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Abstract

Natural compounds constitute a rich resource of potential small molecule therapeutics.

While experimental access to this resource is limited due to its vast diversity and difficulties

in systematic purification, computational assessment of structural similarity with known ther-

apeutic molecules offers a scalable approach. Here, we assessed functional similarity

between natural compounds and approved drugs by combining multiple chemical similarity

metrics and physicochemical properties using a machine-learning approach. We computed

pairwise similarities between 1410 drugs for training classification models and used the

drugs shared protein targets as class labels. The best performing models were random for-

est which gave an average area under the ROC of 0.9, Matthews correlation coefficient of

0.35, and F1 score of 0.33, suggesting that it captured the structure-activity relation well.

The models were then used to predict protein targets of circa 11k natural compounds by

comparing them with the drugs. This revealed therapeutic potential of several natural com-

pounds, including those with support from previously published sources as well as those

hitherto unexplored. We experimentally validated one of the predicted pair’s activities, viz.,

Cox-1 inhibition by 5-methoxysalicylic acid, a molecule commonly found in tea, herbs and

spices. In contrast, another natural compound, 4-isopropylbenzoic acid, with the highest

similarity score when considering most weighted similarity metric but not picked by our mod-

els, did not inhibit Cox-1. Our results demonstrate the utility of a machine-learning approach

combining multiple chemical features for uncovering protein binding potential of natural

compounds.

Author summary

A large fraction of small-molecule drugs has originated from natural compounds making

them an attractive resource for search of potential lead compounds. Yet, this resource is

not extensively explored because of their vast number and technical barriers to obtaining

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010029 April 25, 2022 1 / 21

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Periwal V, Bassler S, Andrejev S, Gabrielli

N, Patil KR, Typas A, et al. (2022) Bioactivity

assessment of natural compounds using machine

learning models trained on target similarity

between drugs. PLoS Comput Biol 18(4):

e1010029. https://doi.org/10.1371/journal.

pcbi.1010029

Editor: Costas D. Maranas, The Pennsylvania State

University, UNITED STATES

Received: September 6, 2021

Accepted: March 17, 2022

Published: April 25, 2022

Copyright: © 2022 Periwal et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The input data files

can be accessed at (https://data.mendeley.com/

datasets/7ft539gwf3/3) and codes for analysis and

figure generation are available at https://github.

com/periwal45/periwaletal2020.

Funding: VP and NG were supported by the EMBL

Interdisciplinary Postdoc (EI3POD) program under

Marie Skłodowska-Curie actions COFUND (grant

number 664726). SB was supported by the

Joachim Hertz Foundation (fellowship for

https://orcid.org/0000-0002-3583-0413
https://orcid.org/0000-0002-0652-9242
https://orcid.org/0000-0002-7875-0261
https://orcid.org/0000-0001-5222-3925
https://orcid.org/0000-0002-0797-9018
https://orcid.org/0000-0002-6166-8640
https://doi.org/10.1371/journal.pcbi.1010029
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010029&domain=pdf&date_stamp=2022-05-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010029&domain=pdf&date_stamp=2022-05-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010029&domain=pdf&date_stamp=2022-05-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010029&domain=pdf&date_stamp=2022-05-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010029&domain=pdf&date_stamp=2022-05-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010029&domain=pdf&date_stamp=2022-05-05
https://doi.org/10.1371/journal.pcbi.1010029
https://doi.org/10.1371/journal.pcbi.1010029
http://creativecommons.org/licenses/by/4.0/
https://data.mendeley.com/datasets/7ft539gwf3/3
https://data.mendeley.com/datasets/7ft539gwf3/3
https://github.com/periwal45/periwaletal2020
https://github.com/periwal45/periwaletal2020


them in pure form. Computational approaches can expedite exploration of natural com-

pounds and their derivatives at a much larger scale. Towards this, we took advantage of

the known protein targets of drugs to mine natural compounds with similarity to known

small-molecule drugs. The underlying hypothesis is that two compounds binding to the

same protein target are similar from a bioactivity viewpoint. To identify high-dimensional

structural features of the compounds underlying their bioactivity, we computed various

structural features of paired drugs (i.e., drugs sharing a common protein target) and used

these to train machine learning classifiers. The trained classification models were then

used to predict similarity between drugs and natural compounds. We assessed the result-

ing predictions–protein target binding by natural compounds—through an extensive lit-

erature survey, and experimental validated a novel prediction. Together, our results

outline a workflow and provide a resource to explore therapeutic potential of natural

compounds.

Introduction

Around 65% of the small-molecule drugs in use today have originated from natural com-

pounds or their derivatives [1]. Therapeutic effects of natural compounds are thus central to

drug discovery [2–5]. Further, identification of bioactive compounds present in the diet and

their effect on health has been an active area of research since long [6,7]. A number of recent

studies have reported that dietary natural compounds (such as polyphenols, alkaloids) can

reduce the risk of many chronic diseases [8–10], lead to drug and food interactions (occurs

when your food and medicine interfere with one another) [11–13], and significantly alter or

diversify the composition of the human gut microbiome [14–17]. While natural compounds

possess rich structural diversity, often have selective biological actions, and are prevalidated on

various biological targets by evolutionary selection [18–21], they are generally less accessible in

pure form than synthetic compounds. This is primarily due to their low abundance in natural

sources and complex purification methods [22,23]. Recent technological advances in analytical

methods such as metabolomics, metabolic engineering, and synthetic biology, as well as those

in functional assays and phenotypic screens are opening new opportunities for natural com-

pound-based drug discovery [2,22,24]. Increasing number of computational tools [25,26],

techniques [27,28], and databases [29] are providing more accessible and powerful alternatives

to explore the therapeutic potential of natural compounds.

