliorated DOX-induced
CMA and cardiotoxicity as well as reduced tumor growth (101).
Therefore, the role of PI3K-AKT in DIC requires deeper research
to clarify and subunit specific inhibition of PI3K might be a
promising idea.

Phosphoinositide 3-kinase-AKT activation promotes FOXOs
to transport from nucleus to cytoplasm, where FOXOs are
sequestered by 14-3-3 proteins and stay inactive (102). Several
studies have revealed that the inhibition of PI3K-AKT signaling
pathway promoted muscle atrophy via FOXOs-mediated
activation of UPS (103–105). Moreover, Spurthi et al. reported
that toll-like receptor 2 deficiency suppressed PI3K-AKT and
activated FOXO1-atrogin-1/MuRF1, which resulted into cardiac
atrophy in aging mice (106). Ni et al. found that angiotensin
II induced cardiac hypertrophy via PI3K-AKT-FOXO pathway
(107). Therefore, DOX-induced CMA may be associated with
PI3K-AKT-FOXO pathway, which need further exploration.
Worth tomention, Yamamoto et al. reported that DOX treatment
induced a rapid increase of atrogin-1 mRNA expression via
activation of p38 mitogen-activated protein kinase (MAPK)
pathway without modulating the AKT-FOXO pathway (61).

Mammalian target of rapamycin (mTOR), acts as a
serine/threonine kinase, plays an important role in regulating the
protein synthesis and modulating autophagy by phosphorylating
p70S6K and 4E-BP and Ulk-1, respectively (108, 109). The
activity of mTOR regulates the cell growth and organ size
(110). The AKT-mTOR axis has been reported to be involved
in cardiac hypertrophy during volume overload (111). Further,
the PI3K-AKT-mTOR signaling pathway has been found to
participate in the DOX-induced skeleton muscle atrophy
and cancer cachexia-related cardiac atrophy (112, 113). DOX
was reported to impair AKT-mTOR axis by several research
(82, 114–117). As reported, β2-agonist formoterol was reported

to decrease protein degradation partially through inhibiting
PI3K-AKT-mTOR mediated ALS, which prevented the muscle
mass loss in fasted mice (118). Apart from that, the activation
of PI3K-AKT signaling pathway prevented muscle atrophy via
mTOR-mediated inhibition of ALS (119, 120). Wang et al. found
that ghrelin ameliorated DOX-induced CMA by inhibiting excess
autophagy via stimulating mTOR (62). Additionally, Hullin et al.
revealed that enalapril protected against cardiotoxicity and CMA
caused by DOX possibly through activating the PI3K-AKT-
mTOR pathway (50). To sum up, DOX might cause CMA via
inhibiting protein synthesis and activating ALS by suppressing
the PI3K-AKT-mTOR pathway (Figure 1).

PI3K and p38 MAPK

The p38 MAPK family, which responses to the stress stimuli,
plays an important role in cardiac development and function
(121). The in vivo and in vitro evidence has shown that DOX
activated the p38 MAPK pathway, which contributed to the DIC
(89, 100, 122, 123). McLean et al. reported that suppression
of PI3Kα with BYL719 or DOX activated p38 MAPK (94).
The stimulation of p38 MAPK is correlative with the muscle
wasting. Puigserver et al. found that p38 MAPK activation led
to mitochondrial uncoupling and energy expenditure in muscle
wasting (124). In addition, Fukawa et al. reported that cancer-
secreted inflammatory factors resulted into the excessive fatty
acid oxidation and the activation of p38 MAPK, which led to
muscle atrophy (125). Several studies have revealed that the
activation of p38 MAPK was responsible for DOX-induced
CMA. Szeto-Schiller 31 (SS31), an antioxidant peptide, inhibited
p38 MAPK phosphorylation and CMA induced by DOX (122).
Diosgenin, a steroidal saponin of Dioscorea opposite, alleviated
DOX-induced HW and HW/BW ratio reduction possibly via
suppressing p38 MAPK (123). Further, therapeutic inhibition
of p38 MAPK signaling mitigated DOX-induced CMA (94).
However, the mechanism that downstream the p38 MAPK in
DOX-induced CMA is beyond well established. It was reported
that p38 MAPK activation resulted into the upregulation of
atrogin-1 and the activation of catabolic process in cancer-
induced muscle wasting (126). Pharmacological inhibition of
p38 MAPK blunted DOX-induced atrogin-1 upregulation in
cardiomyocytes and overexpression of atrogin-1 resulted into
CMA (61). Besides, Odeh et al. reported that compromised
p38 MAPK activity prevented the denervation-induced muscle
atrophy through inhibiting UPS, decreasing oxidation stress,
and increased clearance of damaged mitochondria (127). Ding
et al. found that Activin A induced skeleton muscle atrophy via
p38 mediated activation of UPS and autophagy, shown by the
upregulation of atrogin-1 and LC3II (128). Therefore, DOX may
induce CMA by activating catabolic process though PI3K-p38-
atrogin-1 signaling pathway (Figure 1).

