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Abstract: Patients with inflammatory bowel disease (IBD) have been found to have decreased immune
function. Selenium (Se) is an essential trace element that is beneficial for human health, which has a
significant stimulating effect on immune function. We compared the effects of different Se forms on
the alleviation of colitis in DSS-induced mice. Moreover, we also aimed to determine whether Se-
enriched Lactobacillus paracasei CCFM 1089 could be used as a new organic Se supplement. Different
Se supplements (Se-enriched L. paracasei CCFM 1089, Se-enriched yeast and sodium selenite) were
given to Se-deficient mice suffering from colitis. Se-enriched L. paracasei CCFM 1089, which is based
on selenocysteine (SeCys), had similar effects in terms of reducing oxidative stress and inhibiting pro-
inflammatory factors to Se-enriched yeast; however, selenase activity in the Se-enriched L. paracasei
CCFM 1089-treated mice was higher than that in other treatment groups. In addition, Se-enriched L.
paracasei CCFM 1089 could better protect the intestinal mucosa, which increased the expression of
tight junction proteins (ZO-1 and occludin) in mice. Thus Se-enriched L. paracasei CCFM 1089 was
shown to alleviate IBD, suggesting that it has potential as a good organic Se supplement.

Keywords: Se forms; colitis; Se supplement; Se-enriched Lactobacillus paracasei; selenocysteine

1. Introduction

Inflammatory bowel diseases (IBDs), including Crohn’s disease and ulcerative colitis
(UC) [1], are common autoimmune chronic diseases [2,3] that are difficult to cure and recur
easily. UC can cause ulcerations and mucosal congestion in colonic lesions, diarrhea, and
blood release in the stool [4]. Although the prevalence of IBD has increased in recent years,
its pathogenesis has not been completely explored. Oxidative stress, intestinal barrier
damage, and other factors are speculated to be related to the pathogenesis of IBD [5]. At
present, amino salicylic acid, antibiotics, and adrenocorticosteroids are the main drugs
used to treat patients with IBD. Long-term drug use can cause drug dependence or induce
anemia [6]. Therefore, new methods must be developed for the treatment of IBD.

Clinical studies have found that selenium (Se) levels in the serum of patients with IBD
are significantly reduced compared to those in healthy people (0.19 vs. 0.93, p < 0.05) [7].
With several weeks of sodium selenite supplementation, IBD symptoms, such as the
increase in macrophages and inflammatory factors, improve [8]. Shi et al. [9] found that

Nutrients 2022, 14, 2433. https://doi.org/10.3390/nu14122433 https://www.mdpi.com/journal/nutrients

https://doi.org/10.3390/nu14122433
https://doi.org/10.3390/nu14122433
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nutrients
https://www.mdpi.com
https://orcid.org/0000-0003-2080-2214
https://orcid.org/0000-0002-6342-1254
https://doi.org/10.3390/nu14122433
https://www.mdpi.com/journal/nutrients
https://www.mdpi.com/article/10.3390/nu14122433?type=check_update&version=1


Nutrients 2022, 14, 2433 2 of 16

the oral administration of Se-containing amino acids to mice with colitis alleviates IBD by
reducing oxidative stress and intestinal inflammation.

Se is an essential trace element, beneficial for human health [10,11]. It exists in two
forms, inorganic and organic, with the following bioavailabilities: 25.0–49.9% for inorganic
Se and 75.7–89.5% for organic Se [12]. The main inorganic forms are selenate and selenite.
A high dose of inorganic Se is highly toxic and can accelerate oxidation in the body.
Organic Se is mainly composed of selenoproteins and Se-containing amino acids such as
selenomethionine (SeMet) and selenocysteine (SeCys). This plays a key role in maintaining
biological functions. The production process of synthetic organic Se is complicated; it cannot
be mass-produced at present. The established organic Se products currently available on
the market are Se-enriched yeast powder and Se-enriched yeast tablets. Se-enriched yeast
has been shown to be a superior Se supplement [13].

As only one type of organic Se supplement is currently available, it is necessary to
develop new organic Se products. Previous studies have shown that probiotics can be
introduced to medium containing inorganic Se using the biotransformation method, which
can convert inorganic Se into organic Se and form Se-enriched probiotics [14]. SeMet and
SeCys are the main forms of Se in Se-enriched products. The main form of Se in Se-enriched
yeast is SeMet [15]. Notably, SeCys is the 21st amino acid discovered in recent years. As a
third-generation organic Se compound, SeCys is the active center of selenoproteins [16–19]
and drives them to perform physiological functions. Therefore, we assumed that SeCys-
enriched products would perform better than SeMet-enriched products. To verify this
conjecture, we selected a strain with a strong SeCys-enriched ability.

In this study, we aimed to evaluate the efficacy of a selected probiotic strain enriched
with SeCys. To compare the effects of the Se-enriched probiotic, Se-enriched yeast, and
sodium selenite on the relief of UC, we investigated their effects on intestinal inflammation
and determined whether Se-enriched L. paracasei CCFM 1089 could be used as a new
organic Se supplement.