An attractive approach to assess the bioactivity potential of a compound is comparing its

chemical and structural similarity with that of the molecules with known activity [27,30,31].

Chemical structures encode complex atom and bond connectivity information which can be

computationally exploited to predict their potential biological interactions. The chemical simi-

larities between drug and natural compounds, especially dietary compounds, and their associa-

tion with drug targets have been studied previously [12]. However, similarity assessments can

vary considerably depending upon which structural fingerprint encoding is used [32,33].

Indeed, the structural similarity between two molecules is a subjective concept [34] and no sin-

gle similarity measure can likely capture the complex structure-activity relationships (SAR).

Thus, owing to the vast structural diversity of natural compounds, it would be advantageous to

include more extensive similarity measure encodings to establish structure-activity relation-

ships more accurately and to predict bioactivities [27,30,35,36].

Machine learning (ML) is being increasingly used to tackle complex structure-activity rela-

tions that are otherwise difficult to deconvolute [25,37–39]. ML has been effectively used to
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predict, among others, molecular targets [40,41], bioactivities [42], shared molecular interac-

tions [43,44], toxicity [45,46], and drug-likeness of molecules [47]. Although ML models

greatly facilitate predictions, they often lack interpretability which translates to the acceptance

of their predictions in pharmaceutical or clinical settings. Thus, experimental validation assess-

ing model prediction is crucial to build trust in a method [26].

Chemical proteomics (high-throughput methods for exploring drug-target-phenotype rela-

tionships) exists as a key and powerful method for target identification and elucidating mode

of action of natural compounds [48,49]. We propose a powerful approach where we combine

computational target prediction of natural compounds with an in-vitro validation of the bind-

ing partner.

In this study, we identify potential of natural compounds (especially ingested dietary mole-

cules) to bind human proteins that are known drug targets. We trained binary machine learn-

ing classifiers (Fig 1A) using chemical similarity scores from multiple fingerprints and

physicochemical properties of paired small-molecule drugs with their known protein targets.

The resulting models are then used to predict the molecular targets of hundreds of natural

compounds through assessing their similarity with the drugs. We validate the models by dem-

onstrating a predicted link’s Cox-1 binding activity by 5-methoxysalicylic acid (found in tea

and herbs).

Results

Dataset of drugs with known targets

We utilized mappings between 1,410 FDA approved drugs (S1A Table) and their known,

curated, targets (S1B Table) as our gold-standard dataset. The drugs were categorized accord-

ing to their ATC (Anatomical Therapeutic Chemical) class, and into 16 chemical Superclasses

(a hierarchy in chemical taxonomy with general structural identifiers such as organic acids

and derivatives, organometallic compounds) [50] based on their chemical structures (Materi-

als and methods). Many of the drugs target the nervous system (264), followed by cardiovascu-

lar (180), anti-infectives (148), multiple ATC (131) and anti-neoplastic (127) (S1A Fig).

Among the 16 structural classes, benzenoids and organoheterocyclics constitute the major

super-classes of drugs (840) encompassing all therapeutic classes except the nutraceuticals

(S1A Fig).

For the 1,410 drugs used, there were 1,262 known curated targets [51]. The number of drug

targets ranged from 1 to 86 (i.e., some drugs have up to 86 known targets) (S1B Table),

highlighting the fact that some drugs are well studied in terms of their target space. The most

frequent targets were the different units and subunits of GABA receptors and GPCRs (adren-

ergic, muscarinic, histamine and dopamine receptors). The abundance of GABA receptors is

consistent with the fact that many drugs (264) are targeting the nervous system.

Predictor variables for representing a chemical pair

To deconvolute the complex structure-activity relation between drugs and their targets, we

created datasets for supervised binary classification. The underlying hypothesis is that a pair of

compounds sharing at least one common protein target will be close in a high-dimensional

structural space. Models are built as a binary classifier (one or more shared targets, or no

shared target) with various structural similarity metrics as predictor variables. Such models

can then be applied to predict the targets of natural compounds when compared to the drugs

using the same predictors.

The first step towards building the classifier was to identify predictor variables. For this,

similarity scores between all drug pairs were calculated using seven molecular fingerprints,
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viz., Morgan, Featmorgan, AtomPair, RDKit, Torsion, Layered and MACCS. The fingerprint

similarity was scored using the Tanimoto Score, which is measured on a scale of ‘0–1’; higher

the score, more similar are the molecules. Consistent with each molecular fingerprint assessing

Fig 1. (A) Overview of workflow deployed. A training-cum-validation set comprising of drug pairs was created using various predictor

variables (fingerprints, MCS and physicochemical properties). The model was trained for response variable (Match or Nomatch) and

tested on an independent test set for performance evaluation. The natural compound library paired with drugs was virtually screened to

obtain hit pairs, followed by analysis and in-vitro validation. (B-C)—Similarity metrics (ML dataset). (B) Molecular fingerprints—the 7

fingerprints generate a different similarity score for the pairs of drug molecules compared. The median value of each is represented in

the box plot (in the center) and the spread shows the density of the drug pairs around that score. (C) MCS—there are two types of scores

reported by the MCS algorithm, one is the Tanimoto score and the other is the Overlap coefficient (OC). The violin plots were smoothed

for density by an adjustment factor of 3. (D-F)—Performance on the test set. (D) performance of the four models, viz., regularized

logistic regression (L1R and L2R), naïve bayes (NB) and random forest (RF) on independent test set for all 5 split-sets. Performance was

evaluated using balanced measures: F1 score, matthews correlation coefficient (MCC), positive predictive value (PPV) and area under

the curve (AUC). RF clearly had higher performance as compared to the logistic regression and naïve bayes models under all metrics

and data splits. The performance of all models was also evaluated using (E) precision-recall and (F) ROC curve–the RF models achieved

an AUC of 0.90 averaged on the all 5 test-split sets whereas NB and LRs performed relatively poor on all split-sets (average: NB: 0.68,

