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ABSTRACT: In this study, a novel heterogeneous catalyst
(Fe3O4@β-CD@Pd) has been developed by the deposition of
palladium nanoparticles on the β-cyclodextrin-functionalized
surface of magnetic Fe3O4. The catalyst was prepared by a simple
chemical co-precipitation method and characterized extensively by
using Fourier transform infrared (FTIR) spectroscopy, thermog-
ravimetric analysis (TGA), X-ray diffraction (XRD), field-emission
scanning electron microscopy (FE-SEM), energy dispersive X-ray
spectroscopy (EDX), transmission electron microscopy (TEM), X-
ray photoelectron spectroscopy (XPS), and inductively coupled
plasma-optical emission spectrometry (ICP-OES) analyses. Here-
in, the applicability of the prepared material was evaluated for the
catalytic reduction of environmentally toxic nitroarenes to the
corresponding anilines. The catalyst Fe3O4@β-CD@Pd showed excellent efficiency for the reduction of nitroarenes in water under
mild conditions. A low catalyst loading of 0.3 mol % Pd is found to be efficient for reducing nitroarenes in excellent to good (99−
95%) yields along with high TON values (up to 330). Nevertheless, the catalyst was recycled and reused up to the 5th cycle of
reduction of nitroarene without any loss of significant catalytic activity.

1. INTRODUCTION
Designing new heterogeneous catalytic processes which are
environmentally friendly is still an ultimate goal for many
critical industrial processes and pharmaceutical applications.1−4

One approach to achieve the green socio-economic benefits is
to design new catalysts that are supported on bio-polymers,
supramolecules, and other scaffolding materials. The excellent
capabilities of these materials lie in improving the recyclability,
the selectivity, and the activity of catalysts as well as the rate of
the chemical reactions and high conversions and product
selectivity.5−7 In the past few years, cyclodextrins have been
widely used as a support in catalytic synthesis of bi-aryl and
aryl-olefinic compounds through Suzuki−Miyaura C−C which
produces a wide range of natural and medicinal compounds.
Palladium-based catalysts are of special interest to medicinal
and pharmaceutical industries due to the possibility of
producing a wide range of potential derivatives with biological
activities.8−10

Using β-cyclodextrin (β-CD)-supported catalysts has been
reported for many heterogeneous catalysts as palladium,
copper, iron, other metals, and mixed metal oxides.3,11 β-
CDs are relatively cheap, biodegradable, nontoxic, abundant,
and easily tunable supramolecule oligosaccharides with hydro-
phobic cone-shaped cavity and hydrophilic surface due to the
abundance of hydroxyl groups in the α-1,4 linked D-
glucopyranose units.12 Therefore, cyclodextrins are excellent
drug carriers that are widely used in the formulation processes

of the pharmaceutical industries. In addition to being water
soluble, cyclodextrins can be also easily functionalized and
modified which enable enormous benefit and opportunities
including selective solubility in a desired solvent and
application in catalysis.13 Due to its hydrophobic nature, the
cavity in β-CD can encapsulate small organic molecules, and
inclusion complexes are formed. Such formation of host-guest
molecules are deemed important in catalytic removal of
pollutants from air and water.14

Nitro-compounds are one of the major toxic pollutants that
are needed to be dealt with as they are being produced by
pesticides, dyes, and textile industries.15 Nitroarenes and other
aromatic nitro compounds are a commonly occurring pollutant
in industrial waste. Their presence in the environment can
have severe negative impacts due to their nonbiodegradable
and carcinogenic nature.16 The United States Environmental
Protection Agency (US-EPA) has classified nitroarenes as
priority pollutants under the clean water act because of the
dangers they pose and suggests maintaining their concen-
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tration (as low as 10.0 ng/mL) in natural water bodies.17

Therefore, reducing nitroarenes to less or nontoxic amines and
other nontoxic forms of compounds is considered an
important strategy for pollution prevention and clean up.
One of the most studies nitroarene derivatives in both
academia and industrial research is the reduction of 4-
nitrophenol (4-NP) to 4-aminophenol (4-AP). Noble
transition-metal-based nanoparticles such as Pd, Au, and Ag
are the active ingredients of the catalysts while impregnated
with solid support such as Fe3O4, r-GO, and kaolin which play
a significant role in the catalytic reduction of 4-NP.18−24

Recent literature survey also shows that using a cross-linked
Pd/β-CD system is a proven catalytic process for the reduction
of nitroarenes and related azo-dyes to amines.10,25−27

