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Background. Exploring the spatial relationship of different genomic features has been of great interest since the early days of genomic
research. The relationship sometimes provides useful information for understanding certain biological processes. Recent advances
in high-throughput technologies such as ChIP-seq produce large amount of data in the form of genomic intervals. Most of the
existing methods for assessing spatial relationships among the intervals are designed for pairwise comparison and cannot be easily
scaled up. Results. We present a statistical method and software tool to characterize the cooccurrence patterns of multiple sets of
genomic intervals. The occurrences of genomic intervals are described by a simple finite mixture model, where each component
represents a distinct cooccurrence pattern.Themodel parameters are estimated via an EM algorithm and can be viewed as sufficient
statistics of the cooccurrence patterns. Simulation and real data results show that the model can accurately capture the patterns and
provide biologically meaningful results. The method is implemented in a freely available R package giClust. Conclusions. The
method and the software provide a convenient way for biologists to explore the cooccurrence patterns among a relatively large
number of sets of genomic intervals.

1. Introduction

Exploring the spatial relationships of different genomic
features has been of great interest since the early days of
genomic research. The relationships often provide important
information for certain biological processes. One famous
example is that people detected CpG islands (CGI) from the
DNA sequence as short, CG rich genomic regions and then
found that they significantly overlap gene promoters [1]. The
CGI/promoter overlaps shed light on the function of DNA
methylation on gene expressions.

In modern functional genomics research, one major goal
is to understand the regulatory mechanism of gene expres-
sion. The transcriptional process involves the combinatory
effects of different DNA-binding proteins and histone modi-
fications. To decipher the complex process, an important first
step is to detect the protein binding or histone modification
sites and then explore the spatial relationships among them.

The spatial relationships provide evidence for interactions
among various regulatory elements. For example, if the
binding sites of two proteins significantly overlap, it is
likely that they interact. Recent advances in high-throughput
technologies such as ChIP-seq [2] make the genome-wide
profiling of proteins binding or histone modification an easy
task. It is now common for a biologist tomap the binding sites
for a few proteins and then compare them with each other or
with some public data. Since the protein binding or histone
modification sites are represented as genomic intervals, such
task requires the comparison of multiple sets of genomic
intervals. Hereafter a set of genomic intervals will be referred
to as a “track.”

Although good tools for comparing tracks are immedi-
ately needed, there are only a few existing methods, andmost
of them are designed for pairwise comparison. The easiest
way to compare two tracks is to compute their overlaps and
then represent them by a Venn diagram [3]. This method,
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however, does not evaluate the statistical significance of
the overlaps. Several more statistically rigorous methods are
recently proposed to evaluate the overlap or “closeness” of
two tracks. Favorov et al. developed an R package called
“GenometriCorr” to evaluate the spatial correlation between
two tracks [4]. They implemented several test procedures
to measure the “closeness” of the two tracks and report 𝑃
values. Chikina and Troyanskaya proposed a similar distance
based method for comparing two tracks [5]. One advantage
of their method is that the relationship can be evaluated
within a user-defined genomic regions (termed as “domain
set” in the paper). All the methods discussed above are
designed for comparing two tracks. Because these methods
are based on pairwise overlaps or distances, they cannot be
easily scaled up for comparing multiple tracks. To that end,
a generalized linear model based approach was proposed to
explore the dependence of one track on several others [6]. It
first converts each track into a binary vector based on genome
wide occurrence; then the occurrence of one track ismodeled
as a function of the occurrence of other tracks through a
log-linear model. One drawback of such an approach is that
it only measures the marginal dependence. For example,
if track A significantly overlaps track B only in a small
proportion of the genome, the marginal dependence will be
small and likely to be overlooked. A newly developedmethod
“ChromHMM” was proposed to discover the genome-wide
chromatin state [7]. It first splits the genome into equal sized
bins and then applies a hidden Markov model (HMM) with
certain number of states to segment the genome according
to the combinations of chromatin modifications. In this
approach, the emission probabilities of the HMM are based
on overlapping patterns ofmultiple chromatinmodifications.
However the method itself is not specifically designed for
evaluating relationships of multiple sets of genomic regions.
A newly developed method jMOSAiCS [8] implements a
joint model for multiple sets of ChIP-seq data. Its main goal
is to improve peak calling and cannot be directly applied to
assess the spatial correlations among peak lists from different
ChIP-seq data.