2. Materials and Methods
2.1. Preparation of Se-Enriched Probiotic

L. paracasei CCFM 1089 was isolated from the feces of a healthy person in Henan,
China. The method of isolating bacterial strains from feces was borrowed from Sofie [20]. It
was selected as having the strongest Se enrichment ability in the preliminary experiments.
The strain was inoculated into MRS medium containing 6.6 mg/L of sodium selenite
and cultured at 37 ◦C overnight. The bacteria were collected and freeze-dried to obtain
Se-enriched bacterial powder, which was stored at 4 ◦C until further study.

2.2. Determination of Se Concentration and Analysis of Se Form

The Se concentration in L. paracasei CCFM 1089 strain was determined by hydride
atomic fluorescence spectrometry (AFS-8520, Beijing Haiguang Instrument Co., Ltd., Beijing,
China), as reported by Li. et al. [21].

The Se forms in the strains were detected using high-performance liquid chromatogra-
phy (HPLC, Ultimate3000, Thermo Fisher Scientific, Waltham, MA, USA) and inductively
coupled plasma mass spectrometry (ICP-MS, NexION 350D, Perkin-Elmer, Waltham, MA,
USA) according to Micaela Pescuma et al. [22]. Standard samples of SeCys (98%), methylse-
lenocysteine (MeSeCys; 95%), SeMet (99%), sodium selenate (Na2SeO4; 98%), and sodium
selenite (Na2SeO3; 98%) were purchased from Sigma-Aldrich LLC., Saint Louis, MO, USA.

2.3. Animal Experiment Design

Male C57BL/6J mice (n = 45, 7-week-old, 22–24 g) were supplied by the Institute of
Model Zoology, Nanjing University (Jiangsu, China) and kept under constant temperature
(20 ◦C ± 2 ◦C) and humidity (50% ± 5%) and a 12-h light–dark cycle at the Animal Center
of Jiangnan University. The protocol was approved by the Animal Ethics Committee of
Jiangnan University (JN. No. 20201030c0550115[293]). The mice were randomly divided
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into nine groups: control, model, Se deficiency control (Se-de control), Se deficiency model
(Se-de model), L. paracasei CCFM 1089, Se-enriched L. paracasei CCFM 1089 (Se-CCFM
1089), Se-enriched inactivated L. paracasei CCFM 1089 (Se-in CCFM 1089), Se-enriched yeast
(Se-yeast), and sodium selenite (NaSeO).

The design of the animal experiments is shown in Figure 1. In brief, the control group
and the model group mice were fed a normal diet (0.2 mg/kg Se), and the remaining group
mice were fed a Se-deficient diet for 6 weeks (0.02 mg/kg Se) [23,24]. Se-deficient diet was
produced by Trophic Animal Feed High-tech Co. (Nantong, Jiangsu, China). Further, the
mice (control and model groups) were orally administered with saline, L. paracasei CCFM
1089, Se-enriched L. paracasei CCFM 1089, Se-enriched inactive L. paracasei CCFM 1089,
Se-enriched yeast, or sodium selenite at doses of 0.4 µg Se/d for 14 days. During this
period, a Se-deficient diet was still provided to the other groups. The activity of L. paracasei
CCFM 1089 and Se-enriched L. paracasei CCFM 1089 was 9.6 × 108 CFU/mL. Se-enriched
yeast was purchased from Angel Yeast Co. (Yichang, Hubei, China) and sodium selenite
was purchased from Sigma-Aldrich LLC. Except for the control and the Se-de control group
mice, the remaining mice were treated with 2.5% (w/v) DSS (MP Biomedicals LLC, Irvine,
CA, USA) to induce IBD during the last week of the gavage period.
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Figure 1. Progress of the animal experiment.

During the experimental period, the body weight, food intake, stool consistency
and presence of blood in the stool of the mice were recorded daily, occult blood was
measured using Occult Blood Test Kit [25] (Zhuhai Beisuo Biotechnology Co. Ltd., Zhuhai,
China), and the health and behavior of the mice was observed regularly. At the end of the
experiment, mice were narcotized and sacrificed. The blood of the mice was centrifuged,
and the serum was stored at −80 ◦C until further analysis. The liver, colon, and ileum
tissues were also collected and stored at −80 ◦C until further use.

2.4. Assessment of the Severity of Colitis

Changes in the body weight and disease activity index (DAI) of mice were measured
daily during the entire period, according to the previous literature [26]. Colon length was
measured after the experiment.

The colon tissues were soaked in 4% paraformaldehyde overnight, dehydrated, em-
bedded, sliced, stained with hematoxylin and eosin (H & E), and visualized under the
Pannormic MIDI (3DHistech Ltd., Budapest, Hungary). The pathological scores were
evaluated using the histological scoring system reported in previous studies [27,28].