L1R: 0.51 and L2R: 0.50). (G) High ranking features of RF models on the 5 split-sets–top features are displayed, showing most of the

distance-based features provided maximum information gain with ‘Featmorgan’ performing best.

https://doi.org/10.1371/journal.pcbi.1010029.g001
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different features of the compound, the tanimoto score distribution for drug pairs differed

across all the seven fingerprints (Fig 1B). For most of the drug pairs, the Morgan, Featmorgan

and Torsion fingerprints consistently yielded a lower score (tanimoto scoremedian = 0.11, 0.13,

0.08 respectively) as compared to AtomPair, RDKit, Layered, and MACCS (tanimoto scoreme-

dian = 0.23, 0.36, 0.45, 0.32 respectively). The drug pairs also showed broader tanimoto score

distribution in AtomPair, RDKit, Layered and MACCS. A rank comparison of drug-pairs (S2

Fig) showed a low concordance amongst the different fingerprints supporting that each finger-

print captures different aspects of the structural similarity. This variance, together with the

previous observations that none of the fingerprints alone is universally suited [32,52], we

decided to utilize the similarity scores from all the seven fingerprints in training the ML

classifier.

In addition to the fingerprint metrics, maximum common substructure (MCS, which is

based on overlap between the two molecules represented as chemical graphs) [53] and the

physicochemical descriptors (numerical properties) were included as additional predictor vari-

ables based on their previously noted utility [25,54,55]. The MCS calculation reports several

statistics, amongst which the MCS size (median = 8), tanimoto score (median = 0.19) and OC

(overlapping coefficient) (median = 0.43) score are important measures to assess similarity.

The tanimoto score and OC score distribution is shown in Fig 1C. OC, measured on a scale of

0–1, accounts for size difference amongst molecules and is a useful indicator when there is a

significant size difference between molecules being compared. The MCS measures are more

intuitive to interpret as the substructure graph shared between the two molecules can be visu-

alized and can be mapped back to the underlying molecules to extract which are the common

and unique features, while this is not possible with the fingerprints and the molecular

descriptors.

For molecular descriptors, we used 5 different categories (constitutional, topological, geo-

metrical, electronic and hybrid) to capture individual physicochemical properties of the drugs.

S1D Table, reports the number of descriptors used in each category. Majority of the physical

and chemical information comes from the constitutional and topological descriptors. In total

225 molecular descriptors (for example, molecular weight, logP, aromatic bonds, and ring

blocks) were calculated for each molecule.

Data processing

For each drug pair the distance-based measures (tanimoto score of Morgan, Featmorgan,

AtomPair, RDKit, Torsion, Layered and MACCS), MCS features (MCS size, MCS tanimoto

score, MCS overlap coefficient), and the molecular descriptors (constitutional, topological,

geometrical, electronic and hybrid) were concatenated to create a vector of 460 predictors with

a binary response variable (‘Match’ or ‘Nomatch’).

Training and test set. Prior to training the classifiers, the data was split into a training-

cum-validation set (80%) and a hold-out test set (20%). A naive splitting might result in overly

similar examples (i.e., the physicochemical descriptors) in train and test set as the drugs are

paired in turn resulting in unrealistically optimistic predictive performance. Thus, to avoid

overlapping drug predictors, we adopted a systematic procedure to split the drug pairs to

ensure that the train and test sets were independent. This would essentially mean that all the

drug pairs present in the test set were exclusive to it and were not seen by the classifier during

learning from the training set. This procedure resulted in 1,128 drugs in the train set and 282

drugs in the test set and this split was performed 5 times (referred now as 5 split-sets) (S2A

Table). After the splits the drugs were paired resulting in 635,628 pairs in train set and 39,621

pairs in test set (S2A Table). The whole dataset was imbalanced with a class ratio of 0.03 and
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this imbalance was maintained in all 5 split-sets. We monitored the Superclass information in

all 5 split-sets to obtain a balanced representation of the structural diversity of drugs in all sets

(S2B Table).

Data pre-processing. All 5 sets of train and test data followed same processing and model

building steps. They were preprocessed to remove non-informative features by removing con-

stant variables such as with all 0’s or all 1’s (n = 82), and to filter out observations with missing

values or null for any predictor variable. This resulted in 378 predictors. The classification

models were then trained to classify the binary response variable for target referred as ‘Match’

and ‘Nomatch’ using 3 classifiers.

Machine learning

We employed three learning algorithms commonly used for binary classification tasks for

large datasets, namely, logistic regression (LR) [56], naïve bayes [NB] [57], and random forests

(RF) [58]. This selection was done to cover models that can capture linear and nonlinear rela-

tionships as both provide interpretability in terms of feature weights as well as probabilistic

predictions and feasibility with computational overhead. The classifiers were run on all 5 split-

sets to capture any variability arising because of the random train and test splitting. We used

various commonly used performance measures for imbalanced data to report the results.