In this work, we aim to develop an intuitive tool for
comparingmultiple tracks.There are different types of spatial
relationships. Consider the pairwise comparison, the most
straightforward relationship is overlapping. In addition, two
tracks could be close to each other but do not overlap.
A biological example for the “closeness” relationship is
differentially methylated regions (DMRs) and CGI. It was
reported that DMRs are at the CGI “shores” [9], meaning
that the two tracks are close but not overlapping. Moreover,
two tracks could “exclude” each other. In this work, we
focus only on the overlapping relationship and present a
statistical method to characterize the cooccurrence patterns
of multiple tracks. The patterns are described by a finite
mixture model. An EM algorithm [10] is devised to infer
the model parameters. Given multiple tracks and a set of
user provided genomic regions, the method clusters the
regions into certain number of groups according to the
cooccurrence patterns among the input tracks. Moreover, the
model parameters “sufficiently” summarize the cooccurrence
patterns among input tracks. The sufficiency means that any

joint or conditional occurrence probabilities in a subset of
the inputs can be calculated from the parameters alone. For
example, questions like “what percent of the sites bound by
both protein A and B are also bound by protein C” can be
readily answered without the raw data.

2. Methods

Assume that there are𝐷 input tracks and onewants to explore
their cooccurrence patterns over a set of𝑁 genomic intervals
(referred to as “regions of interest” hereafter). The regions of
interest are specified by the user. An example is the promoter
regions of all known genes.Thefirst step in analysis is to count
the overlaps of input tracks and the regions of interest. Let𝑌

𝑖𝑑

indicate that the 𝑖th region of interest overlaps some interval
from 𝑑th track (=1) or not (=0), 𝑖 = 1, . . . , 𝑁, 𝑑 = 1, . . . , 𝐷.
The 𝑌

𝑖𝑑
matrix is the input data for the following procedures.

2.1. A FiniteMixtureModel for the Cooccurrence Patterns. The
cooccurrence pattern of the input tracks is described by a
finitemixturemodel. Eachmixture component is represented
by a product of Bernoulli distributions. Assume that the
regions of interest are from a mixture of 𝐾 clusters. In
each cluster, the input tracks exhibit distinct cooccurrence
patterns. Let𝑍

𝑖
denote the cluster indicator for the 𝑖th region

of interest. Assume that the prior probability for a region of
interest being in the 𝑘th cluster is 𝜋

𝑘
; for example, Pr(𝑍

𝑖
=

𝑘) = 𝜋
𝑘
, ∑𝐾
𝑘=1
𝜋
𝑘
= 1. For a region of interest in cluster 𝑘,

let the probability of intervals from track 𝑑 occurring in this
regions be 𝑞

𝑘𝑑
; in other words, 𝑃(𝑌

𝑖𝑑
= 1 | 𝑍

𝑖
= 𝑘) = 𝑞

𝑘𝑑
.

Define Q ≡ {𝑞
𝑘𝑑
; 𝑘 = 1, . . . , 𝐾; 𝑑 = 1, . . . , 𝐷}, a 𝐾 × 𝐷

matrix. This matrix characterizes the cooccurrence patterns
of input tracks over the regions of interest.We further assume
that within a cluster, the occurrences of input tracks are
independent; for example, 𝑃(𝑌

𝑖𝑙
= 1, 𝑌

𝑖𝑙
 = 1 | 𝑍

𝑖
= 𝑘) =

𝑃(𝑌
𝑖𝑙
= 1 | 𝑍

𝑖
= 𝑘)𝑃(𝑌

𝑖𝑙
 = 1 | 𝑍

𝑖
= 𝑘) for all 𝑙, 𝑙.

