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The lung is one of the most common sites of distant metastasis in breast cancer (BC). 
Identifying ideal biomarkers to construct a more accurate prediction model than 
conventional clinical parameters is crucial. MicroRNAs (miRNAs) data and clinicopathological 
data were acquired from the Molecular Taxonomy of Breast Cancer International 
Consortium (METABRIC) database. miR-663, miR-210, miR-17, miR-301a, miR-135b, 
miR-451, miR-30a, and miR-199a-5p were screened to be highly relevant to lung 
metastasis (LM) of BC patients. The miRNA-based risk score was developed based on 
the logistic coefficient of the individual miRNA. Univariate and multivariate logistic regression 
selected tumor node metastasis (TNM) stage, age at diagnosis, and miRNA-risk score 
as independent predictive parameters, which were used to construct a nomogram. The 
Cancer Genome Atlas (TCGA) database was used to validate the signature and nomogram. 
The predictive performance of the nomogram was compared to that of the TNM stage. 
The area under the receiver operating characteristics curve (AUC) of the nomogram was 
higher than that of the TNM stage in all three cohorts (training cohort: 0.774 vs. 0.727; 
internal validation cohort: 0.763 vs. 0.583; external validation cohort: 0.925 vs. 0.840). 
The calibration plot of the nomogram showed good agreement between predicted and 
observed outcomes. The net reclassification improvement (NRI), integrated discrimination 
improvement (IDI), and decision-curve analysis (DCA) of the nomogram showed that its 
performances were better than that of the TNM classification system. Functional enrichment 
analyses suggested several terms with a specific focus on LM. Subgroup analysis showed 
that miR-30a, miR-135b, and miR-17 have unique roles in lung metastasis of BC. 
Pan-cancer analysis indicated the significant importance of eight predictive miRNAs in 
lung metastasis. This study is the first to establish and validate a comprehensive lung 
metastasis predictive nomogram based on the METABRIC and TCGA databases, which 
provides a reliable assessment tool for clinicians and aids in appropriate treatment selection.
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INTRODUCTION

Breast cancer (BC) is the most common cancer diagnosed 
(excluding skin cancers) and is the second leading cause of 
cancer death among United  States women (DeSantis et  al., 
2019) and worldwide. Most BC-related deaths are caused by 
distant metastases, which become lethal even after the primary 
lesion being removed (Knott et al., 2018). BC tends to metastasize 
distantly to the bone, brain, liver, lung, and distant lymph 
nodes. Lung metastases particularly tend to occur within the 
initial 5 years of BC diagnosis and significantly impact patients’ 
prognosis (Medeiros and Allan, 2019). Therefore, it is of great 
clinical importance to select patients who are prone to have 
lung metastasis so that they can benefit from prevention 
treatment and early diagnosis.

Currently, the traditional tumor node metastasis (TNM) 
staging system is a standard tool for risk evaluation in clinical 
practice. However, BC patients with the same stage can have 
varying clinical outcomes (Wang et al., 2019). The TNM staging 
system is mainly based on anatomical information, which fails 
to incorporate important pathological parameters and biological 
changes that happened in BC. The mechanisms of the lymphatic 
dissemination and hematogenous dissemination are different, 
which may be  one of the reasons for the poor metastasis 
prediction ability of the TNM staging system. Hence, new 
methods to identify patients who are likely to have lung 
metastasis are needed.

MicroRNAs (miRNAs) are small, non-coding single-stranded 
RNAs (18–25 nucleotides) and negatively regulate gene expression 
by binding to complementary sequences in the 3' untranslated 
region (3' UTR) of mRNAs (Lin and Gregory, 2015). 
Accumulating evidence suggests that miRNAs play critical roles 
in various physiological and pathological processes, including 
many proposed mechanisms of cancer metastasis (Pencheva 
and Tavazoie, 2013). Previous studies have presented the 
association of certain miRNAs with lung metastasis, including 
miR-629-3p, miR-106b-5p, and so on (Schrijver et  al., 2017; 
Wang et al., 2017). However, due to the biological heterogeneity 
of BC, a comprehensive prediction model incorporating multiple 
biomarkers, rather than a single parameter, can improve predictive 
accuracy. Nomograms constructed on the basis of known 
predictive variables are being widely used to predict the specific 
outcome for an individual patient (Iasonos et  al., 2008). There 
have been reports that clinical variables-based nomogram and 
miRNA signature could be  used to predict distant metastasis 
in BC patients (Delpech et  al., 2015; Rohan et  al., 2019), yet 
there is no literature concerning comprehensive lung metastasis 
prediction model. We  hypothesized that our new model based 
on the combination of predictive miRNAs and clinicopathological 
variables could improve the accuracy in predicting lung metastasis 
and prolong survival in BC patients.

Therefore, the purpose of this study was to establish and 
validate a comprehensive nomogram that incorporated both 
the miRNAs signature and clinical-related risk features for the 
individual prediction of lung metastasis status of BC patients. 
The new prediction model was compared with the traditional 
TNM staging system in order to determine its reliability.  

Aiding with this model, clinicians might be  able to evaluate 
the lung metastasis risk of BC patients, thus choosing appropriate 
medical examinations and optimizing therapeutic regimen.

MATERIALS AND METHODS

Datasets Selection and Data Processing
To identify lung metastasis-related miRNA and mRNA in BC, 
public datasets with matched miRNA, mRNA, and clinical data 
were used in this study. A European Genome-phenome Archive 
(RRID: SCR_004944),1 EGAS00000000122 (Molecular Taxonomy 
of Breast Cancer International Consortium, METABRIC miRNA 
landscape; Curtis et  al., 2012; Dvinge et  al., 2013), contains  
a total of 1,302 BC patients with matched mRNA 
(EGAD00010000434) and miRNA (EGAD00010000438) data. 
The inclusion criteria included: (1) samples had lung metastasis 
or no metastasis (NM); (2) samples had both mRNA and miRNA 
expression data; and (3) samples had intact clinical data. Around 
439 patients were selected in subsequent analysis. Among them 
(n  =  439), 327 samples were randomly assigned as a training 
cohort and the rest were assigned as an internal validation cohort 
based on a computer number generator (Supplementary Table S1). 
About 449 of 1,109 BC patients from The Cancer Genome 
Atlas (TCGA) dataset (RRID: SCR_003193) were selected according 
to the same inclusion criteria as an external validation cohort 
(Network, 2012; Supplementary Table S1).2 The method of 
acquisition and application complied with the guidelines and 
policies. It is not necessary to obtain informed patient consent 
for data obtained from the METABRIC and TCGA databases 
since they do not include information that can be  used to 
identify individual patients.