Logistic regression. Logistic regression models apply the logistic function to weighted lin-

ear combinations of their input predictors to obtain predictions. We used two types of regular-

ized logistic regression (L1R and L2R) so that the overall error (cost function) during training

is minimized to optimize performance while controlling the complexity of the models leading

to better generalizability [59]. The models were trained for optimized learning by setting the

cost parameter ‘C’ and class weights because of data imbalance. The value for ‘C’ was deter-

mined using a heuristics on a balanced subset of data [60]. To account for the highly imbal-

anced nature of the training set we applied class weights (Match– 0.97, Nomatch– 0.03). Both

regularization types, L1R and L2R, were used separately to train models and their performance

on the hold-out test set was evaluated respectively on the 5 split-sets (Fig 1D). As can be seen

from Fig 1D, both the linear models failed to adequately predict the response variable suggest-

ing higher order of complexity that cannot be segregated by a linear model.

Naïve bayes. Naïve bayes is a simple yet powerful algorithm which computes the condi-

tional probabilities of target variable assuming independent predictor variables using the

Bayes theorem [57]. It is known to perform well on large datasets and has very fast processing

times. The performance results of NB on the 5 split-sets are also reported in Fig 1E and 1F. As

can be assessed from Fig 1D, NB performed slightly better than LR but was also not efficient to

delineate the complexity of the input dataset.

Random forest. A random forest (RF) is a collection of decision trees, each of which is

trained on a subsampled version of the original dataset. The predictions of individual trees are

averaged to provide a final prediction for the forest. Classically, RFs are known to have strong

performance on various computational chemistry tasks and have been state-of-the-art in vari-

ous cheminformatics settings till date such as to predict chemical binding similarities [35],

learning drug functions from their chemical structures [61], in-vitro toxicity prediction [62],

and drug-target interactions [63].

Since the default parameters might not be optimal for complex learners, we used hyperpara-

meter tuning for building an optimized RF model. Hyperparameters (ntree (number of trees),

nodesize (number of observations at terminal nodes), mtry (number of variables to split at

each node) and classwt (class weight) were randomly searched over 10-iterations in a 5-fold

cross-validation (CV) setting. This generated 10 combinations of tuned parameters from
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which the final parameters were selected using the performance metric MCC [64]. Even with

other commonly adopted metrics such as in (Fig 1D) or accuracy (S2C Table), the set of best

performing hyperparameter combinations generated consistent results in the 10 iterations

each with 5-fold CV. The hyperparameter tuned results (S2C Table showed all 10 iterations

performed comparably indicating robustness of the RF hyperparameters on our dataset. The

best performing hyperparameters combination for each split-set i.e.,–ntree, nodesize, mtry,

classwt were selected by the best value of MCC which was used to train the final models. The

models were tested using the respective independent test set and performance metrics are

depicted in Fig 1D–1F. Data skewness can significantly impact performance metrics [65]. We

therefore used a combination of metrics to evaluate the model’s performance on the test set.

We focused on balanced threshold metrics (Fig 1D) (Matthews correlation metric (MCC) and

F1) in combination with rank metrics (Fig 1E and 1F) (precision-recall curve and ROC curves)

to evaluate our model’s performance (metrics definitions explained in S3 Table). Overall, the

RF model performed robustly, achieving an AUC of 0.90, precision of 0.59 and recall of 0.23

averaged over all 5 split-sets.

Extracting feature importance. During training, RF models were configured to generate

feature/variable importance measures. For each tree, the prediction error on the out-of-bag

(estimating the prediction performance by evaluating predictions on those observations that

were not used in building of the base learner) portion of the data is recorded (i.e., error rate for

classification). Then the same is done after permuting each predictor variable. The difference

between the two are then averaged over all trees and normalized by the standard deviation of

the differences. If the standard deviation of the differences is equal to 0 for a variable, the divi-

sion is not done (but the average is almost always equal to 0 in that case) [58]. We extracted

these feature importance values from the final trained model to explore which predictors con-

tained highly predictive information. The measure is the mean decrease in accuracy calculated

on out-of-bag data. Higher the number, higher is the importance. The feature importance

from high to low (only top ranking) are shown in Fig 1G. The ‘Featmorgan’ was the best pre-

dictor variable with the highest importance value s in our 5 trained models closely followed by

other distance-based fingerprints.

Predicting natural compounds and drugs similarities

Source of natural compounds and creation of drug-food pairs. A catalogue of 11,788

natural compounds was obtained from FooDB (www.foodb.ca) (S1C Table). These corre-

spond to 261 unique food sources and are categorized into 15 main food types such as vegeta-

bles, fruits, herbs and spices, and milk products (S1B Fig). For the simplicity in representation

in S1B Fig, the frequency accounts for only one source per compound; however, a particular

compound can be present in multiple food sources. The food compounds were structurally

classified into 21 classes (see Material and methods) (S1B Fig). Highly represented were lipids

and lipid-like molecules (4803), phenylpropanoids and polyketides (2476), organoheterocyc-

lics (1381) and organic oxygen compounds (1120). All these natural compounds were used to

create an assessment library, where each chemical pair comprised of a drug and a natural com-

pound (Fig 1A) (now referred to as drug-food pair). Pairwise similarities between each natural

compound (S1C Table) and all the drugs were computed using the same set of predictors (i.e.,

using same predictors molecular fingerprints, MCS and molecular descriptors) as was for

training dataset.

Similarity predictions by RF model. The similarity of each of the 11k natural compounds

paired to each of the 1410 drugs was evaluated using the trained RF models. Since all 5 split

sets performed optimally, we chose to accommodate the drug-food similarity predictions from
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all 5 RF models. As many drugs have originated from natural compounds, drug-food pairs

with a very high similarity fingerprint score (i.e., tanimoto score > 0.9) were removed

(n = 1,850 pairs) considering them to be the same compound. Overall, the number of drug-

food pairs compared on each RF model were 1,941,762. Pairs which passed the threshold of

0.5 probability are considered as a match. The number of hits with the 5 RF models are shown

in Fig 2A. We picked drug-food pairs which were predicted as match by at-least 3 models (686

pairs) in further analysis. The full list of these 686 pairs is provided in S2B Table.