2.2. Parameter Estimation. Under the proposed model, 𝑌
𝑖𝑑
s

are observed data,𝑍
𝑖
s aremissing indicator variables, and 𝑞

𝑘𝑑

and 𝜋
𝑘
s are model parameters. 𝐾 represent the dimension

of the model, which can be either specified by the user or
estimated from data. Given 𝐾, the model parameters can be
estimated by the following EM algorithm.

First let Ψ = {𝜋
𝑘
, 𝑞
𝑘𝑑
; 𝑘 = 1, . . . , 𝐾; 𝑑 = 1, . . . , 𝐷} denote

all model parameters. The complete data log-likelihood
of the parameters can be derived as follows (details are
provided in the Supplementary Material available online at
http://dx.doi.org/10.1155/2013/617545):

𝐿 (Ψ)

= ∑

𝑖

∑

𝑘

𝛿 (𝑍
𝑖
= 𝑘){log𝜋

𝑘
+∑

𝑑

[𝑌
𝑖𝑑
log 𝑞
𝑘𝑑
+ (1 − 𝑌

𝑖𝑑
)

× log (1 − 𝑞
𝑘𝑑
)]} .

(1)
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Here 𝛿(⋅) is an indicator function. Let Y denote all observed
data, and define 𝜇

𝑖𝑘
= 𝛿(𝑍

𝑖
= 𝑘). The E-step calculates

the expected value of 𝜇
𝑖𝑘
given the observed data and the

parameter values at the current step, denoted byΨ(𝑡):

𝜇
(𝑡)

𝑖𝑘
≡ 𝐸 [𝛿 (𝑍

𝑖
= 𝑘) | Y,Ψ(𝑡)] = Pr (𝑍

𝑖
= 𝑘 | Y,Ψ(𝑡))

=

𝜋
(𝑡)

𝑘
𝑃 (Y
𝑖
| 𝑍
𝑖
= 𝑘,Ψ

(𝑡)
)

∑
𝐾

𝑘

=1
𝜋
(𝑡)

𝑘

𝑃 (Y
𝑖
| 𝑍
𝑖
= 𝑘,Ψ

(𝑡)
)

.

(2)

Plugging the expected values into (1), one obtains the Q
function as follows:

𝑄(Ψ | Ψ
(𝑡)
)

= 𝐸 [𝑙 (Ψ) | Y,Ψ(𝑡)]

= ∑

𝑖

∑

𝑘

𝜇
(𝑡)

𝑖𝑘
{ log𝜋

𝑘
+∑

𝑑

[𝑌
𝑖𝑗
log 𝑞
𝑘𝑗
+ (1 − 𝑌

𝑖𝑗
)

× log (1 − 𝑞
𝑘𝑗
)]} .

(3)

The M-step maximizes the 𝑄 function with respect to
parameters. By solving 𝜕𝑄/𝜕𝜋

𝑘
= 0 and 𝜕𝑄/𝜕𝑞

𝑘𝑑
= 0, we

obtain the update for 𝜋
𝑘
and 𝑞
𝑘𝑑

as follows:

𝜋
(𝑡+1)

𝑘
=
∑
𝑖
𝜇
(𝑡)

𝑖𝑘

𝐼
, 𝑞

(𝑡+1)

𝑘𝑑
=

∑
𝑖
𝜇
(𝑡)

𝑖𝑘
𝑌
𝑖𝑗

∑
𝑖
𝜇
(𝑡)

𝑖𝑘

. (4)

Because the EM algorithm can sometimes converge to a local
maxima, using good starting values is very important. In
practice, we choose Ψ0 based on K-means clustering results.
To be specific, we first run K-means clustering on Y for 10
times and then take the one with the smallest total within
cluster distances. The cluster centers and cluster sizes are
used as starting values forΨ. The EM algorithm then iterates
between (2) and (4) until convergence.