Nutrients 2022, 14, 2433 4 of 16

2.5. Examination of Oxidative Activity and Level of Cytokines in Colon Tissue via Assays

Colon tissues were washed twice with PBS buffer solution and homogenized with
tissue lysis buffer solution. The supernatant was collected to detect the antioxidant activity
of the colon. Malondialdehyde (MDA), reactive oxygen species (ROS), glutathione peroxi-
dase (GSH-Px), and superoxide dismutase (SOD) levels were analyzed according to the
manufacturer’s instructions on the respective kits (Nanjing Jiancheng Biotechnology Insti-
tute, Nanjing, Jiangsu, China). Protein concentration was measured using a BCA protein
assay kit (Beyotime Biotechnology, Shanghai, China). The activities of SOD, catalase (CAT),
and GSH-Px are presented as pictograms of U/mg colon protein. The concentrations of
TNF-α and interleukin IL-10, IL-1β, and IL-6 in colon tissues were measured using ELISA
kits (R&D, Farmington Hills, MI, USA), the sensitivity of TNF-α was 7.21 pg/mL, IL-10
was 5.22 pg/mL, IL-1β was 4.8 pg/mL, and IL-6 was 1.8 pg/mL.

2.6. Extraction of Total RNA of Colon and Quantitative Polymerase Chain Reaction (qPCR)

Total RNA was extracted from the colon of mice using TRIzol [29]. After determining
the total RNA concentration by the NanoDrop 2000c (Thermo Scientific, Bannockburn,
IL, USA), cDNA was synthesized using an equal starting concentration (1 µg) for reverse
transcription with HiScript III RT SuperMix for qPCR (Vazyme Biotechnology Co., Jiangsu,
China). The qPCR reaction conditions were employed: 1© 95 ◦C for 2 min; 2© 95 ◦C for 15 s,
60 ◦C for 30 s, 40 cycles; 3© 95 ◦C for 15 s; 4© 60 ◦C for 1 min; 5© 95 ◦C for 15 s. β-actin was
used as an internal control. Amplified primers were synthesized by Sangon Bioengineering
Co., Ltd., (Shanghai, China), and their sequences are listed in Table 1 [30].

Table 1. Forward and Reverse Primers Sequences.

Primer Sense (5′-3′) Anti-Sense (5′-3′) Gene ID

β-actin GTGCTATGTTGCTCTAGACTTCG ATGCCACAGGATTCCATACC 11461
Claudin-1 GCTGGGTTTCATCCTGGCTTCTC CCTGAGCGGTCACGATGTTGTC 12737
Occludin TTGAAAGTCCACCTCCTTACAGA CCGGATAAAAAGAGTACGCTGG 18260

ZO-1 GCTTTAGCGAACAGAAGGAGC TTCATTTTTCCGAGACTTCACCA 21872

2.7. Determination of Serum Biochemical Indices

The activities of high-density lipoprotein cholesterol (HDL), alanine aminotransferase
(ALT), aspartate aminotransferase (AST), and albumin (ALB) in the serum of mice were
detected using a Mindray automatic biochemical analyzer (Mindray-BS 480; Mindray,
Shenzhen, China).

2.8. Measurement of Se Concentration in Liver and Ileum

Liver and ileum samples were digested in nitric acid for 12 h at the room temperature,
and digestions were performed at 120 ◦C for 2 h, then added hydrochloric acid. After
cooling, the samples were diluted with 5% hydrochloric acid and the Se concentration
was measured by hydride atomic fluorescence spectrometry (AFS-8520, Beijing Haiguang
Instrument Co., Ltd., Beijing, China).

2.9. Statistical Analysis

The data are expressed as mean ± standard deviation (SD). Statistical analyses were
performed using Origin software (OriginLab, Northampton, MA, USA). Statistical com-
parisons between different groups were performed using one-way analysis of variance
(ANOVA) and Tukey’s post-hoc test with SPSS (v23.0, SPSS Inc., Chicago, IL, USA). The
results were considered statistically significant at p < 0.05.
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3. Results
3.1. Data of Se-Enriched Products

As shown in Table 2, the Se level of the freeze-dried powder of Se-enriched L. paracasei
CCFM 1089 was 334.9 mg/L, and its viable count was 2.65 × 1010 CFU/g. The number of
viable bacteria in the freeze-dried powder of L. paracasei CCFM 1089 was 2.71 × 1011 CFU/g.

Table 2. Viable bacteria and Se content of CCFM 1089 powder.

Strain Number of Viable Bacteria (cfu/g) Se Content (mg/L)

L. paracasei CCFM 1089 2.71 × 1011 -
Se-enriched L. paracasei CCFM 1089 2.65 × 1010 334.91

As shown in Figure 2, the values were averaged by repeating the measurements
three times. The SeCys content in Se-enriched L. paracasei CCFM 1089 was 79% of organic
Se, which was much higher compared with than that of other strains in the previous
experiment. As shown in Table 3, the Se level of the Se-enriched yeast was 2000 mg/L, and
the SeMet content was 65.3%.
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Figure 2. Results of Selenium (Se) form analysis. The four strains compared are Lactobacillus paracasei
CCFM 1089, Lactobacillus plantarum CCFM 8610, Lactobacillus casei FJSSZ4-L2, and Lactobacillus casei
34-3, respectively.