These 686 pairs comprise of 329 unique food compounds and 289 unique drugs (full anno-

tated list in S4B Table). Note that a drug can share similarity with more than one food com-

pound and vice-versa. Also, a food compound can be present in multiple food sources, for

exhaustive listing of known sources, we recommend querying the FooDB using respective

compound Ids or names.

We performed manual curation of 30% of these 686 drug-food pairs (200 pairs) and catego-

rized the food compounds into five custom defined groups based on the meta information

available in the public domain (S4A Table and Fig 2B). Group 1, Analogs: food compounds

which themselves represent a drug. Group 2, Endogenous: compounds reported as a metabo-

lite in humans. Group 3, Experimental: food compounds currently under investigational or

clinical trial as a therapeutic. Group 4, Probable lead: compounds with potentially novel bioac-

tivity. Group 5, Others: compounds currently used in industrial application or used as additive

or flavor enhancer. Each group is discussed below with case examples.

Group 1-analogs (56 pairs, 20 natural compounds)—food compounds in this group were

found to be structural analogues to other known drugs i.e., the food compound paired with

the drug is apparently another drug itself. This observation is consistent with the fact that the

origin of many drugs is from natural sources. Yet, presence of some of these compounds in

food is intriguing. A compound referred to as ‘Satiomem’ in FooDB (reported in barley and

onions) resembles the drug Carbinoxamine, an antihistamine. It shared similarity with other

antihistamines (such as Chlorprothixene, Doxepin, Antazoline and Chlorphenamine, Fig 2B,

highlighted in blue) belonging to the nervous ATC category which are used as antipsychotics.

These drugs share ‘Histamine H1 receptor’ as a target but there was no evidence found for

Satiomem/Carbinoxamine having antipsychotic activity so it could potentially serve as a good

candidate for further testing as an antipsychotic or resulting in drug interactions when used in

combination with these drugs. This group also provides an opportunity to explore drug-

repurposing.

Group 2-endogenous (49 pairs, 24 natural compounds)—compounds that are endogenous to

human tissues but also reportedly present in various food sources. For example, ‘desoxycorti-

costerol’ a.k.a. 21-Hydroxyprogesterone was reported to be present in rice and is endogenously

present in amniotic fluid and blood throughout human tissues. It’s predicted to be similar to

other Hormonal and Genitourinary drugs (Fig 2B, highlighted in pink). ‘Estriol’, an estrogen

produced by the human body, is reported to be present in pomegranate and beans.

Group 3-experimental (10 pairs, 5 natural compounds)—these food compounds are already

under experimental investigation category (i.e., under approval to be used as drugs, reported

in DrugBank accessed January 2018). ‘Higenamine’ is reported to be present in opium and cof-

fee. This compound is in clinical trial (DrugBank id: DB12779) and has been patented for vari-

ous therapeutic applications (Fig 2B, highlighted in purple). This group serve as a proof of

principle that we could recall natural compounds with similar activity as currently used

human-targeted drugs, which are being actively investigated pre-clinically.

Group 4-probable lead (76 pairs, 58 natural compounds)–to our knowledge, the compounds

in this group have little or no hitherto reported evidence of their physiological or biological

activity. The drug Papaverine is an alkaloid which is a vasodilator. ‘Annocherine B’ reportedly
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Fig 2. Drug-food compound similarity. (A) Number of hits retrieved from each split-sets model. (B) 200 drug-food pairs predicted as

‘match’ at the probability threshold of>0.5. The drugs are arranged according to their therapeutic class and food compounds

according to their food source. The highlighted colored links represent the case examples in the five author defined groups (details in

the text). (C) Group4-probable lead example taken up for experimental validation. The food compound 5-methoxysalicylic acid was a

hit with the drug triflusal which has 4 known targets. We validated the inhibitory activity of triflusal and 5-methoxysalicylic acid against

the target PTGS1 (also known as Cox-1).

https://doi.org/10.1371/journal.pcbi.1010029.g002
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present in many fruits showed high similarity with Papaverine, however no evidence or reports

of this compound about its action or use was found. ‘Bevantolol’ is a cardiovascular drug

which shared similarity with two novel compounds ‘Codamine’ and ‘Laudanine’ (both

reported in opium).

Group 5-others (9 pairs, 5 natural compounds)–food compounds found in this group are

reported to be used as food additives such as flavor enhancers or have other industrial applica-

tions such as emulsifiers. ‘Neoisomenthol’ and ‘Isomenthol’ are used as a flavoring agent are

similar with nervous category drugs ‘Codeine’, ‘Dezocine’, and ‘Tapentadol’. Thus, these five

groups highlighted interesting similarity relationships existing between drug and food com-

pounds and their wider therapeutic potential.

Experimental validation of Cyclooxygenase-1 (Cox-1) inhibition by

5-methoxysalicylic acid

With the growing number of new and improved learners [66,67] there’s always a possibility to

benchmark and compare the performances with different learners. There are multiple scenar-

ios under which one learner can be chosen over another for a given problem. For instance, the

performance of nonlinear RF model over the linear learner logistic regression models has been

benchmarked previously on a large number of experimental datasets [68]. While this comple-

ments our observation, our major goal was to present a proof-of-concept of the learner’s pre-

dictions in real and not merely restrict to their performance comparisons. As has been

proposed, complementary experiments that can validate any model’s predictions can help

build trust in the method or it’s outputs [26].