Development of a miRNA-Based Risk 
Score
Among the 439 BC patients in the METABRIC dataset, two 
subsets of patients were defined based on their metastasis 
status: a lung metastasis group (those who had lung metastasis) 
and an NM group (those who did not report metastasis until 
the last follow-up). We  identified 853 miRNAs annotated in 
the METABRIC dataset, and differentially expressed miRNAs 
(DEmiRNAs) between the two groups were identified using 
the LIMMA package of R (Ritchie et  al., 2015; LIMMA, 
RRID:  SCR_010943). Of the top  20 DEmiRNAs with the most 
significant foldchanges, four miRNAs were dropped from highly 
correlated pairs (r  >  0.8, Wei and Simko, 2017). The least 
absolute shrinkage and selection operator (LASSO) method 
(Friedman et  al., 2010) was used to select the most useful 
predictive miRNAs from the 16 lung metastasis-related 
DEmiRNAs in the training cohort and constructed an eight-
miRNA based risk score for predicting lung metastasis status 
of BC patients in the training set. The risk score was calculated 

1 https://www.ebi.ac.uk/ega/home
2 https://portal.gdc.cancer.gov/
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for each patient via a linear combination of selected miRNAs 
that were weighted by their respective coefficients.
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An optimal cut-off point was determined using receiver 
operating characteristic (ROC) curve, to classify samples into 
low (≤0.168) and high risk (>0.168) group. The Kaplan-Meier 
(KM) survival analysis with a log-rank test was implemented 
to compare the survival difference between the two groups 
(Kassambara et  al., 2017). Then KM analysis with the log-rank 
test was also implemented to show the relationship between 
the expression of predictive miRNAs and prognosis in external 
validation cohort.

Construction and Validation of 
miRNA-Based LM Predictive Nomogram
Univariate logistic regression analysis was performed to compare 
the predictive power of the eight-miRNA risk score and clinical 
parameters including age at diagnosis, tumor size, TNM stage, 
grade, estrogen receptor (ER) status, progesterone receptor (PR) 
status, human epidermal growth factor receptor 2 (HER2) 
status, and hormone therapy. Furthermore, we used a multivariate 
logistic regression analysis to determine whether the eight-
miRNA risk score could be  an independent predictive factor 
for lung metastasis in BC patients. Other clinical parameters 
with values of p less than 0.1 in the univariate logistic regression 
analysis were also incorporated in the analysis. A composite 
nomogram was constructed based on all independent predictive 
parameters screened by multivariate logistic regression analysis 
above to predict the rate of lung metastasis (Harrell, 2013), 
and to be  a graphic representation of the prediction model.

The ROC curves were plotted to assess the sensitivity and 
the specificity of independent predictive parameters including 
eight-miRNA signature, age at diagnosis, TNM stage, and 
miRNA-based nomogram in predicting lung metastasis (Sing 
et al., 2005). The area under the receiver operating characteristics 
curve (AUC) was also calculated to make a comparison for 
the discriminatory ability of the above predictive parameters. 
Calibration curves were implemented to assess the calibration 
ability of the miRNA-based nomogram, accompanied by the 
Hosmer-Lemeshow test (Kramer and Zimmerman, 2007). The 
predicted and observed outcomes of the nomogram could 
be  compared in the calibration curve, while the 45-degree 
diagonal line represented the ideal prediction. The net 
reclassification improvement (NRI) and integrated discrimination 
improvement (IDI) were used to quantify the improvement in 
sensitivity and specificity offered by our miRNA-based nomogram 
compared to the TNM staging system (Kundu et  al., 2011). 
NRI was based on reclassification tables composed of patients 
with and without events and could quantify the correct 
reclassification in categories (Pencina et al., 2011). IDI summarized 
the extent to which a new model increased risk in patients 
with events and decreased risk in patients without events 
(Pencina et  al., 2008; Chipman and Braun, 2017). We  used 
decision-curve analysis (DCA) to test the clinical applicability 

of our miRNA-based nomogram model by quantifying the net 
benefits at different threshold probabilities. DCA was conducted 
by adding the benefits (true positives) and subtracting the harms 
(false positives; Vickers and Elkin, 2006; Vickers et  al., 2008).

Identification of Potential Targets for 
Predictive miRNAs and Construction a 
miRNA-mRNA Network Associated With 
Lung Metastasis
The target genes of eight predictive miRNAs were first predicted 
and analyzed using miRWalk3.0 (RRID:  SCR_016509; Sticht 
et  al., 2018),3 miRDB (RRID:  SCR_010848; Chen and Wang, 
2020),4 TargetScan (RRID: SCR_010845; Nam et al., 2014),5 and 
miRTarBase (RRID: SCR_017355; Chou et al., 2018).6 An mRNA 
would be  considered as a target of a miRNA if the mRNA 
was predicted to be  the target in all three in silico prediction 
algorithms (miRWalk, miRDB, and miRTarBase) or could be found 
in a experimentally validated database (miRTarBase). We  also 
acquired matched mRNA transcriptome data (RRID: SCR_004944, 
EGAD00010000434) of the patients enrolled in the analysis of 
identifying DEmiRNAs.7 3,791 differentially expressed mRNAs 
(DEmRNAs) between the lung metastasis group and no metastasis 
group were identified using the LIMMA package of R. CytoHubba 
plugin (RRID: SCR_017677) in Cytoscape (RRID: SCR_003032) 
was used to predict the hub genes among the target genes of 
upregulated or downregulated miRNAs (Chin et  al., 2014).8 
miRNA-mRNA networks were also visualized with the 
Cytoscape software.

Functional Enrichment Analysis of Target 
Genes of Predictive miRNAs
For the screened overlapped target genes of each miRNA 
separately or hub genes for upregulated or downregulated 
miRNAs, gene ontology (GO) enrichment analysis and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathways analysis 
were performed (clusterProfiler, RRID:  SCR_016884; Yu et  al., 
2012; Walter et al., 2015). Statistically significant GO and KEGG 
terms (p < 0.05) related to cancer and metastasis were identified.