Table 3. Enrichment of organic Se in products.

Product Se Content
(mg/L)

Organic Se
Content (%)

SeCys
Content (%)

SeMet
Content (%)

Se-enriched
L. paracasei CCFM 1089 334.9 81.0 79.0 6.0

Se-enriched yeast 2000.0 97.0 1.1 65.3

3.2. Se-Enriched Products Affect the Symptoms of Colitis in Mice

Due to Se-deficient feeding, the mice in the Se-deficient groups grew slowly compared
to the control groups (Figure 3A), and their growth was significantly different from that of
mice in normal-diet groups. During DSS treatment, the mice lost a significant amount of
weight (Figure 3B) and their DAI increased (Figure 3D). However, Se treatment alleviated
DSS symptoms to some extent. Mice in the Se groups had normal activity, with anorectic
and vertical hair, whereas mice in model groups were lethargic, had reduced activity,
disheveled hair, and unshaped feces. The rate of weight loss of mice in the organic Se
groups was relatively slow, at around 4%, whereas that of mice in the NaSeO group was
9%. The analysis showed that treatment with different forms of Se had different effects on
DAI. Se-enriched L. paracasei CCFM 1089 group mice experienced the strongest relief effect,
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with a DAI of 8.23 ± 0.31 on the seventh day. Compared with the mice in the model group,
Se-enriched L. paracasei CCFM 1089 group mice displayed a 46.76% decrease in the DAI.
The remission effects in the mice in the three organic Se groups were similar. However, the
DAI of the NaSeO group mice was 9.50 ± 0.10, showing the smallest decrease.
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The effects of different Se-enriched products on the gut of mice were evaluated. The
colon length of the control group mice was 7.12 ± 0.87 cm (Figure 3E), the colon was
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normal and red, and the feces were granular. The colon length of the model group mice was
4.88 ± 0.61 cm, the colon was dark red, and blood was detected in the stool (Figure 3C). An
analysis of the data revealed that L. paracasei CCFM 1089 had the worst effect on maintaining
the colon length of mice, with a shortening rate of 25.0%. The colons of the mice in organic
Se groups were longer than those of mice in the inorganic group. Furthermore, there was
little difference in effect among the mice in the three organic Se groups, with the Se-enriched
L. paracasei CCFM 1089 treatment showing the best effect with a numerical comparison,
and a shortening rate of 5.6%.

3.3. Se-Enriched Products Ameliorate Inflammatory Injury Caused by DSS in Mice

Histopathological examination was performed to evaluate the effects of different Se-
enriched products on colon histopathological injury in DSS-induced mice. As shown in
Figure 4A, the colons of the control group mice had intact mucous membranes and neat
villi with healthy crypt structures. However, the model group mice showed serious colonic
mucosal damage, such as disappearance of the mucosal muscularis, severe infiltration of
inflammatory cells and colonic crypt loss. The colon injury score of the model group was
13.90 ± 1.29 (Figure 4B), which was significantly higher than that of the control group
(3.60 ± 1.64). Organic Se intervention reduced the infiltration of inflammatory factors into
the colon, and the crypt structure became intact. Colon injury scores in the organic Se
groups were significantly lower. The score of Se-enriched L. paracasei CCFM 1089 was
7.10 ± 0.96, the score of Se-enriched inactivated L. paracasei CCFM 1089 was 7.44 ± 1.28,
and the score of Se-enriched yeast was 8.10 ± 1.19. Only treatment with L. paracasei CCFM
1089 or inorganic Se provided minimal relief for colitis. The tissue injury score of the CCFM
1089 group and the NaSeO group was 10.92 ± 1.59 and 10.70 ± 0.91, respectively.
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3.4. Se Concentration in Liver and Ileum

To observe the absorption and metabolism of different Se forms in mice, the Se concen-
trations in the liver and ileum of mice were determined using hydride atomic fluorescence
spectrometry. Dietary Se deficiency could significantly lower the Se levels in the organs,
which were improved to varying degrees by Se supplementation. As shown in Figure 5A,
the Se-enriched yeast group mice had the highest Se concentration in the ileum, followed by
the Se-enriched L. paracasei CCFM 1089 group mice. There was no significant difference be-
tween the Se concentrations in the ileum of the mice in these two groups. Furthermore, the
Se concentration in the ileum of the L. paracasei CCFM 1089 group mice was the lowest. As
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shown in Figure 5B, the highest Se concentration was found in the liver of the Se-enriched
L. paracasei CCFM 1089 group mice, and the lowest Se concentration was found in the liver
of the L. paracasei CCFM 1089 group mice. These results suggested that mice differ in the
absorption and metabolism of different Se sources.