An interesting case for experimental follow-up in our 200 curated high-confidence similar-

ity pairs is that of triflusal and 5-methoxysalicylic acid (Fig 2C). Triflusal is an antithrombotic

anticoagulant and is considered very important for the secondary prevention of ischemic

stroke. Triflusal has an antagonist effect on prostaglandin G/H synthase 1 (PTGS1) (also called

Cox-1) in platelets [69]. Consistent with our prediction, 5-methoxysalicylic acid, which is

found in tea, herbs and spices, has been shown to have antiplatelet activity in rats [70]. Yet, the

molecular target of 5-methoxysalicylic acid is not known. We therefore chose to assess Cox-1

binding activity of 5-methoxysalicylic acid. To attest the utility of ML approach in comparison

to using a single similarity measure (such as a selected fingerprint), we also tested a ‘negative

control’ molecule, 4-isopropylbenzoic acid, which is found in cumin, herbs and spices. This

molecule had the highest similarity with triflusal based on Featmorgan, which was the most

important predictor (Fig 1G). While 4-isopropylbenzoic acid was predicted as ‘Nomatch’ by

the RF model, our test compound (5-methoxysalicylic acid) was predicted as a ‘Match’ but had

a lower Tanimoto Score for Featmorgan (S3A Fig). Structural representation of all the tested

compounds and their shared MCS (maximum common substructure) is depicted in Fig 3A.

We tested the Cox-1 inhibitory activity of the three compounds, triflusal (positive control),

5-methoxysalicylic acid (test compound), and 4-isopropylbenzoic acid (negative control)

using an enzymatic assay based on fluorometric detection of prostaglandin G2, which is an

intermediate product generated by the Cox enzyme (S3B Fig).

Triflusal and 5-methoxysalicylic acid exhibited highly similar inhibition profiles over differ-

ent concentrations (Fig 3B and S5 Table). The IC50 (is a measure of potency of a substance in

inhibiting a biological or biochemical function) of triflusal was estimated to be ~100 μM, while

5-methoxysalicylic acid showed ~40% inhibition at 100μM. Maximum inhibition achieved

with SC560 –a positive control included in the assay kit–was 42%, comparable to that of

5-methoxysalicylic acid. In stark contrast, 4-isopropylbenzoic acid did not show any inhibition

at 100 μM. At higher concentrations, it caused a color formation (bright pink) and hence was
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not tested beyond 100 μM. It only showed a small (10–17%) inhibitory effect at a lower con-

centration, possibly be due to non-specific binding. Taken together, the ML predicted drug-

natural compound pair experimentally showed the same target binding with quantitatively

similar activity, supporting the underlying model.

ML vs single fingerprint

We compared the performance of a single fingerprint alone (‘featmorgan’ as it was the best

predictor in our analysis and is also popularly used) versus our RF models on all split-sets

trained in this study.

Featmorgan based hits grew significantly in number as the tanimoto score threshold was

lowered (> 0.7–21 compounds, > 0.6 tanimoto score– 112 compounds, > 0.5–451 com-

pounds) (Fig 4A). This behavior is not helpful in a drug discovery setting where computational

shortlisting is meant to reduce the number of hits that can be thereafter tested experimentally.

The validation pair triflusal-5-methoxysalicylic acid was predicted as a match with an averaged

probability (across all five split-sets) of 0.58 but had a much lower tanimoto score for Featmor-

gan (0.36) (Fig 4B). This pair could have been easily missed (would be a false negative) if Feat-

morgan was used alone to rank molecule similarity and thereby estimate their activity profile.

Fig 3. Cox-1 inhibitor assay. (A) Chemical structures of all the tested compounds. MCS structures are also depicted which helped to

intuitively assess the structural similarity between the tested compounds (B) An example relative fluorescent units (RFU) plot of the

tested compounds at 100μM (other tested conc.: 12.5μM to 400μM serial dilutions). SC560 is a positive control provided by the assay kit

supplier (Materials and methods). (C) Relative inhibition of the positive control (drug triflusal), test compound (5-methoxy salicylic

acid) and negative control (4-isopropyl benzoic acid) at different tested concentrations. 5-methoxy salicylic acid showed similar

inhibition of Cox-1 as the drug triflusal whereas no such inhibition was observed for 4-isopropyl benzoic acid. 4-isopropyl benzoic acid

showed strong color change (bright pink) reaction beyond 100μM and thus was found unsuitable for being tested at higher

concentration with this assay.

https://doi.org/10.1371/journal.pcbi.1010029.g003
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In contrast, the negative control, despite having a higher rank with featmorgan (Fig 4C),

wasn’t even picked by the RF model.

Discussion and conclusion

This study has addressed three goals: identification of potential molecular targets of ingested

natural compounds and exploring their therapeutic potential; evaluating the utility of a com-

prehensive ML based approach to deconvolute the complex SAR between molecules as

opposed to restricting to a single similarity measure; and, lastly, complementing in-silico

model predictions with experimental validation to build trust in model’s predictions.

Systematically integrating computational chemistry approaches can help deconvolute the

intricate structure-activity relationship between small molecules and their biological targets.

The data fusion approach–i.e., integrating multiple similarity metrics based on fingerprints,

maximum common substructures, and physicochemical descriptors–used in this study proved

effective in identifying natural compounds functionally similar to known therapeutic drugs.

The RF models achieved a good performance with an average AUC of 0.9. Analysis of the

curated 200 drug-food pairs predicted from the models helped to capture drug analogs, host

endogenous metabolites, some investigational drugs, as well as novel molecular leads present

in various food sources which are deemed to share the same target as the drugs.