2.3. Choosing the Number of Clusters. The above EM algo-
rithm is derived with the number of clusters𝐾 given. Choos-
ing 𝐾 is a model selection problem. A widely used method
for obtaining the optimal 𝐾 is the Bayesian Information
Criterion (BIC) [11], which is defined as BIC

𝐾
= −2 log 𝐿

𝐾
+

𝐶
𝐾
∗ log𝑇. Here 𝐿

𝐾
is the likelihood from the model with

K clusters, computed based on (1). 𝐶
𝐾

is the number of
parameters, which equals 𝐾 ∗ (𝐷 + 1) − 1 in a model with 𝐾
clusters. 𝑇 is the total number of data points, which is𝑁∗𝐷.
The BIC is computed for different values of𝐾, and then the𝐾
associated with the smallest BIC is deemed the to be optimal
solution.

The BIC works well in simulation settings. However
in practice, we found that the BIC criteria often favor
bigger models. This is a fairly common problem in model
selection for genomic data. Because the sample sizes (in
this problem, 𝑁) are often huge, the penalty in BIC is not
strong enough to offset the gain in likelihood from bigger

models even when effect sizes are small. As a result, BIC
often selects a bigger model. In real data analysis, a smaller
model is more desirable for interpretability. There are some
methods proposed to generate smaller model for genomic
data analysis, for example, based on model stability [12] or
pruned the larger model down [13]. In this work, we take
an easy approach and adopt the recommendation in [14]
for choosing number of components in K-means clustering.
We plot the log-likelihood versus 𝐾 and choose the 𝐾 at
the “elbow” point of the curve as the optimal solution. We
will show that this ad hoc method provides good results in
practice.

2.4. Interpreting the Model Parameters. The model parame-
ters are directly interpretable: 𝜋

𝑘
represents cluster sizes and

𝑞
𝑘𝑑

represents the probability of occurrence of track 𝑑 in
regions of interest from cluster 𝑘. Under the model assump-
tions, the parameters sufficiently describe the cooccurrence
relationships among input tracks. Any joint or conditional
occurrence probabilities can be directly computed from the
model parameters. The sufficiency can be shown in the
following simple example. The joint probability Pr(𝑌

𝑖𝑎
=

1, 𝑌
𝑖𝑏
= 0) for all 1 ≤ 𝑎, 𝑏 ≤ 𝐷 can be computed as follows:

Pr (𝑌
𝑖𝑎
= 1, 𝑌

𝑖𝑏
= 0)

=

𝐾

∑

𝑘=1

Pr (𝑌
𝑖𝑎
= 1, 𝑌

𝑖𝑏
= 0 | 𝑍

𝑖
= 𝑘)Pr (𝑍

𝑖
= 𝑘)

=

𝐾

∑

𝑘=1

Pr (𝑌
𝑖𝑎
= 1 | 𝑍

𝑖
= 𝑘)Pr (𝑌

𝑖𝑏
= 0 | 𝑍

𝑖
= 𝑘) 𝜋

𝑘

=

𝐾

∑

𝑘=1

𝑞
𝑘𝑎
(1 − 𝑞

𝑘𝑏
) 𝜋
𝑘
.

(5)

Other joint probabilities can be derived in a similar way.
The conditional probabilities can be computed from the
ratios of proper joint probabilities. These joint/conditional
probabilities answer questions like “what is the probability of
cobindings of protein A and B?” or “what is the probability
of protein A binding at a region, given that protein B binds at
that region?” The answers to these questions can be derived
from the model parameters without the raw data (e.g., the
Y matrix). This demonstrates an added advantage of the
method: the parameters work like sufficient statistics for
cooccurrence patterns among input tracks.

2.5. Implementation. The proposed method has been imple-
mented in an R package giClust, which is freely available at
http://www.sph.emory.edu/∼hwu/giClust.html. The package
takes multiple lists of genomic intervals in BED format as
inputs. With two lines of R code the package can generate the
results, which include the estimated parameters and the best
group assignment for each region of interest.

http://www.sph.emory.edu/~hwu/giClust.html
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3. Results

We conducted simulations and real data studies to illustrate
the usefulness of giClust. Here we only present the results
from two real data tests.The results of two simulation studies
can be found in the Supplementary Material.