Nutrients 2022, 14, x FOR PEER REVIEW 9 of 17 
 

 

 

Figure 5. Se concentration in liver and ileum of mice. (A) Se content in ileum; (B) Se content in liver. 

Graphs show mean ± SD; n = 5. Significant differences are indicated by different superscript letters 

(p < 0.05), and the same superscript letters above the bars indicate that the differences between the 

values are not statistically significant (p > 0.05). 

3.5. Se-Enriched Products Reduce Oxidative Stress in Mice 

As shown in Figure 6, compared with the model group mice, CAT and SOD activity 

in Se-enriched L. paracasei CCFM 1089 group mice significantly increased, with a 1.12-fold 

increase in CAT activity and a 1.27-fold increase in SOD activity. The effects on the SOD 

and CAT activities of mice in the Se-enriched yeast group and the Se-enriched inactivated 

L. paracasei CCFM 1089 group were similar to those in the Se-enriched L. paracasei CCFM 

1089 group. Meanwhile, treatments with organic Se reduced the MDA levels in mice; the 

Se-enriched yeast group mice had the lowest MDA concentration, followed by the Se-en-

riched L. paracasei CCFM 1089 group mice. In contrast, the results showed that the allevi-

ation effect of sodium selenite and L. paracasei CCFM 1089 was not ideal. In addition, by 

measuring the GSH-Px content, it was found that Se deficiency and colitis can decrease 

enzyme activity. After treatment with Se supplementation, GSH-Px activity significantly 

increased. The results showed that the enzyme activities of mice in Se-enriched L. paracasei 

CCFM 1089 and NaSeO groups were the highest, followed by Se-enriched inactived L. 

paracasei CCFM 1089 group and Se-enriched yeast group mice. There was not much dif-

ference between the four groups. 

 

Figure 5. Se concentration in liver and ileum of mice. (A) Se content in ileum; (B) Se content in liver.
Graphs show mean ± SD; n = 5. Significant differences are indicated by different superscript letters
(p < 0.05), and the same superscript letters above the bars indicate that the differences between the
values are not statistically significant (p > 0.05).

3.5. Se-Enriched Products Reduce Oxidative Stress in Mice

As shown in Figure 6, compared with the model group mice, CAT and SOD activity
in Se-enriched L. paracasei CCFM 1089 group mice significantly increased, with a 1.12-fold
increase in CAT activity and a 1.27-fold increase in SOD activity. The effects on the SOD
and CAT activities of mice in the Se-enriched yeast group and the Se-enriched inactivated
L. paracasei CCFM 1089 group were similar to those in the Se-enriched L. paracasei CCFM
1089 group. Meanwhile, treatments with organic Se reduced the MDA levels in mice; the Se-
enriched yeast group mice had the lowest MDA concentration, followed by the Se-enriched
L. paracasei CCFM 1089 group mice. In contrast, the results showed that the alleviation effect
of sodium selenite and L. paracasei CCFM 1089 was not ideal. In addition, by measuring the
GSH-Px content, it was found that Se deficiency and colitis can decrease enzyme activity.
After treatment with Se supplementation, GSH-Px activity significantly increased. The
results showed that the enzyme activities of mice in Se-enriched L. paracasei CCFM 1089
and NaSeO groups were the highest, followed by Se-enriched inactived L. paracasei CCFM
1089 group and Se-enriched yeast group mice. There was not much difference between the
four groups.

3.6. Se-Enriched Products Regulate Inflammatory Cytokines in Mice

As shown in Figure 7, the levels of pro-inflammatory cytokines (TNF-α, IL-1β, and
IL-6) were significantly higher in the model group mice than in the control group mice.
The mice in treatment groups had reduced levels of analysed pro-inflammatory cytokines,
and the three organic Se groups were the most effective at reducing the levels of pro-
inflammatory cytokines. The concentration of pro-inflammatory cytokines was the highest
in the NaSeO group mice. In case of the anti-inflammatory factor IL-10 in mice, levels of
Se-enriched L. paracasei CCFM 1089 significantly increased, followed by Se-enriched yeast,
while NaSeO played an unsatisfactory role in increasing its concentration.
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Figure 6. Effects of different Se products on the activity of oxidative enzymes in colon. (A) Malon
dialdehyde (MDA) levels; (B) Catalase (CAT) levels; (C) Superoxide dismutase (SOD) levels;
(D) Glutathione peroxidase (GSH-Px) levels. Graphs show mean ± SD; n = 5. Significant differ-
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the bars indicate that the differences between the values are not statistically significant (p > 0.05).
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Figure 7. Effects of different Se products on interleukin concentration in colon. (A)TNF-α levels;
(B) IL-1β levels; (C) IL-6 levels; (D) IL-10 levels. Graphs show mean ± SD; n = 5. Significant differ-
ences are indicated by different superscript letters (p < 0.05), and the same superscript letters above
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3.7. Blood Biochemical Assay