Identification of miRNAs Unique to Lung 
Metastasis or BC
MicroRNA transcriptome data of BC patients from the TCGA 
dataset were selected to perform two differential miRNA 
expression analyses between different subgroups of BC patients. 
Around 48 DEmiRNAs between patients with lung metastasis 
only and patients with distant metastasis (except for the lung) 
were identified using the DESeq2 package of R (DESeq2, RRID:  
SCR_015687; Love et al., 2014). Around 90 DEmiRNAs between 
patients with distant metastasis (except for the lung) and patients 
without metastasis were identified.

3 http://mirwalk.umm.uni-heidelberg.de/
4 http://www.mirdb.org/
5 http://www.targetscan.org/vert_72/
6 http://mirtarbase.cuhk.edu.cn/php/index.php
7 https://www.ebi.ac.uk/ega/home
8 http://cytoscape.org
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The miRNA expression data and corresponding clinical data 
of the patients of six cancer types [adrenocortical carcinoma 
(ACC), bladder urothelial carcinoma (BLCA), sarcoma (SARC), 
skin cutaneous melanoma (SKCM), cervical squamous cell 
carcinoma and endocervical adenocarcinoma (CESC), and 
stomach adenocarcinoma (STAD)] were downloaded from the 
TCGA database. DEmiRNAs between patients with lung 
metastasis and patients without metastasis were identified in 
each type of cancer using the DESeq2 package of R.

Statistical Analysis
All the statistical analyses were performed with the SPSS 
software (RRID:  SCR_002865) and R software (version 4.0.0; 
RRID: SCR_001905).9,10 A two-sided probability value of p < 0.05 
was considered to be  statistically significant.

RESULTS

Demographic and Clinicopathological 
Characteristics
A total of 479 BC patients from METABRIC and 449 BC 
patients from TCGA were included in this study. Baseline 
clinical and pathological characteristics of the study participants 
in the training and two validation cohorts were listed in Table 1. 
The median age of patients was 61.11, 60.57, and 60  years in 
the training and two validation cohorts, respectively. The rates 
of lung metastasis were 8.26, 7.24, and 3.56% in the training 
and two validation cohorts, respectively.

Identification Candidate Lung 
Metastasis-Related miRNAs in the Training 
Cohort
The METABRIC dataset includes 1,302 BC samples, of which 
479 (36.79%) of them reached the inclusion criteria for the 
analysis of identifying DEmiRNAs. About 327 samples were 
randomly assigned as a training cohort and the rest were 
assigned as the internal validation cohort based on a computer 
number generator. The flow chart of the study design was 
showed in Figure  1. A total of 184 miRNAs (p  <  0.05) were 
identified to be  differentially expressed between patients with 
lung metastasis and patients without metastasis (Figure  2A; 
Supplementary Table S2). Around 20 most significantly 
upregulated and downregulated miRNAs were selected to conduct 
correlation analysis (upregulated in lung metastasis patients: 
miR-663, miR-210, miR-1,202, miR-1973, miR-17, miR-18a, 
miR-301a, miR-135b, miR-20a, miR-17*; down-regulated in lung 
metastasis patients: miR-451, miR-26b, miR-199b-5p, miR-30a*, 
miR-10a, miR-10b, miR-30a, miR-199a-3p, miR-199a-5p, and 
miR-99a; Supplementary Figure S1). Four miRNAs (miR-30a*, 
has-miR-199a-3p, miR-99a, and miR-18a) were dropped from 
highly correlated pairs (r  >  0.8) to reduce multicollinearity 
and improve stability for subsequent model selection.

9 http://www-01.ibm.com/software/uk/analytics/spss/
10 http://www.Rproject.org

Development of an Eight-miRNA Signature 
to Distinguish Lung Metastasis Status in 
BC Patients
In the training cohort, we used LASSO-based logistic regression 
and identified eight miRNAs from the 16 DEmiRNAs, which 
were as follows: miR-663, miR-210, miR-17, miR-301a, 
miR-135b, miR-451, miR-30a, and miR-199a-5p (Figures 2B,C). 
The eight-miRNA based risk score was calculated based on 
their logistic coefficients. An optimal cut-off point was 
determined according to ROC. We  then divided samples into 
a low-risk (risk score  ≤  0.168) and a high-risk (risk 
score  >  0.168) group. The distributions of the miRNA-based 
risk score, overall survival (OS), OS status, and the expression 

TABLE 1 | Demographics of the samples chosen for the study.

Variables Training cohort 
(n = 327)

Internal 
validate cohort 

(n = 152)

External 
validate cohort 

(n = 449)

Median age at 
diagnosis in years 
(IQR)

61.11 (51.09–
68.99)

60.57 (50.94–
70.25)

60.00 (71.00–
67.00)

Median follow up time 
from diagnosis in days 
(IQR)

3,318 (1916–
4,719)

3,144 (1781–
4,479)

343.5 (114–
1,108)

Lung metastasis status
 No metastasis 300 141 433
 Lung metastasis 27 11 16
Pam50 subtype

 Luminal A 151 78 205
 Luminal B 83 37 66
 HER2 26 7 21
 Basal like 46 22 100
 Normal breast-like 21 8 14
 Unknown 0 0 43
TNM stage

 1 203 93 152
 2 114 58 281
 3 8 1 14
 4 2 0 2
ER status

 Positive 259 118 304
 Negative 68 34 124
 Unknown 0 0 21
PR status

 Positive 187 87 270
 Negative 142 65 156
 Unknown 0 0 23
HER2 status

 Positive 41 9 53
 Negative 286 143 248
 Unknown 148
Menopausal state

 Pre 71 32 84
 Post 256 120 312
 Peri 0 0 19
 Unknown 0 0 34
Vital status

 Alive 198 86 435
 Dead 129 66 14

PAM50, prediction analysis of microarray 50; ER, estrogen receptor; PR, progesterone 
receptor; HER2, human epithelial growth factor receptor 2; and TNM, the tumor node 
metastasis.
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profiles of eight miRNAs in the training cohort were shown 
in Figure  2D. The five risky upregulated miRNAs identified 
in lung metastasis cases exhibited high expression in the 
high-risk group and the three protective downregulated miRNAs 
had high expression in the low-risk group. And the patients 
with higher risk scores tended to have poorer prognoses, 
yet failed to reach a significant level (p  =  0.078) (Figure  2E). 
Age stratified analysis indicated that miRNAs-based risk score 
predicted prognosis well in people aged 45–70  years 
(Supplementary Figure S2).