3.1. The Cobinding Patterns of 15 Proteins in Mouse ES Data.
In a seminal paper, Chen et al. mapped the binding sites of 15
different proteins (13 transcription factors and 2 transcription
regulators) to study the transcriptional network in mouse
embryonic stem (ES) cells [3]. In this example, giClust was
applied to discover the cobinding pattern of these proteins.
The data were obtained from Gene Expression Omnibus
(GEO) database [15] under accession number GSE11431. We
first took a union of all called peaks and then used the union
as the regions of interest to study the cobinding patterns of
all proteins. The union contains 168,439 intervals, with mean
length of 542 base pairs. We counted the overlaps between
binding sites of all proteins and the unions to construct the Y
matrix then applied giClust on Y, allowing the number of
clusters (𝐾) to vary from 1 to 15.

Figures 1(a)-1(b) plot the BIC and log-likelihood versus𝐾.
It shows that the BIC kept decreasing with 𝐾 so one cannot
obtain an optimal 𝐾 from that. However, looking at the log-
likelihood, the amount of increments with𝐾 is initially large
but becomes smaller with larger 𝐾. The “elbow” point of the
curve in Figure 1(b) is at near 𝐾 = 8, so we decided to use
𝐾 = 8 as the optimal number of clusters.The estimatedmodel
parameters are summarized in Table 1. The Q̂ matrix is also
represented as a heatmap in Figure 1(c).

It shows that a large proportion of the regions of interest
are dominated by a single protein; for example, clusters 1,
2, 3, 5, and 6 are almost exclusively bound by CTCF, Esrrb,
Tcfcp2l1, E2f1, and Nanog, respectively. Cluster 4 has sparse
binding for a number of proteins. Clusters 7 and 8 are
the most interesting groups, which are termed as Multiple
Transcription Factor-Binding Loci (MTL) in [3]. Cluster 7
(occupies 7% of the regions of interest) is the Myc specific
cluster, which shows strong binding tendency from c-Myc, n-
Myc, along with several other proteins including Klf4, Esrrb,
Tcfcp2l1, Zfx, and E2f1. Cluster 8 (occupies 3% of the regions
of interest) is the Nanog-Oct4-Sox2 specific cluster that is
defined as “ES-Cell Enhanceosomes” in [3]. This cluster
includes strong binding from Klf4, Esrrb, Tcfcp2l1, and E2f1.
Moreover 84% of all P300 binding sites belong to this cluster.

We further looked at the locational distributions of
regions of interest in different clusters. Figure 2 shows
the percentage of regions in each cluster overlapping
some predefined genomic regions, including transcriptional
starting site (TSS), transcriptional end site (TES), and
exonic/intronic/intergenic regions.The percentages are com-
pared with the expected values (marked as “Random” in
Figure 2). The expected values are computed based on total
lengths of the predefined genomic features. For example,
the total length of TSS regions (defined as ±500 bps around
the transcriptional starting location) equals 1% of the total
genome. So the expected percentage of genomic regions
overlapping TSS is roughly 1%. Note that the percentages for

each cluster should sum up to 1. One striking result is that
over 60% of intervals in cluster 7 (the Myc specific cluster)
overlap TSS, suggesting the regulatory role of Myc proteins
in mouse ES cells.

All the findings are consistent with the results reported
in [3]. These demonstrate that giClust can discover the
cobinding patterns of relatively large number of proteins in
a quick analysis and provide biologically meaningful results.

3.2.TheHistoneModification Pattern over the Gene Promoters
in K562 Cell Line. It was well known that the combina-
tory patterns of histone modifications correlate with gene
expressions. In this example, we used giClust to analyze
a number of histone modification datasets. Nine ChIP-
seq datasets for profiling different histone modifications in
K562 cell lines were obtained from ENCODE. The his-
tones include H3k4me1, H3k4me2, H3k4me3, H3k9me1,
H4k20me1, H3k27me3,H3k36me3,H3k9ac, andH3k27ac. In
this example, we focused the analysis on the genes and used
the promoter regions of Refseq genes as regions of interest.