The effect of the treatment on the serum biochemical parameters of the mice is shown
in Figure 8. HDL, AST, ALT, and ALB levels differed between the mice in the treatment
groups (p < 0.05). After gavage of the corresponding substances, the treatment groups were
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almost non-differential from the model group in ALB levels; the highest level was observed
in Se-enriched inactived L. paracasei CCFM 1089 group mice, which reached 26 g/L. The
best performance with regard to the remaining three indicators was also observed in
Se-enriched inactived L. paracasei CCFM 1089 group mice, in which the HDL content
significantly increased and the AST and ALT content decreased. The effect of Se-enriched
yeast and Se-enriched L. paracasei CCFM 1089 is close to Se-enriched inactived L. paracasei
CCFM 1089. In contrast, the inorganic Se group mice had the lowest HDL content and the
highest concentrations of AST and ALT. Among the four indexes, L. paracasei CCFM 1089
had the most significant effect on the ALT level, which could effectively reduce the ALT
level without any significant difference from the control group.
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Figure 8. Effects of different Se products on serum biochemical indicators. (A) High-density lipopro-
tein (HDL; (B) aspartate aminotransferase (AST); (C) alanine aminotransferase (ALT); (D) albumin
(ALB). Graphs show mean ± SD; n = 5. Significant differences are indicated by different superscript
letters (p < 0.05), and the same superscript letters above the bars indicate that the differences between
the values are not statistically significant (p > 0.05).

3.8. Effect of Se-Enriched Products on Tight Junction Protein Expression

To compare the alleviating effects of different Se supplements on the intestinal tract of
mice, the comparative gene expression of selected tight junction proteins was analyzed and
is shown in Figure 9. Except for organic Se, the effect of the other treatments was negligible.
The expression of claudin-1 protein in the Se-enriched L. paracasei CCFM 1089 and Se-
enriched inactivated L. paracasei CCFM 1089 groups was lower than that in the Se-enriched
yeast group. However, the expression of occludin and ZO-1 in the Se-enriched L. paracasei
CCFM 1089 and Se-enriched inactivated L. paracasei CCFM 1089 groups was the highest in
all treatment groups, and extremely close to that found in mice in the control groups.
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Figure 9. Expression of tight junction proteins ZO-1, occludin, and claudin-1 in colon. (A) ZO-1,
(B) Occludin, (C) Claudin-1. Graphs show mean ± SD; n = 5. Significant differences are indicated by
different superscript letters (p < 0.05), and the same superscript letters above the bars indicate that
the differences between the values are not statistically significant (p > 0.05).

4. Discussion

Previous literature [31] has verified the protective effect of Se on DSS-induced colitis,
but most of the experiments were carried out when Se levels were relatively abundant, and
comparisons of different forms of organic Se are few. The oral administration of Se at normal
levels may induce toxicity in mice. Therefore, in this experiment, we used DSS to induce
Se deficiency and compared the effect of different Se supplements on colitis relief. This
experiment showed that Se-deficient mice had more severe symptoms than normal mice,
which is consistent with the results of Krehl S [32]. Organic Se was found to be superior
to inorganic Se in alleviating UC; moreover, different organic Se had different alleviating
effects. Therefore, organic Se should be preferred over other forms for Se supplementation.
Moreover, the selection of high-quality organic Se is becoming a popular research direction.

The metabolic pathways of dietary Se absorption and metabolism are significantly
different [33,34]. Se is absorbed in all parts of the small intestine, with the liver being the
center of Se metabolism. The absorption rate of inorganic Se is lower than that of organic
Se and is generally above 50%, whereas that of organic Se can reach 90% [35]. After data
analysis, it was observed that the CCFM 1089 group mice displayed little remission effect.
Moreover, Se content in the NaSeO group mice was lower than that in the organic Se groups
mice. Although the differences among the organic Se groups were not significant, the Se
uptake of mice in Se-enriched yeast group was numerically analyzed to be higher than that
in Se-enriched L. paracasei CCFM 1089 and Se-enriched inactive L. paracasei CCFM 1089
groups. The reason for this is not clear, but we confirmed that Se uptake is related to its form.
Regarding the metabolism of Se, Se-enriched L. paracasei CCFM 1089 group mice deposited
more Se than the Se-enriched yeast group mice, which may also be related to the diverse
forms of Se. During absorption by the ileum, sodium selenite is degraded intracellularly
to SeO3