Establishment of a Nomogram for 
Predicting Lung Metastasis Status 
Incorporating miRNAs Signature and 
Clinical-Related Factors
In the training cohort, according to the results of univariate 
logistic regression analysis, the eight-miRNA signature, and 
five clinical risk factors (age at diagnosis, tumor size, grade, 
TNM stage, and HER2 status) with values of p less than 0.1 
were included in multivariate regression analysis for assessing 
the independent risk factors for lung metastasis (Table  2). A 
multivariate logistic regression analysis was used to develop a 
nomogram model and found age at diagnosis, TNM stage, 
and the eight-miRNA signature significantly increased the 
likelihood of lung metastasis (Figure  3). The AUC of the 
miRNA-based nomogram model was 0.774 (95% CI, 0.669–0.879) 
in the training cohort (Table  3; Figure  4A). The calibration 
curve of the miRNA-based nomogram was very close to the 
standard 45-degree diagonal line, which showed good calibration 
in the training cohort (Figure  4D).

Assessment of the Eight-miRNA Signature 
and Nomogram Model in Validation 
Cohorts
We then examined the predictive ability of our eight-miRNA 
signature and nomogram model in two validation cohorts. The 
distributions of the miRNA-based risk score, OS, OS status, 
and the expression profiles of predictive miRNAs in the internal 
validation cohorts have been shown in Supplementary Figure S3A. 
The eight-miRNA signature and miRNA-based nomogram model 
displayed an AUC of 0.754 (95% CI, 0.561–0.946) and 0.763 
(95% CI, 0.597–0.929) for lung metastasis risk prediction, 
respectively (Table  3; Figure  4B). The calibration curve of the 
miRNA-based nomogram also exhibited favorable accordance 
between the predicted risk and the actual risk in the internal 
validation cohort (Figure  4E).

An independent external validation cohort of 449 patients 
who fulfilled the same requirements as above was recruited 
from the TCGA dataset. A total of seven of the eight miRNAs 
identified in our study were found in the TCGA miRNA 
dataset (the exception being miR-663). The distributions of 
the miRNA-based risk score, OS, OS status, and the expression 
profiles of predictive miRNAs in the external validation 
cohorts has been shown in Supplementary Figure S3B. 
Among them, the elevated expression of four miRNAs was 
significantly associated with poorer OS and disease-free 
survival (DFS) (miR-210, miR-451a, miR-135b, and miR-17) 
(Figures 5A–D,F–I). In the meantime, the higher expression 
of miR-30a indicated better OS and DFS (Figures  5E,J). 
Due to the different sequence platforms used in the external 
validation cohort, the risk score of the external validation 

FIGURE 1 | Study design. METABRIC, molecular taxonomy of BC international consortium; LASSO, the least absolute shrinkage and selector operation; KEGG, 
Kyoto encyclopedia of genes and genomes; Abs, absolute value; FC, fold change; miRNA, microRNA; and TCGA, the cancer genome atlas.
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FIGURE 2 | Parameter selection to develop an eight-miRNA signature to distinguish lung metastasis status of breast cancer. (A) Volcano plot of miRNAs expression 
in the METABRIC dataset. (B) 3-fold cross-validation for parameter selection via minimum criteria in the LASSO model. Two dotted vertical lines were drawn at the 
optimal values by using the minimum criteria (the value of lambda that gives a minimum mean cross-validated error) and the one SE of the minimum criteria (the 
value of lambda that gives one SE away from the minimum error). (C) LASSO coefficient profiles of the 16 LM-related differentially expressed miRNAs (DEmiRNAs) in 
the training cohort. Each curve corresponds to a miRNA. The coefficient profile plot was against the log (lambda) sequence. The dotted vertical line was drawn at the 
value lambda = 0.01718646 selected by using 3-fold cross-validation via minimum criteria, where optimal lambda resulted in eight nonzero coefficients. (D) The 
distribution of risk score, overall survival (OS), vital status, and the expression profiles of eight-miRNA in the training cohort. (E) Kaplan-Meier (KM) curves of OS of 
breast cancer patients stratified by eight-miRNA risk score in the training cohort. METABRIC, molecular taxonomy of breast cancer international consortium; LASSO, 
the least absolute shrinkage and selector operation; miRNA, microRNA; LM, lung metastasis; and DEmiRNAs, differentially expressed miRNAs.
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cohort was constructed using seven miRNAs. An optimal 
cut-off point was determined by ROC to dichotomize the 
samples into low and high-risk groups. Patients with higher 
miRNA risk scores tended to have a poorer prognosis than 
those with lower risk scores (Figures  5K,L). Other than 
predicting OS and DFS, the miRNA risk score was also 
significantly associated with the risk of lung metastasis in 
univariate and multivariate logistic regression analysis 
(Table 4). The miRNA signature and miRNA-based nomogram 
model displayed an AUC of 0.711 (95% CI, 0.608–0.815) 
and 0.925 (95% CI, 0.846–1.000) for the estimation of lung 

metastasis risk respectively (Table 3; Figure 4C). The calibration 
plot showed that the predicted risks of the nomogram were 
in good accordance with the actual risks (Figure  4F).

Comparison With Other Prognostic 
Markers
Currently, the conventional TNM staging system is the standard 
tool for risk evaluation in clinical practice. When comparing 
the AUC, we found that the miRNA-based prediction nomogram 
achieved better predictive accuracy than the TNM stage in 
the training cohort and two validation cohorts (Table  3). NRI 
and IDI were employed to compare the discriminative ability 
between our model and the TNM stage. Compared the TNM 
stage alone, the NRI values for miRNA-based prediction 
nomogram were 0.216 (95% CI, 0.048–0.384, value of p = 0.012), 
0.307 (95% CI, 0.020–0.594, value of p  =  0.036) and 0.308 
(95% CI, 0.081–0.535, value of p  =  0.008) in the training 
cohort and two validation cohorts, respectively (Table  5). The 
IDI values for miRNA-based prediction nomogram were 0.065 
(95% CI, 0.015–0.115, value of p  =  0.011), 0.093 (95% CI, 

TABLE 2 | Risk factors for lung metastasis (LM) in training cohort.