Similar to the previous example, we first obtained the
overlapping matrix Y and then ran giClust for different
number of clusters (𝐾 = 1, . . . , 10). Plots of the BIC
and log-likelihood versus number of clusters are shown in
Supplemental Figure S3(a)-(b). The appearance of the curves
is similar to that in the mouse ES data. Using a similar
method, we picked 𝐾 = 5 as the optimal number of clusters
to perform further analyses.The estimatedmodel parameters
are listed in Table 2. The heatmap representation of Q̂ is
shown in Supplemental Figure S3(c).

We further compared the expressions of the genes in
different clusters. We obtained the RNA-seq data from
ENCODE and computed RPKM (reads per kilo-bp per
million reads) to represent the gene expressions. Figure 3
shows the boxplot of expressions, represented as square root
of RPKM, for genes in different clusters. It shows that genes
in the first cluster (44% of all genes) have the highest average
expressions. These genes have modifications on almost all
histone marks at promoters except the repressive mark
H3K27me3.The second cluster contains 21% genes and shows
almost no histone modifications. The expressions for these
genes are very low.The third cluster is very interesting. Genes
in this cluster have strong modifications on both repressive
mark (H3K27me3) and marks associated with activation
(H3K9me1 and H4K20me1), yet the gene expressions are
low for this cluster. The promoters for these genes probably
correspond to the “poised” state as defined in [13]. The
fourth cluster (11% of all genes) shows strong enrichment of
activation marks, so the gene expressions are relatively high.
The difference between the first and fourth clusters is that the
genes in the fourth cluster lack the H3k9me1 and H4k20me1
modifications. Although these genes are mostly active, their
expressions are on average lower than those in cluster 1. This
is possibly due to the additive effects of different activating
marks.The fifth cluster (8% of all genes) is enrichedwith both
elongation (H3K36me3) and active marks (H3k9me1) but
depleted of the canonical activatingmarks (H3k4me,H3k9ac,
and H3k27ac). The expressions for these genes are relatively
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Figure 1:Model fitting results ofmouse ES data. (a) BIC versus number of clusters. (b) Log-likelihood versus number of clusters. (c) Estimated
Q̂ represented as heatmap.

Table 1: The estimated model parameters from mouse ES data with 8 clusters. The �̂� row shows the estimated cluster sizes. The rest of the
table shows Q̂, the probability of occurrence of protein binding in different clusters.

Cluster 1 2 3 4 5 6 7 8
�̂� 0.23 0.23 0.18 0.12 0.08 0.07 0.07 0.03
Nanog 0.00 0.00 0.00 0.00 0.03 1.00 0.13 0.85
Oct4 0.00 0.01 0.01 0.07 0.02 0.08 0.20 0.53
Sox2 0.00 0.01 0.01 0.07 0.02 0.17 0.07 0.69
Smad1 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.25
Stat3 0.00 0.01 0.01 0.12 0.02 0.02 0.10 0.31
Cmyc 0.00 0.00 0.00 0.05 0.01 0.00 0.43 0.06
Nmyc 0.01 0.01 0.01 0.08 0.05 0.00 0.71 0.16
Klf4 0.01 0.04 0.05 0.20 0.11 0.06 0.60 0.53
Esrrb 0.00 1.00 0.19 0.01 0.21 0.20 0.71 0.78
Tcfcp2I1 0.00 0.00 1.00 0.00 0.19 0.16 0.60 0.73
Zfx 0.01 0.04 0.04 0.34 0.21 0.03 0.73 0.31
E2f1 0.00 0.00 0.00 0.00 1.00 0.02 0.86 0.56
Suz12 0.00 0.03 0.03 0.12 0.01 0.01 0.06 0.02
Ctcf 1.00 0.06 0.08 0.02 0.10 0.03 0.25 0.11
p300 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.06

high. This potentially suggests alternative mechanisms for
gene activation.

In general, the results from this example agree with
existing knowledge of the effects of histone modification on
gene expression. Yet, they provide some new biological find-
ings worth further exploring.This example further illustrates
that a quick analysis by giClust can provide biologically
meaningful results.