Data fusion approaches can aid in reducing the amounts of artefacts [30]. In line with this,

various methods are being proposed to accelerate the performance of in-silico similarity

Fig 4. RF vs featmorgan. (A) Number of hits retrieved by using tanimoto score with featmorgan as similarity measure, which grows markedly as threshold is

reduced (lower threshold means less similarity). (B) correlation between RF models’ average probability predictions>0.5 with corresponding tanimoto score of

featmorgan of drug-food pairs. Our hit pair triflusal and 5-methoxysalicylic acid (highlighted in red) was predicted a hit by RF models (as top 219th pair) would

be missed by featmorgan if used alone. (C) Rank comparison between hit pair (Triflusal:5-methoxysalicylic acid) and the negative control

(Triflusal:4-isopropylbenzoic acid). The negative control was not a hit using RF models although had a higher rank with featmorgan than the hit pair and vice

versa.

https://doi.org/10.1371/journal.pcbi.1010029.g004

PLOS COMPUTATIONAL BIOLOGY Machine learning for natural compound - drug similarity assessment

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010029 April 25, 2022 12 / 21

https://doi.org/10.1371/journal.pcbi.1010029.g004
https://doi.org/10.1371/journal.pcbi.1010029


searches such as inclusion of bioactivity profiles [27,71,72], multiple fingerprint algorithms

[73], and similarity ensemble approach [74]. Our approach serves as another promising addi-

tion to these strategies. A recent study has also demonstrated similar strategy to identify mole-

cules using pairwise similarity concept and target engagement [35] which supports our

strategy and showcases the utility and success rate of such methods in early-stage molecule

discovery.

In the context of natural compounds search space, two closely related issues remain open

before the proposed approach could be more broadly applied: the estimation of true-positive

rate, and the availability of curated molecular target information for an additional, structurally

more diverse, set of small molecules. The former could be addressed through high-throughput

testing of bioactivity profile of natural compounds against a set of protein targets using cell-

based or enzymatic assays [75,76]. The generated data could then be used to address the latter

issue. Further, new structured and curated datasets such as those recently reported by Duran

et al [27] would be valuable to this end. Our current study is limited to single target sharing

between drugs which has been the classical and predominant starting point of many drugs dis-

covery programs [77]. However, to deconvolute the complex interplay of multiple targets such

as in phenotypic drug discovery [77] would require incorporation of additional level of infor-

mation which is beyond the scope of current study. ML models trained using knowledge-

based graphs and networks would be pivotal at this end [26].

The ML approach used here was notable in capturing complex high-dimensional similarity

that would not be accessible based on any structural similarity metric used in isolation. Indeed,

we could show that a molecule that is highly similar based on a single fingerprint’s tanimoto

score did not show any appreciable activity. In contrast, the natural compound identified

using RF model trained on multiple features showed the predicted enzyme inhibitory activity.

In further support, the model could also identify several drug-food compound relations

including compounds that are currently under investigation or have been ascribed with related

bioactivity in the literature. Taken together, this study has implications for efficient exploration

of drug-like properties of natural compounds.

Materials and methods

Data source and processing

All the FDA approved drugs which had target information (S1A and S1B Table) associated

with them were taken from DrugBank [51] (accessed January 2018). The natural compound

library used for virtual screening was obtained from FooDB (www.foodb.ca; freely available

and accessed June 2017, (~11k compounds). It was curated and formatted to be smoothly inte-

grated into our analysis. The full list of compounds with their annotations is provided in S1C

Table. It included compounds from both raw and processed foods. We used drug classification

codes from ATC (https://www.whocc.no/) to therapeutically classify all the drugs and Classy-

Fire [50] to structurally classify the drugs and the natural compounds.

Computing predictor variables

In order to predict the molecular targets for the natural compounds based on their pairwise

structural similarities with the drugs, we needed to create a ML dataset that contains molecular

features (i.e., predictors) computed from the chemical structures of the drugs and gives out a

binary response for the target. This model can turn then be applied to natural compounds and

drug pairs to predict the potential targets for natural compounds. For this, a number of pair-

wise distance measures and molecule specific physicochemical descriptors were generated for

drugs and all the natural compounds. These included distance-based fingerprint similarities,
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maximum common substructure similarities and physicochemical descriptors. These molecu-

lar features formed the basis of our ML dataset (explained in later section) created from drugs

and their known respective targets.

Fingerprint calculation, tanimoto score estimation and molecular descriptor generation.

The INCHIs from drugs and natural compound library were used to generate 2D structural

information in Structural Data Format (SDF). These SDF files were used to calculate 7 differ-

ent molecular fingerprints (Morgan (circular fingerprints, ECFP-like), Featmorgan (circular

fingerprints, FCFP-like), Atompair, RDKit (daylight-like topological fingerprints), Torsion

(topological-torsion), Layered (substructure-matching fingerprint) and MACCS (RDKit

implementation of 166 public MACCS keys)) to gather theoretical 2D structural information

from the molecules. The entire workflow was designed using the KNIME [78] analytics plat-

form utilizing RDKit [79] plugin (for fingerprints) with default parameters. The pairwise

structural similarity from the fingerprints was scored using the widely used Tanimoto similar-

ity metric (computed as TSAB ¼ ðA \ BÞ=ðA [ BÞ). We also computed maximum common

substructure (MCS) shared between each chemical pair. The MCS is a graph-based similarity

search wherein the largest substructure shared between query and target is identified and gives

out various parameters such as number of MCS generated, size of each molecule, size of MCS,

tanimoto score, overlapping coefficient (computed as OCAB ¼ ðA \ BÞ=minðA;BÞ). It was

computed using the ‘ChemmineR’ [80] and ‘fmcsR’ [53] packages available for R. Although

MCS calculation is computationally intensive and time-consuming, but they are more sensi-

tive, accurate and intuitive, thus we implemented this computation in batch-mode on high-

performance computing cluster for faster processing. In addition to the distance-based fea-

tures, five different types of molecular descriptors (constitutional, topological, geometrical,

electronic and hybrid) were computed for all compounds using R package: RCDK [81].