Univariate analysis Multivariate analysis

OR (95% CI) p value OR (95% CI) p value

miRNA score 1.898 (1.237–
2.912)

0.0033 1.651 (1.046–
2.606)

0.0311

Age at 
diagnosis

0.583 (0.330–
1.020)

0.0587 0.486 (0.275–
0.862)

0.0134

Tumor size 1.499 (1.148–
1.958)

0.0030

Grade 3.129 (0.824–
11.884)

0.094

TNM stage 3.494 (1.905–
6.407)

<0.0001 4.025 (2.078–
7.795)

<0.0001

ER status 0.738 (0.298–
1.824)

0.511

PR status 1.085 (0.487–
2.416)

0.842

HER2 status 2.759 (1.087–
7.005)

0.0328

Hormone 
therapy

0.563 (0.253–
1.254)

0.1599

LM, lung metastasis; miRNA, microRNA; ER, estrogen receptor; PR, progesterone 
receptor; HER2, human epidermal growth factor receptor 2; and TNM, the tumor node 
metastasis.

TABLE 3 | Area under the receiver operating characteristics curve (AUC) of 
prognostic indicators for lung metastasis in breast cancer (BC).

Variables Training cohort Internal 
validation cohort

External 
validation cohort

miRNA score 0.681 (95% CI, 
0.589–0.774)

0.754 (95% CI, 
0.561–0.946)

0.711 (95% CI, 
0.608–0.815)

Age at diagnosis 0.403 (95% CI, 
0.290–0.516)

0.282 (95% CI, 
0.117–0.448)

0.623 (95% CI, 
0.479–0.768)

TNM stage 0.727 (95% CI, 
0.628–0.825)

0.583 (95% CI, 
0.407–0.759)

0.840 (95% CI, 
0.716–0.963)

Nomogram model 0.774 (95% CI, 
0.669–0.879)

0.763 (95% CI, 
0.597–0.929)

0.925 (95% CI, 
0.846–1.000)

TNM, the tumor node metastasis; AUC, area under the receiver operating 
characteristics curve.

FIGURE 3 | Development and assessment of the miRNA-based nomogram. Constructed a miRNA-based nomogram to predict LM for BC patients in the training 
cohort, with age at diagnosis, stage, and eight-miRNA signature incorporated. LM, lung metastasis; BC, breast cancer; and miRNA, micro RNA.
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0.021–0.165, value of p  =  0.011), and 0.025 (95% CI, −0.048–
0.098, value of p  =  0.500) in the training cohort and two 
validation cohorts, respectively (Table  5). Both NRI and IDI 
indicated a superior predictive ability of our model compared 
to the TNM staging system.

Decision-curve analysis was conducted to compare the clinical 
use of our nomogram to that of the TNM staging system 
(Stewart et  al., 2005; Figures  4G–I). The decision curves in 
both the training and external validation cohorts showed that 
if the threshold probability was between 0 and 0.60 (in the 
internal validation cohort, the threshold probability was between 
0 and 0.40), using the miRNA-based nomogram to predict 
lung metastasis added more benefit than treating either all or 
no patients. DCA also indicated that the net benefit of the 
miRNA-based nomogram model was comparable, with several 
overlaps, or even superior to the TNM staging system. Overall, 
these results suggested the superiority of the miRNA-based 
nomogram for its lung metastasis predictive performance when 
compared to the TNM stage.

Identification of Potential Targets for 
Predictive miRNAs and Their Roles in Lung 
Metastasis
We identified the gene targets for predictive miRNAs using 
in silico predictions (TargetScan, miRWalk, and miRDB) and 
experimentally verified microRNA database (miRTarBase). 
We  also acquired matched mRNA transcriptome data of the 
patients enrolled in the analysis of identifying DEmiRNAs. 
Around 3,791 genes were differentially expressed, of which 
1,710 were upregulated and 2,081 were downregulated 
(Figure  6A; Supplementary Table S3). The benefit of using 
matched mRNA dataset was that it acted as an approach to 
be  the functional validation of targets genes identified by the 
prediction algorithm (Krishnan et  al., 2015). We  further used 
Venn diagram to found the overlap between DEmRNAs and 
the gene targets for miRNAs and proceeded to the subsequent 
analysis (Figure  6B; Supplementary Table S4).

Gene ontology and Kyoto Encyclopedia of Genes and 
Genomes pathway enrichment analyses were performed for 
the overlapped target genes of each predictive miRNAs. Among 
pro-metastatic miRNAs, miR-17 mainly interfered with cell 
cycle arrest (BP), mitotic G1/S transition checkpoint (BP), 
positive regulation of autophagy (BP), signal transduction by 
p53 class mediator (BP), focal adhesion (KEGG), signaling 
pathways regulating pluripotency of stem cells (KEGG), 
regulation of actin cytoskeleton (KEGG), and hippo  
signaling pathway (KEGG; Supplementary Figures S4A,B). 
miR-210 negatively influenced lactate metabolic process  
(BP), post-embryonic animal organ development (BP),  
and negative regulation of vascular permeability (BP; 
Supplementary Figure S4C). Another pro-metastatic miR-663 
potentiated the invasion of tumor cells by targeting actin 
filament polymerization (BP), cell-substrate junction assembly 
(BP), cell-substrate junction assembly (BP), focal adhesion 
assembly (BP), and actin filament organization (BP; 
Supplementary Figure S4D). The protective miR-30a was found 
able to restrain PI3K-Akt signaling pathway (KEGG), Ras 

signaling pathway (KEGG), IL-17 signaling pathway (KEGG), 
estrogen signaling pathway (KEGG), MAPK signaling pathway 
(KEGG), Wnt signaling pathway (KEGG), and ERBB signaling 
pathway (KEGG; Supplementary Figure S4E). No terms were 
enriched in the enrichment analysis of other miRNAs alone.

These miRNAs functioned together in the organism, so then 
we  tried to identify the role of five upregulated or three 
downregulated miRNAs as a whole. Hub genes of the  
target genes for five upregulated or three downregulated  
miRNAs were generated to identify central elements  
of pro-metastatic and anti-metastatic biological networks 
(Supplementary Table S5). miRNA-mRNA interaction networks 
of the hub genes of five upregulated or three downregulated 
miRNAs were plotted (Figures  6C,D). The metastatic cascade 
is composed of a series of sequential events that involve cell 
detachment from the primary tumor, invasion of these cells 
into surrounding tissue, intravasation migration, arrest, and 
extravasation into distant tissues, and formation of metastasis 
(Lambert et  al., 2017). GO analysis was also performed for 
the hub genes of five upregulated or three downregulated 
miRNAs (Figures  6E,F; Supplementary Table S6). We  found 
our predictive miRNAs participated in most of the above events 
and thereby promoting lung metastasis. They suppressed the 
adhesion between cancer cells and matrix facilitated the 
vasculature development and hematogenous metastasis, promoted 
proliferation, and then adapted to the lung so as to form 
the metastasis.