4. Conclusions

With the increasing popularity of ChIP-seq technology, a
large amount of data in the form of genomic intervals is

generated to represent protein binding or histone modi-
fication regions under different biological contexts. Up to
date, there has not been an intuitive method available to
assess the spatial relationships in these data. To meet this
need, we have proposed a method and developed a software
tool called “giClust” to characterize the cooccurrence
pattern of multiple sets of genomic intervals. The method is
based on a finite mixture model. It clusters the regions of
interest into several groups according to the cooccurrence
patterns of inputs. The model parameters sufficiently capture
the overlapping structures in input data. Simulation results
showed the method accurately estimates the patterns. Two
real datasets showed that the proposed method provides
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Figure 2: Percentage of genomic regions in each cluster overlapping
certain genomic tracks. For example, 63% of the regions in cluster 7
overlap TSS, whereas the expected percentage is only 1%.

Table 2: The estimated model parameters from K562 histone data
with 5 clusters.

Cluster 1 2 3 4 5
�̂� 0.44 0.21 0.16 0.11 0.08
H3k27ac 0.95 0.00 0.01 0.74 0.09
H3k27me3 0.33 0.33 1.00 0.33 0.27
H3k36me3 0.88 0.05 0.02 0.45 0.85
H3k4me1 0.93 0.03 0.20 0.63 0.42
H3k4me2 1.00 0.03 0.18 0.99 0.07
H3k4me3 0.99 0.00 0.12 0.97 0.02
H3k9ac 1.00 0.00 0.02 0.89 0.13
H3k9me1 0.98 0.03 0.79 0.20 0.96
H4k20me1 0.87 0.02 0.87 0.17 0.74

biologically meaningful results. Because there are no existing
method or software serving the same purpose, comparisons
cannot be performed.

It is important to distinguish giClust from
ChromHMM [7, 13], although they share some similarities.
The goal of ChromHMM is to segment the genome according
to the combinatory patterns of multiple tracks (in their case,
histone modifications), whereas giClust aims to explore
the correlation of different tracks. ChromHMM, based on
a hidden Markov model (HMM), considers the transitions
between consecutive genomic windows, whereas giClust
assumes that the regions of interest are independent. The
only similarity is the way to model the joint likelihood of
multiple tracks of each genomic region, where both methods
use product of Bernoulli distributions. Overall giClust
and ChromHMM solve different problems and have no
dependence on each other.

The proposed method is designed to work for genomic
intervals instead of raw sequencing counts. As discussed
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Figure 3: Expressions of genes in different clusters for K562 cell line.

in [13], converting the raw count data to presence/absence
of peaks before clustering reduces the parameter space and
produces more stable and interpretable results. It is also
much more computationally efficient since the peak calling
results (in the form of genomic intervals) are several orders
of magnitude smaller than the raw ChIP-seq sequencing
files. Moreover, because different ChIP-seq experiments have
distinct technical specifications, clustering directly on raw
counts tends to be influenced more by the ones with higher
signal to noise ratio. Nevertheless, the method can be
extended to include the distribution of raw read counts data
in a hierarchical model similar to that one in [16]. This is
future research topic worth exploring.

Choosing the number of clusters 𝐾 is an important step
in the analysis. Traditional model selection methods such
as BIC tend to favor larger models, which is often difficult
to interpret. A software like ChromHMM requires that the
user specify number of states. Similarly, we recommend an
ad hoc procedure to choose𝐾 from the log-likelihood versus
number of cluster curves. We have shown in simulation
studies that such a method works reasonably well and is able
to capture the major cluster component. However it is still
subjective and relies on user input. Automating the process of
choosing 𝐾 is an important research topic for future works.

We use a finitemixturemodel in this study. An alternative
method that we plan to explore is the infinite mixture model,
such as a nonparametric Bayesian approach, which has been
used previously in genomics research [17].

The proposed method has been implemented in an easy-
to-use R package giClust. We expect the method and the
software tool to provide an easy way for biologists to explore
their ChIP-seq results and compare with public datasets.
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