THERAPY STRATEGIES

Exercise
Appropriate exercise has been demonstrated to be beneficial
for alleviating the muscle atrophy and improving the muscle
strength (129). Wang et al. reported that moderate aerobic
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exercise decreased DOX exposure in cardiac tissue without
altering the microvascular density (130). They found that
moderate aerobic exercise during DOX treatment counteracted
heart mass loss and cardiac function decline in juvenile tumor-
bearing nude mice, while failed to preserve the cardiac function
when exercise started after the closure of chemotherapy (130).
Gomes-Santos et al. (131) found that aerobic exercise training
prevented CMA, ameliorated cardiac atrophy, and attenuated
exercise intolerance in mice developed with chronic DIC.
While the LVEF reduction and fibrosis were not mitigated
by it. Several studies have revealed the molecular mechanism
underlying the effect of exercise in ameliorating DOX-induced
CMA. Activation of TRPC3-Nox2 pathway contributes to the
DOX-induced CMA, it was reported that voluntary exercise
downregulated TRPC3 and Nox2 in a posttranslational manner
(29). Further, it was reported that exercise upregulated IGF-1
mRNA expression (132) and activated PI3K-AKT impaired by
DOX (133). Additionally, Kavazis et al. reported that the short-
term endurance exercise training attenuated mRNA expression
of some negative regulators of cardiac mass, such as FOXO1,
MuRF1, myostatin but not atrogin-1, and Bnip3, which was
probably associated with the activation of AMPK/PGC-1α
pathway (134).

Non-Coding RNA (NcRNA)
Non-coding RNA (ncRNA), such as microRNA, small
interference RNA (siRNA), long non-coding RNA (lncRNA),
and circular RNA (cirRNA), plays an important role in regulating
the cardiovascular system (135). Hu et al. reported that DOX
treatment resulted into miR-200a downregulation both in vivo
and in vitro, overexpression of miR-200a alleviated DOX-
induced cardiac atrophy and cardiac dysfunction via nuclear
factor (erythroid-derived 2)-like 2 (Nrf2) activation (136). Li
et al. (137) also found that DOX caused elevation of miR-451
expression and miR-451 inhibition prevented the whole body
wasting and cardiac atrophy and alleviated cardiotoxicity
through AMPK signaling pathway in DIC mice. Moreover,
Gupta et al. found that miR-212/132, a pro-hypertrophic cluster,
ameliorated DOX-induced CMA and improved cardiac function
by inhibiting downstream fat storage-inducing transmembrane
protein 2 (Fitm2) (138). In addition, they found that Quaking, an
RNA-binding protein, exerted cardiac protective effect against
DOX-induced CMA and cardiotoxicity via mediating cardiac
cirRNAs derived from Titin (Ttn), Formin homology 2 domain
containing 3 (Fhod3), and Striatin calmodulin-binding protein 3
(Strn3) (139). It seems that interfering with ncRNAs may provide
a new strategy in reversing the DOX-induced CMA, however,
the related studies remain limited.