2−, which reacts with reduced GSH to form glutathione selenose trisulfide (Gs-Se-
SG) under the action of certain enzymes to produce HSe-. Previous research has shown
that SeMet is absorbed via intestinal methionine transporters, and enters the methionine
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pool in the body. The other way of SeMet is absorbed is via the metabolism, which
occurs mostly in the liver. SeCys is produced via the methionine cycle and transsulfuration
pathway, and then transported into the dynamic Se pool to participate in metabolic reactions.
SeCys degrades into HSe−, which synthesizes SePhp with the participation of ATP and
is involved in the synthesis of selenoprotein, thus exerting its antioxidant and immune
effects. This may be the reason for the high Se concentration in the liver of Se-enriched
CCFM 1089 group mice. The concentration of SeCys in tissues is very low, suggesting
that highly reactive SeCys is kept at very low concentrations, whereas the less reactive
SeMet is metabolized as if it were methionine. SeMet absorption and metabolism is
competitively inhibited by methionine, but the absorption of SeCys is not competitively
inhibited by cysteine. SeMet and SeCys are absorbed by extracellular pathways mediated
by transporters, which are largely shared with sulfur-containing analogues. SeMet is
absorbed through Na+ dependent processes, but the identity and affinity of the transporter
remains to be determined. Interestingly, the Se-enriched inactive CCFM 1089 group mice
deposited less Se than the Se-enriched yeast group mice. We hypothesized that probiotics
may play a synergistic role in SeCys, but this remains to be studied.

The health of animals is related to their antioxidant capacity [36]. The oxidation
system includes excessive ROS that induce oxidative stress. Free radicals act on lipids to
produce peroxidation reactions, thereby attacking cell membrane lipids and simultaneously
causing damage to colonic mucosa [37]. The pathogenesis of IBD is also associated with
oxygen-radical-induced lipid peroxidation [38]. SOD is the main antioxidant enzyme that
can scavenge superoxide anion radicals, and the end product of lipid peroxidation [39]. It
reflects the degree of lipid peroxidation in the body and indirectly reflects the degree of cell
damage. CAT can continuously remove the main oxidation products generated in the body
and maintain the stability of the cell membrane [40]. In this study, the effect of L. paracasei
CCFM 1089 and NaSeO on the levels of MDA, CAT, and SOD in mice was not as strong as
that of organic Se. Of all the treatment groups, mice in the Se-enriched yeast group had
the lowest MDA levels, and mice in the Se-enriched L. paracasei CCFM 1089 group had the
highest CAT and SOD levels. Thus, it is believed that different Se forms have different
response pathways to inhibit oxidative stress.

Notably, the mice in the treatment groups showed higher GSH-Px activity, especially
those in the Se-enriched L. paracasei CCFM 1089, Se-enriched inactivated L. paracasei CCFM
1089, and NaSeO groups. GSH-Px is an important member of the antioxidant system that
can metabolize intracellular ROS and maintain cellular homeostasis. It is a type of selenase,
in which the active center is SeCys. GSH-Px activity can reflect the Se level of the body,
and Se is a component of the GSH-Px system [41]. Previous research has shown that LTB4
is a chemokine that induces neutrophils into inflammatory areas. Peroxide mediates the
production of active LTB4. GSH-Px can remove peroxide and inhibit the production of
LTB4. Arachidonic acid can be converted into the precursor of LTB4 under the catalytic
activity of 5- and 15-lipoxygenase, and selenase can inhibit the production of LTB4 by
inhibiting the activities of GSH-Px. This may be the reason for the high antioxidant capacity
of Se-enriched L. paracasei CCFM 1089. Interestingly, Beilstein and Whanger [42] found, in
their early study, that the main form of Se was SeCys in the tissues of rats fed with sodium
selenite using isotope tracer 75Se, whereas SeMet was present in the hemoglobin of rats
fed with SeMet. Since the major form of Se in Se-enriched L. paracasei CCFM 1089 and
Se-enriched inactivated L. paracasei CCFM 1089 is SeCys, we speculated that SeCys might
be better than SeMet at enhancing the selenase activity. This hypothesis needs to be further
confirmed in other studies.

Abnormal immune responses are also a risk factor for IBD, causing an increase in
intestinal permeability and facilitating the entry of endotoxins into the body, causing im-
mune system disorders [43]. Cytokines are mainly involved in immune and inflammatory
responses. Moreover, they are partially involved in immune cell infiltration and the re-
lease of inflammatory mediators [44,45]. It has been reported that TNF-α can damage
the intestinal barrier and cause intestinal damage [46]. Moreover, IL-6 and IL-1β can
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disrupt intestinal flora [47]. Our study found that the secretion of pro-inflammatory fac-
tors TNF-α, IL-1β, and IL-6 was inhibited in the mice in the treatment groups. Among
them, the best inhibition effect was observed in the mice in the three organic Se groups.
The expression levels of the three pro-inflammatory factors in mice were downregulated
in the three organic Se groups, and were significantly different from those in the model
group. DSS treatment has been shown in previous studies to activate the NF-κB pathway,
which causes the release of inflammatory cytokines TNF-α and IL-1β, aggravating the
development of IBD [48,49]. Previous studies have shown that the levels of TNF-α and
IL-1β decreased in the NLRP3−/−mice with colitis, indicating that NLRP3 could regu-
late the release of inflammatory cytokines [50]. Therefore, the possible anti-inflammatory
action of Se on colitis may be related to the inhibition of NF-κB and NLRP3 pathways.
Se-enriched L. paracasei CCFM 1089 may inhibit the activation of macrophages. IL-10 is
considered an important anti-inflammatory factor in organisms [51], which can maintain
tissue integrity and promote the healing of inflammation-induced injuries. Among the mice
in the treatment groups, Se-enriched L. paracasei CCFM 1089 group mice had the highest
IL-10 concentration, followed by the mice in Se-enriched yeast and Se-enriched inactived
L. paracasei CCFM 1089 groups. We assumed that this was related to the fact that organic Se
could enhance intestinal thickness or inhibit the destruction of intestinal mucosa caused by
inflammation; therefore, we compared the mRNA expression of Tight junction (TJ) proteins
in the intestinal tract of mice.