miR-30a and miR-135b Have Unique Roles 
in Lung Metastasis of BC
In order to determine whether these eight predictive miRNAs 
were unique to lung metastasis in BC patients, we  first 
identified DEmiRNAs between patients with lung metastasis 
only and patients with distant metastasis except for the lung 
(Supplementary Tables S7, S8). Baseline clinical and 
pathological characteristics of the study participants in the 
comparison were listed in Table  6. Compared to patients 
with distant metastasis except for the lung, protective miR-30a 
was found to be downregulated in patients with lung metastasis 
only. On the contrary, miR-135b was upregulated in patients 
with lung metastasis only. In addition, we  recognized 
DEmiRNAs between patients with distant metastasis except 
for the lung and patients without metastasis (Table  6; 
Supplementary Tables S7, S8). The expression levels of 
miR-135b and miR-17 were downregulated in patients with 
distant metastasis except for the lung. In order to further 
confirm whether these three miRNAs were lung-metastasis-
specific in BC patients, we  performed dot plots to see their 
expression levels in patients with distant metastasis except 
for the lung, patients with lung metastasis only, and patients 
without metastasis (Figure 7). The expression level of miR-30a 
was extremely low in BC patients with lung metastasis, while 
the expression level of miR-135b was extremely high in BC 
patients with lung metastasis. These analyses of identifying 
DEmiRNAs in different subgroups of BC patients showed 
the unique roles of miR-30a and miR-135b in lung 
metastasis of BC.
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Pan-Cancer Analysis of the Expression 
Levels of Eight Predictive miRNAs in 
Patients With Lung Metastasis and 
Without Metastasis
We performed differential miRNA expression analyses between 
patients with lung metastasis and patients without metastasis 

in six cancer types (ACC, BLCA, SARC, SKCM, CESC, and 
STAD; Supplementary Tables S9, S10). The expression level 
of miR-663 was not detected in these datasets. The distributions 
of the expression levels of these predictive miRNAs in six 
cancer types were also presented (Supplementary Figures S5A–F). 
Combined analyses indicated that compared to patients without 

A B C

D E F

G H I

FIGURE 4 | Assessment of the miRNA-based nomogram. Receiver operating characteristic (ROC) curves of eight-miRNA signature, age at diagnosis, stage, and the 
miRNA-based nomogram model predicting LM in (A) training cohort, (B) internal validation cohort, and (C) external validation cohort. Calibration plots for miRNA-
based nomogram model predicting LM in the (D) training cohort, (E) internal validation cohort, and (F) external validation cohort. Calibration curves depict the 
calibration of the model in terms of the agreement between the predicted risks of LM and the observed outcomes of LM. The y-axis represents the actual LM rate. 
The x-axis represents the predicted LM risk. The dashed line (the 45-degree diagonal line) represents a perfect prediction by an ideal model, and the black solid line 
represents the performance of the nomogram of which a closer fit to the diagonal dotted line represents a better prediction. Decision curve analysis of the miRNA-
based nomogram model and tumor staging system in (G) training cohort, (H) internal validation cohort, and (I) external validation cohort. The y-axis displays the net 
benefit. Solid black line: net benefit when all breast cancer patients are considered as not having the LM; solid gray line: net benefit when all breast cancer patients are 
considered as having LM. Solid red line: net benefit when all breast cancer patients are considered according to the tumor staging system. Solid blue line: net benefit 
when all breast cancer patients are considered according to the miRNA-based nomogram model. The net benefit was calculated by subtracting the proportion of all 
patients who are false positive from the proportion who are truly positive, weighting by the relative harm of giving up treatment compared with the negative 
consequences of unnecessary treatment (Vickers et al., 2008). miRNA, microRNA; ROC, receiver operating characteristic; LM, lung metastasis; and BC, breast cancer.
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FIGURE 5 | Survival curves of BC patients stratified by different variables. KM curves of overall survival of breast cancer patients stratified by (A) mir-210 
expression, (B) mir-17 expression, (C) mir-135b expression, (D) mir-451a expression, (E) mir-30a expression, and (K) miRNA risk score in the external validation 
cohort. Kaplan-Meier curves of disease-free survival of breast cancer patients stratified by (F) mir-210 expression, (G) mir-17 expression, (H) mir-135b expression, 
(I) mir-451a expression, (J) mir-30a expression, and (L) miRNA risk score in the external validation cohort. miRNA, microRNA; BC, breast cancer.
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metastasis, miR-210 was upregulated in ACC and SARC patients 
with lung metastasis. The expression level of miR-199a-5p was 
higher in BLCA patients with lung metastasis, whereas the 
expression level of miR-199a-5p was lower in SARC patients 
with lung metastasis. miR-17 was upregulated in SARC patients 
with lung metastasis. Elevated expression levels of miR-135b 
were detected in ACC patients with lung metastasis. Compared 
to patients without metastasis, the expression level of miR-30a 
was suppressed in ACC patients with lung metastasis.

DISCUSSION

Based on Surveillance, Epidemiology, and End Results (SEER) 
database, the median survival time for BC patients with lung 
metastases was 21  months, and only 15.5% of the patients 
were alive for more than 3  years (Xiao et  al., 2018). Once 
metastasis occurs, the disease is largely incurable. Identifying 
effective predictive biomarkers to construct an accurate 
nomogram model to predict the lung metastasis status of BC 
patients is an advisable choice applied in the clinical practice. 
At present, the TNM staging system is commonly used to 
assess the metastasis probability of BC patients. But as discussed 
above, a single clinical parameter has limited power of outcome 
prediction. We  put forward the idea for the first time that 
BC patients with lung metastasis might have unique 
clinicopathologic characteristics and miRNA expression profiles, 
which could distinguish themselves from those who had no 
lung metastasis.

Subgroup analysis suggested that miR-30a and miR-135b 
have distinct roles in lung metastasis of BC patients. miR-30 
has been reported to be  able to stabilize pulmonary vessels 

and inhibit pulmonary vascular hyperpermeability in the 
premetastatic phase (Qi et  al., 2015). The role of miR-135b 
in BC patients remains controversial. miR-135b reduces the 
proliferation of ERα-positive BC cells (Aakula et  al., 2015), 
but promotes the proliferation and invasion of triple-negative 
breast cancer (TNBC) by downregulating APC expression (Lv 
et al., 2019). TNBC especially tends to metastasize to the lungs 
(Foulkes et al., 2010), which may partly explain the uniqueness 
of miR-135b to the lung metastasis. The precise roles of these 
miRNAs in the lung have been studied to some extent, yet 
further research is needed to fill the gap.