Hormones and Growth Factors
Growing evidence has demonstrated that part of endogenous
hormones and growth factors have protective effect in
cardiovascular diseases (140–143). Vascular endothelial growth
factor-B (VEGF-B), one of the five known members of VEGF
that regulate endothelial function (144), has been demonstrated
to show potent in promoting coronary arteriogenesis and
physiological cardiac hypertrophy (145). Räsänen et al. reported

that overexpression of VEGF-B reversed CMA and cardiac mass
loss through protecting endothelial in DOX-treatedmice without
compromising the anti-tumor effect of DOX (146). Li et al. (44)
reported that exogenous supplementation of erythropoietin
ameliorated DOX-induced CMA and cardiac dysfunction. The
same team found that the atrophic response was attenuated by
giving granulocyte colony-stimulating factor (G-CSF) in acute
DIC mice in their following study (43). Interestingly, Esaki et al.
reported that artificial upregulation of hepatocyte growth factor
(HGF) at 2 weeks after the establishment of acute DIC model
mitigated DOX-induced CMA and cardiac dysfunction (42).
The related mechanism underlies the anti-atrophic effect of
erythropoietin, G-CSF, and HGF might be similar, which was
related to the activation of extracellular signal-regulated kinase
(ERK) as well as the restoration of the expression of GATA-4
and its downstream 3 sarcomeric proteins, myosin heavy chain,
troponin I, and desmin (42–44). GATA-4, a member of the
GATA family of zinc finger transcription factors, is a major
transcription factor regulating sarcomeric genes (147). DOX
treatment caused a decrease in the level of GATA-4 DNA-binding
activity as a result of downregulation of GATA-4 (148), which
downregulated the sarcomeric proteins, and resulted into the
degeneration of myofibrils in response to DOX.

Polyphenolic Compounds
The plant-derived polyphenolic compounds exert powerful
antioxidant activity and have showed their beneficial effects in
cardiovascular disease, such as DIC (149). The polyphenolic
compounds can be classified as flavonoids, stilbenes, phenolic
acids, and lignans based on the molecular structure (150).
Rutin, a polyphenolic flavonoid, prevented DOX-induced
cardiac atrophy and dysfunction via inhibiting excessive
autophagy, reducing apoptosis, and restoring AKT activity (151).
Isorhapontigenin, a new derivative of stilbene, alleviated CMA
and cardiac atrophy caused by DOX, which is associated with
the upregulation of yes-associated protein 1 expression (31).
Resveratrol (3,5,4′-trihydroxy-trans-stilbene, RES), a natural
polyphenol which can be found mainly in grapes, red wine,
soy, and peanuts, has been well studied in DIC protection
(152). Earlier, Zhang et al. found that RES prevented DOX-
induced HW, BW, HW/BW ratio reduction, and cardiotoxicity
via sirtuin 1(SIRT1)-p53 pathway (153). Furthermore, Arafa
et al. revealed that RES was capable of alleviating cardiac
atrophy caused by DOX (154). Several studies have implicated
the possible molecular mechanism of the protection of RES
on DOX-induced cardiac atrophy. It was reported that RES
inhibited DOX-induced catabolic process as indicated by the
downregulation of MuRF1 and ubiquitin-specific protease 7
(USP7) via increasing the deacetylase activity of SIRT1 in
young mice (155). RES was reported to suppress DOX-
induced p38 MAPK activation (24, 156) and restore VEGF-
B and AKT impaired by DOX (157). Recently, Maayah
et al. reported that RES ameliorated DOX-induced cardiac
atrophy and cardiotoxicity through inhibiting nucleotide-
binding domain-like receptor protein-3 (NLRP3) and systemic
inflammation in juvenile mice (25). Interestingly, they found
that RES restored DOX-induced deficiency of compensated
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hypertrophic response to the late-onset hypertension, as
indicated by the alleviated CMA and increased heart wall
thickness (25). Of note, some polyphenolic compounds have
shown the effectiveness against cancer cells both in vivo and
in vitro (158).

Clinical Drugs
The advantage of clinical drugs is the proved relative safety
and the convenience for application. Here, we presented several
studies about the protective effect of clinical drugs in DOX-
induced CMA. Although the results of clinical study showed
that only 11% patients showed complete recovery from DIC
receiving conventional HF drugs (10), which may be associated
with the underlying mechanism of DIC is cardiac atrophy rather
than pathological hypertrophy. Losartan, a clinical used AT1
receptor antagonist, exerted cardioprotective effect against DOX-
induced CMA possibly by inhibiting the Nox2 activity (67).
Controversial studies about the effect of eplerenone on DIC were
reported (50, 159). Enalapril, an angiotensin converting enzyme
inhibitor (ACEI), attenuated DOX-induced CMA possibly via
stimulating the PI3K-AKT-mTOR pathway and maintaining the
normal levels of connective tissue growth factor (50). So, it
reminds us that is it possible for some specific group population
to benefit from the conventional HF drugs in DIC therapy? Oral
supplementation of folic acid prevented myofibrils disruption,
ameliorated DOX-induced CMA, and improved cardiac function
(160). Of note, Durham et al. reported that upregulation of high-
density lipoprotein (HDL) by overexpressing apolipoprotein A1
abrogated DOX-induce CMA in mice, which was required for
the high-affinity HDL receptor, scavenger receptor class B type
1 (49). This study implicates that a lipid-lowering therapy may be
beneficial for DOX-induced CMA.