TJ have been proven to maintain cell polarity and intestinal barrier function. ZO-1,
occludin and claudin-1 are the main proteins that maintain the mechanical barrier and
permeability of the intestinal mucosa mucosal [52]. Free radicals can cause damage to the
intestinal mucosa and reduce intestinal permeability. In this study, we also found that
Se deficiency caused serious damage to the intestinal mucosa by lowering the expression
levels of occludin and claudin-1. It is obvious from the results that organic Se can repair
the damage in intestinal mucosa; the expression of ZO-1 and occludin in the mice in Se-
enriched L. paracasei CCFM 1089 and Se-enriched inactived L. paracasei CCFM 1089 groups
was higher than that in Se-enriched yeast group. We hypothesized that the maintenance
of intestinal barrier function differs in Se form and that the protective effect of SeCys
may be better than that of SeMet. It was also found that, because of its probiotic activity,
Se-enriched L. paracasei CCFM 1089 was more highly expressed than Se-enriched inactived
L. paracasei CCFM 1089 of ZO-1 and occludin. This also validates the previous speculation
that the combination of active probiotics and SeCys may act synergistically in the organism
and is superior to their use as separate substances. It can be speculated that SeCys-enriched
L. paracasei CCFM 1089 is a promising new Se supplement. As qPCR has certain limitations,
the effect of the product must be further confirmed at the protein level.

Serum biochemical parameters can be used as markers of the nutritional status of
animals [53]. We found that Se had an effect on the serum biochemical parameters. The
highest level of HDL was found in the Se-enriched inactived CCFM 1089 group mice,
followed by the Se-enriched yeast group mice. HDL can transport harmful substances to
the liver via catabolic excretion. Compared to the transportation rate of SeMet, the rate
of SeCys transportation of harmful substances may be slightly higher. In this study, we
found that ALB content was unrelated to the Se form, which is also supported by the
results of Liu et al. [54]. Elevated AST and ALT levels indicate possible kidney or liver
damage; moreover, the AST and ALT levels are important indicators of liver injury. All the
treatments had a good alleviating effect on the damage; organic Se had the best alleviating
effect. Moreover, the levels of ALT and AST in mice in the Se-enriched inactived L. paracasei
CCFM 1089 group were lower than those in mice in the other two organic groups. Moreover,
the enzymes in the blood can reduce oxidative damage through redox reactions [55], which
may also explain why the GSH-Px activity of the Se-enriched L. paracasei CCFM 1089 group
was higher than that of the other treatment groups. Once again, this provides evidence to
verify the use of Se-enriched L. paracasei CCFM 1089 as a new Se supplement.
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In this study, L. paracasei CCFM 1089 was used to convert inorganic Se into organic
Se through biotransformation, and then it was compared with mature Se supplements
(Se-enriched yeast, sodium selenite) in terms of alleviating colitis. We also analyzed the
reasons for the different effects from the perspective of Se form. This study confirmed
that Se-enriched L. paracasei CCFM 1089 could effectively relieve colitis symptoms by
regulating the redox status in mice; it could also regulate the levels of TJ proteins and
immune response. Therefore, for the IBD patients, the oral administration of Se-enriched
L. paracasei CCFM 1089 may improve the antioxidant capacity of the body by increasing Se
levels in patients and protect the integrity of the intestinal mucosa, thereby relieving colitis.
This speculation needs to be further investigated in clinical trials. Furthermore, our study
has the limitation of not considering the effect of dose variation on the relief of colitis; more
comprehensive studies are needed to make the results more widely applicable.

5. Conclusions

In summary, the study showed that different Se-enriched products have different
alleviating effects on UC in mice due to the differences in their antioxidant capacity, as well
as the different absorption and metabolic rates of different Se forms. Se-enriched L. paracasei
CCFM 1089 effectively reduced pro-inflammatory cytokines in vivo and improved the
activity of GSH-Px; it could also improve the expression of intestinal TJ proteins and
maintain the integrity and length of the colon in mice. Our results suggest that Se-enriched
L. paracasei CCFM 1089 could be confirmed to be effective in alleviating colitis and has the
potential to act as a new Se supplement in the future.
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