The significance of miRNAs is better appreciated from the 
aspect of their potential functional impact on biological pathways, 
as these influence the outcomes for the patient (Krishnan et al., 
2015). Cancer metastasis is a complicated process, and the 
outcome of metastasis depends on the interactions between 
cancer cells and a given microenvironment. We  could see that 
the targets for the identified miRNAs were enriched for cell 
proliferation, invasion, and migration, which participated in 
the whole regulatory process of metastasis. During lung 
metastasis, metastatic tumor cells will rewrite their biology 
and expression profiles to adapt to the distant microenvironment, 
which endows tumor cells with full competence for outgrowth 
in the lung. Therefore, we  also identified some adaptations 
specific to the lung microenvironment. The target of miR-30a, 
SEMA3A, has been reported to modulate distal pulmonary 
epithelial cell development and alveolar septation, which has 
also been found upregulated in patients with lung metastasis 
(Becker et  al., 2011). Transforming growth factor beta (TGFβ) 
promotes metastasis of BC to the lungs but it is dispensable 
to bone metastasis (Chen et  al., 2018). We  identified “positive 
regulation of TGFβ production” enriched in patients with lung 
metastasis. Terms concerning lung such as “lung development” 
and “epithelial tube branching involved in lung morphogenesis” 
have also been identified in GO analysis.

We also conducted a pan-cancer analysis to figure out 
whether the eight predictive miRNAs were specific to BC. 
Some of the miRNAs had consistent effects in different cancer 
types, such as miR-30a, miR-17, miR-451a, and miR-135b, 
while others showed controversial effects, such as miR-210, 
miR-301a, and miR-199a. Previous studies also identified the 
role of these predictive miRNAs in lung metastasis of other 
types of cancer (Qi et  al., 2015; Kai et  al., 2016; Jin et  al., 
2017; Xu et  al., 2019; Wang et  al., 2020). miR-17, miR-135b, 
and miR-210 facilitate cancer cells to metastasize to the lungs, 

TABLE 4 | Risk factors for lung metastasis in external validation cohort.

Univariate analysis Multivariate analysis

OR (95% CI) p value OR (95% CI) p value

miRNA 
score

2.748 (1.299–
5.816)

0.0082 4.207 (1.440–
12.290)

0.0086

Age at 
diagnosis

1.678 (0.861–
3.268)

0.1277 1.748 (0.811–
3.769)

0.1540

TNM stage 29.345 (9.153–
94.086)

<0.0001 32.540 (8.986–
117.830)

<0.0001

TNM, the tumor node metastasis.

TABLE 5 | The improvement of miRNA-based nomogram in predicting lung metastasis according to net reclassification improvement (NRI) and integrated 
discrimination improvement (IDI).

Training cohort Internal validation cohort External validation cohort

NRI (95% CI) p IDI (95% CI) p NRI (95% CI) p IDI (95% CI) p NRI (95% CI) p IDI (95% CI) p

0.216 (0.048–
0.384)

0.012 0.065 
(0.015–
0.115)

0.011 0.307 (0.020–
0.594)

0.036 0.093 
(0.021–
0.165)

0.011 0.308 (0.081–
0.535)

0.008 0.025 
(−0.048–

0.098)

0.5

NRI, net reclassification improvement; IDI, the integrated discrimination improvement; and P, p value.
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FIGURE 6 | Identification of potential targets for predictive miRNAs and their role in lung metastasis. (A) Volcano plot of mRNAs expression in the METABRIC 
dataset. (B) Venn diagram was plotted to show the overlap between differentially expressed mRNAs (DEmRNAs) and gene targets for predictive miRNAs. The 
overlap of each predictive miRNA was used in subsequent analysis. miRNA-mRNA interaction networks of the hub genes of (C) five upregulated or (D) three 
downregulated predictive miRNAs. Enriched metastasis-related gene ontology (GO) terms of the hub genes of (E) five upregulated or (F) three downregulated 
predictive miRNAs. miRNA, microRNA; METABRIC, molecular taxonomy of breast cancer international consortium; DEmRNAs, differentially expressed mRNAs; and 
GO, gene ontology.
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while miR-30a and miR-451a suppress lung metastasis, which 
exerts similar effects to our results. The lack of research and 
missing data of miR-663 suggests it can serve as an appealing 
target for future research. In addition, the notion that miRNAs 
exert both oncogenic and tumor-suppressive effects has been 
put forward (Rohan et  al., 2019). An individual miRNA could 
regulate the expression of hundreds of genes. The effect of 
miRNA in each situation depends on the balance of the 
pro-tumor and anti-tumor pathways. Multiple biological factors 
can interfere with the balance, such as the interplay between 

cells and microenvironment, energy supply, and so on. Although 
two miRNAs have conflicting roles in pan-cancer analysis, the 
overall consistency indicated the significant importance of these 
eight miRNAs in lung metastasis.

The univariate and multivariate logistic regression analysis 
showed that the eight-miRNA signature could be an independent 
risk factor in training and validation cohorts. The AUC of 
eight-miRNA signature alone for lung metastasis prediction 
showed a little bit smaller than that of the TNM staging 
system in training and external validation cohort. Therefore, 
the comprehensive predictive nomogram was constructed 
integrating the risk score and conventional clinical parameters 
including stage and age, all of which were verified as an 
independent risk factor using univariate and multivariate 
logistic regression analysis for the lung metastasis status of 
BC patients. Apart from AUC, the calibration plot was also 
used to assess the discrimination performance of the nomogram 
model. Although the overall trend was in line with the 45-degree 
ideal diagonal line, yet the calibration plot showed some 
deviation, which may due to the limited events and thus 
affecting the power. NRI, IDI, and DCA were used to evaluate 
the prediction ability between miRNA-based nomogram and 
the TNM staging system. The results of NRI indicated the 
significant improvement of miRNA-based nomogram in all 
three cohorts, and the results of IDI suggested that the 
nomogram model improved the predictive power, yet failed 
to reach a significant level in the external validation cohort. 
DCA results also indicated that our miRNA-based nomogram 
improved current treatment standards, while the ideal model 
was the model with the positive net benefit at any 
given threshold.