The phosphodiesterase 5 (PDE5) inhibitors, such as tadalafil,
sildenafil, and vardenafil, have been demonstrated to show
protection in cardiovascular system (161). Koka et al. revealed
that tadalafil, a long-acting selective inhibitor of cGMP-specific
PDE5, improved cardiac function, reduced oxidation stress,
attenuated apoptosis, and prevented cardiac atrophy in DIC
mice (162). Prysyazhna et al. found that tadalafil protected
against DOX-induced LV mass loss via attenuating protein
kinase G Iαoxidation (163). Moreover, Jin et al. reported
that tadalafil ameliorated the downregulation of 3 sarcomeric
proteins, myosin heavy chain, troponin I, desmin, and alleviated
CMA caused by DOX in mice (41). Another PDE5 inhibitor,
sildenafil, has been verified to attenuate cardiac dysfunction,
apoptosis, mitochondrial damage, and myofibrillar disarray
induced by DOX (164). Multiple studies have reported that the
administration of PDE5 inhibitors did not affect the anticancer
effect but enhanced chemotherapeutic efficacy of DOX in animal
tumor models (165–168). However, Poklepovic et al. found that
sildenafil was safe, but did not show cardiac protection following
DOX treatment in a small randomized clinical trial (169). The
effect of sildenafil in DIC will require deeper research to verify.
Worth to mention, several studies have shed light into the cardiac
protective effect of other PDE inhibitors against DIC. Nishiyama
et al. found that ibudilast, a PDE4 inhibitor already used in clinic,

exerted cardioprotective effect against DOX-induced CMA by
interfering the TRPC3-Nox2 complex without affecting the
TRPC3 activity (170). Recently, Chen et al. reported that PDE10A
deficiency ameliorated DOX-induced CMA and cardiotoxicity
via cGMP and cAMP, and PDE10A inhibition antagonized
tumor growth (171). Inspiringly, the safety of several PDE10A
inhibitors have been demonstrated in phase I clinical trial (171).
Zhang et al. revealed that PDE1C deficiency or suppression
of ameliorated DOX-induced cardiac atrophy and improved
cardiac function via adenosine A2 receptor stimulation (172).
Cilostazol, a potent PDE3 inhibitor, also alleviated HW loss in
DIC (173).

DISCUSSION

In this review, we pointed out the importance of CMA inDIC and
then, summarized recent advances in the molecular mechanism
and the promising therapy strategies of DOX-induced CMA.
Here, we paid more attention to the studies involving DOX-
induced CMA, but not merely cardiac atrophy. Cardiac atrophy
is a common finding and a major cause in the DIC. The weight of
CMA in cardiac atrophymight be greater than we thought before.
In addition, the reversibility of DIC also supports it (174). We are
not going to say that we should downgrade the role of cell death
yet. Although several studies have reported that little apoptotic
effect was found in acute DIC models, the part of cardiomyocyte
necrosis was not evaluated (11, 42–44). The apoptotic rate may
be underestimated due to the secondary necrosis (175, 176).
So, the relative contribution of CMA and cell death in DOX-
induced cardiac atrophy is worth to elucidate in the future
study. Inhibiting cellular degradation processes and promoting
synthesis processes might be the key idea in preventing the DOX-
induced CMA. The DOX-induced CMA is a degenerated process,
which explains the protective effect of pro-growth therapy, such
as exercise and supplementation of growth factors. Pathological
hypertrophy is found in multi cardiovascular diseases; however,
appropriate hypertrophy can be helpful for alleviating the DOX-
induced CMA as proved by Gupta et al. (138). Considering that
the cardiac regeneration technology is still far from application in
clinic nowadays (177), reversing CMA serves an alternative and
promising strategy in DIC therapy.
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