Data preprocessing and machine learning

All predictors (computed above) for the paired drug data were combined into a single matrix

with each observation associated with a response variable (‘Match’ or ‘Nomatch’). This data

was then split into an 80% train-cum-validation set and a 20% test set by performing random

selection of drugs from the highly represented Superclasses such that both sets were mutually

exclusive and had a balanced distribution of the drug classes. Following this the training set

was pre-processed to remove constant predictors and missing value observations to avoid

training on noise.

We explored both linear and nonlinear learners to build our binary classification models.

The linear learners used were the two types of regularized logistic regression: called as L1R and

L2R (‘LiblineaR’ package in R) and the nonlinear learners were naïve bayes (NB) and random

forest (‘mlr’ package in R). The binary classifiers were trained for two classes which are

referred to as ‘Match’ and ‘Nomatch’ indicating whether they share a target or not. In order

not to increase the system complexity in terms of protein target similarity (as drugs can share

multiple targets), each drug pair which shared even at-least one target were considered as

‘Match’ and the rest were considered as ‘Nomatch’. Modern machine learning algorithms

require tuning various parameters in order to achieve their best performance [82]. Thus, the

classifiers used were optimized accordingly by tuning their parameters.

L1R and L2R logistic regression are extremely fast learners and benefit when input data is

centered and scaled in a nxp numerical matrix form and a response variable (1xn) containing

class labels. The two types of regularization used were L1 (type 6) and L2 (type 0) of LiblineaR

package which can give out probability estimates of prediction. As our paired data was highly

imbalanced, we used class weights where the positive class received a higher weight ratio
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(Match—0.97) then the negative class (Nomatch—0.03). The weights were derived from ratio

of positive/negative classes. To handle misclassification errors, costs were determined by using

‘heuristicC’ function on balanced sub-sample of the dataset [60]. Naïve bayes classifier is also

has fast processing times and works well with large datasets. It assumes feature independence

and is based on the Bayes theorem of conditional probabilities [57]. The rationale for testing

multiple classifiers was to cover a range of inductive biases and to pick a simpler model if it

shows good performance (e.g., in case L1R and RF show similar performance then L1R would

be selected).

We defined a search space to tune the hyperparameters for random forest (RF) to obtain

settings suitable for the data at hand. Four broadly used hyperparameters were tuned: the

number of trees (ntree), the number of observations at terminal nodes (nodesize), number of

variables to split at each node (mtry) and class weights (weight). We limited the ntree to 300 as

setting higher ntree values would result in increased computational overhead (i.e., training

time and memory usage). The default value for the parameter nodesize is 1, but with low values

of tree depth, the tree can fail to recognize useful signals from the data. We searched for node-
size value in the range 20–50. Lower nodesize can result in lower detection signals of the true

positives and a high false-negative rate. The default mtry ¼ ffiffiffipp where p is the number of fea-

tures in the input data. In our ML dataset, the default mtry was (
ffiffiffiffiffiffiffiffi
378
p

) 19 features. We

searched mtry in the range of 15–30. Lastly, as our training data set had high class imbalance

(Match-Nomatch ratio of 0.03), we also tuned the class weight parameter starting with a mini-

mum weight of 300 for the positive class (‘Match’) and searching up to 10 times i.e., 3000. The

hyperparameters were additionally optimized for 10 random iterations with 5-fold cross-vali-

dation each using stratification. Owing to the size of the data and to speed up the iterations

and parameter search the tuning was performed in a cluster environment with parallel

backend.

We used several standard performance measures (mean test values for MCC (Matthews

correlation coefficient), Balanced accuracy (BAC), Kappa, MMCE (mean classification error),

ACC (accuracy), TPR (true positive rate/Recall/Sensitivity), FPR (false positive rate), TNR

(true negative rate), (false negative rate), PPV (Precision/Positive predictive value)) to evaluate

the learner’s performance.

Compound preparation and assay protocol

Briefly, all tested compounds were dissolved in their respective solvents. Triflusal and 5-meth-

oxysalicylic acid were dissolved in DMSO and 4-isoproplybenzoic acid was dissolved in etha-

nol. Compounds supplied with the assay kit were prepared as per the manufacturer’s protocol

and the assay was also performed according to the instructions present in the kit from Abcam

(CAT#ab204698). The kit included the Cox-1 enzyme (source: ovine) and had a positive con-

trol Cox-1 inhibitor (SC560).

Literature evidence showed that triflusal binds to purified Cox-2 at 240–320 μM [83]. Thus,

we assayed all compounds at different concentrations starting at 400μM and going down to

12.5μM with serial dilutions and in triplicates. Relative Fluorescence Units (RFU) were mea-

sured immediately after starting the reaction by using microplate reader (Tecan infinite

M1000Pro) at Ex/Em = 535/587 nm in a kinetic mode for 40 minutes at 25˚ C. All fluorescence

readings for triplicates under a given concentration were averaged and initial time point RFU

reading was used to shift the measurements to start from 0. We took the first 10 time-points of

RFU readings to assess the inhibitory effect of the tested compounds. Slopes for all samples

(triflusal (positive control), 5-methoxysalicylic acid (test compound) and 4-isopropylbenzoic

acid (negative control)), enzyme control, and kit supplied positive control (SC560) were
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calculated by fitting linear equations, respectively. Percent relative inhibition for samples was

calculated as

% Relative Inhibition ¼
slope of enzyme control � slope of sample

slope of enzyme control
� 100
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