However, several limitations of our study should 
be  acknowledged. Firstly, due to the different sequence 
platforms, only seven of eight predictive miRNAs were 
identified in the external validation cohort, so we  did not 
adopt the risk scores and cut-off points generated in the 
training set as previous research suggested (Volinia and Croce, 
2013; Krishnan et  al., 2015; Rohan et  al., 2019). Secondly, 
the limited number of events in the cohorts may affect the 
statistical power. Among DEmiRNAs that were not selected 
by LASSO method, some have also been reported to be related 
to lung metastasis (Ma et  al., 2010). HER2 overexpression 
has been proved to be a risk for the development of visceral-
only metastasis including lung (Bartmann et  al., 2017). 
However, HER2 status reached a significant level in univariate 
logistic regression but failed in multivariate logistic regression, 
so it was not included in the nomogram model. Last but 
not least, we  have emphasized the complexity of miRNA 
regulation previously. Therefore, experiments for revealing 
and verification of their roles in lung metastasis are crucial 
in the future.

In this study, we  constructed a nomogram model based on 
multiple lung metastasis-related miRNAs and clinical risk factors 
to predict the lung metastasis of BC patients. We  screened 
the high-throughput sequence data from the METABRIC database 
to explore DEmiRNAs and used the LASSO method to identify 
an eight-miRNA signature. The risk score was calculated by 

TABLE 6 | Demographics of the samples recruited in subgroup analysis.

Variables lung 
metastasis 
only (n = 6)

distant 
metastasis 

except for the 
lung (n = 54)

without 
metastasis 

(n = 433)

Median age at diagnosis 
in years (IQR)

65 (56–71.5) 57 (47–63.25) 60 (50.5–67.00)

Median follow up 
time from diagnosis in 
days (IQR)

1,233 (645.3–
3,578)

1,096 (190.5–
2,405)

343.5 (109.3–
1,064)

Pam50 subtype
 Luminal A 0 22 201
 Luminal B 1 11 64
 HER2 0 5 21
 Basal like 2 6 94
 Normal breast-like 1 2 13
 Unknown 2 8 40
TNM stage

 1 0 7 151
 2 2 27 276
 3 4 14 5
 4 0 6 1
ER status

 Positive 1 37 115
 Negative 5 12 297
 Unknown 0 5 21
PR status

 Positive 1 31 266
 Negative 5 19 144
 Unknown 0 4 23
HER2 status

 Positive 1 2 52
 Negative 1 17 241
 Unknown 4 35 140
Menopausal state

 Pre 1 12 82
 Post 5 32 299
 Peri 0 2 19
 Unknown 0 8 33
Patient metastatic sites

 Lung 6 0 0
 Bone 0 29 0
 Brain 0 3 0
 Liver 0 7 0
 Multi-organ Metastasis 0 15 0
 No metastasis 0 0 433
Vital status

 Alive 1 16 433
 Dead 5 38 0

PAM50, prediction analysis of microarray 50; ER, estrogen receptor; PR, progesterone 
receptor; HER2, human epithelial growth factor receptor 2; and TNM, the tumor node 
metastasis.
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the multivariate logistic coefficient multiplied by the expression 
of the miRNA. Then the risk score and clinical risk factors 
were combined together to construct a miRNA-based nomogram, 
which was assessed by the calibration plot, ROC analysis, NRI, 
IDI, and DCA. Internal and external validation was also 
performed to evaluate the nomogram model. Functional 
enrichment analyses were performed to identify the potential 
biological roles of eight predictive miRNAs. Subgroup analysis 
of BC patients with different distant metastasis showed that 
miR-30a, miR-135b, and miR-17 have unique roles in lung 
metastasis of BC. Pan-cancer analysis of patients with lung 
metastasis or without metastasis in six types of cancer indicated 
the significant importance of eight predictive miRNAs in lung 
metastasis. A biomarker-based approach to accurately predict 
the metastasis status of BC patients is urgently needed in the 
era of precision medicine. Risk assessment is vital for making 
appropriate therapeutic decisions and follow-up strategies in 
BC patients. If a patient has a high probability to have lung 
metastasis in the future, we  might recommend the patient to 
take a close inspection of the lung and adopt advanced treatment. 
This model might be  able to perform well in all patients, for 
it was constructed based on large-scale datasets. In addition, 
this risk score was also a significant factor in affecting survival. 
Therefore, this nomogram could be used as a supportive graphic 
tool in clinical practice to facilitate treatment decisions of 
BC patients.

CONCLUSION

In our current study, we  identified eight predictive miRNAs 
from publicly available data and constructed an eight-miRNA 
based nomogram that incorporated other clinical parameters 
including stage and age to predict the lung metastasis status 
of BC patients, whose prediction power was better than that 
of conventional TNM stage system. Subgroup analysis suggested 
that miR-30a, miR-135b, and miR-17 may have unique roles 

in lung metastasis of BC patients. On the basis of the GO, 
KEGG enrichment, and pan-cancer analyses, the eight miRNAs 
played crucial roles in lung metastasis cascade. Therefore, our 
eight-miRNA-based nomogram might be  a vital tool for lung 
metastasis prediction in BC patients, aiding in developing 
personalized treatment strategies.
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GLOSSARY

BC Breast cancer
miRNAs MicroRNAs
METABRIC Molecular taxonomy of breast cancer international consortium
DEmiRNAs Differentially expressed miRNAs
TCGA The cancer genome atlas
AUC Area under the receiver operating characteristics curve
TNM The tumor node metastasis
NRI Net reclassification improvement
IDI The integrated discrimination improvement
DCA Decision-curve analysis
LASSO Least absolute shrinkage and selection operator
OS Overall survival
3' UTR 3' untranslated region
KM Kaplan-Meier
ROC Receiver operating characteristic curve
ER Estrogen receptor
PR Progesterone receptor
HER2 Human epidermal growth factor receptor 2
DEmRNAs Differentially expressed mRNAs
GO Gene ontology
KEGG Kyoto encyclopedia of genes and genomes
DFS Disease-free survival
SEER Surveillance, epidemiology, and end results
EMT Epithelial-mesenchymal transition
TGFβ Transforming growth factor beta
ACC Adrenocortical carcinoma
BLCA Bladder urothelial carcinoma
SARC Sarcoma
SKCM Skin cutaneous melanoma
CESC Cervical squamous cell carcinoma and endocervical adenocarcinoma
STAD Stomach adenocarcinoma
LM Lung metastasis
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