Moreover, in recent years, using magnetically responsive
materials like Fe3O4 (MNs)-core which are supported on
nano-structured transition metal heterogeneous catalysts is
gaining a lot of attention as they are environmentally friendly
and exhibit easiness of the recyclability of the catalysts.10,26

Such systems provide dynamic flexibility through which the
contact between the catalyst and reactants is enhanced, hence
increasing immensely the activity of the catalysts.20,28 These
special features of Fe3O4 encouraged us to pursue the
development of green and sustainable Fe3O4-based heteroge-
neous catalysts. Recently, our research group and by others
have explored Fe3O4-based heterogeneous catalysts for
important organic transformations, including chemoselective
N-arylation of O-alkyl primary carbamates,29,30 domino
synthesis of carbamates and unsymmetrical urea,31,32 nitro-
arene reduction,33 C−C cross-coupling,34,35 oxidative amina-

tion,36 A3 coupling,37 and ester synthesis.38 In the continuation
of our efforts, herein, we have synthesized and characterized
for the first time a β-cyclodextrin-functionalized Fe3O4-
supported Pd-nanocatalyst for the reduction of the toxic
nitro-arenes to the corresponding aniline derivatives.

Details synthesis of the catalyst is shown in Scheme 1. The
progress and identification of the products of the catalytic
reduction of nitroarenes are monitored by GC−MS.

2. MATERIALS AND METHODS
2.1. Chemicals and Reagents. All chemical reagents

including iron(III) chloride hexahydrate (FeCl3·6H2O; 98%),
Fe(II) sulfate heptahydrate (FeSO4·7H2O; 99%), ammonium
hydroxide (NH4OH; 30−33%), ethanol (EtOH; 96%), β-
cyclodextrin (β-CD; C42H70O35; 97%), palladium(II) acetate
(Pd(OAC)2; 99%), sodium borohydride (NaBH4; 98%), and
substituted nitroarenes were purchased from Aldrich. All
chemicals were of analytical grade and used without any
further purification. Ultrapure water was produced using a
Milli-Q Elix Essential 5 water purification system and used in
all experiments.

2.2. Synthesis of Fe3O4. Magnetic Fe3O4 was prepared by
mixing FeCl3·6H2O and FeSO4·7H2O in water under nitrogen
following the traditional co-precipitation method based on the
adopted literature procedure.39 Detailed synthesis of Fe3O4 has
been discussed in the electronic Supporting Information (ESI).

2.3. Functionalization of Fe3O4 with β-CD (Fe3O4@β-
CD). β-CD (1.0 g) was added to 75.0 mL of water and stirred
for 1.0 h until all β-CD dissolved completely. Fe3O4 (1.0 g)
was added to the aqueous solution of β-CD, and then, the

Scheme 1. Detailed Synthetic Procedure of the β-CD-Functionalized Fe3O4-Based Pd Nanocatalyst (Fe3O4@ β-CD@Pd)
Following the Reaction Conditions: (a) H2O, NH3, 90 °C, N2 (b) H2O, β-CD RT (c) EtOH, Pd(OAc)2, NaBH4, RT.
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mixture was stirred for another 4.0 h under room temperature
(RT) of 22 °C. After successful functionalization of Fe3O4 with
β-CD, the product Fe3O4@β-CD was separated with external
magnet and washed with ethanol and dried at 60 °C for use in
the next step.

2.4. Fabrication of the Catalyst Fe3O4@ β-CD@Pd
Fe3O4@ β-CD (1.0 g) was sonicated in 20.0 mL of ethanol

for 30 min; then, 2.25 mmol (0.50 g) of Pd(OAc)2 (dissolved
in 15.0 mL of ethanol) was added to the suspension of
Fe3O4@ β-CD and stirred at RT for 2 h. NaBH4 solution (2.5
mL of 0.25 M) was added dropwise with continuous stirring
for a period of 4 h. The product, Fe3O4@ β-CD@Pd, obtained
as black solid materials was collected through separation with
an external magnet, washed with ethanol (3 × 10.0 mL) to
remove unreacted materials. The final product was dried in
open air and stored for further application in nitroarenes
reduction. Overall, synthetic procedure of the catalyst is
presented in Scheme 1.

2.4. General Procedure for the Reduction of Nitro-
arenes. Ultrapure water (3.0 mL) containing 1.0 mmol of the
nitroarene substrate and 3.0 mg of the catalyst was stirred for a
period of 5.0 min at RT. Subsequently, 2.0 mmol of NaBH4 as
the reductant was added to the above mixture. The reaction
mixture was then stirred at 50 °C for an hour. The progression
of the reduction reaction was monitored by thin layer
chromatography (TLC) using hexane/ethyl acetate (3:1) as
the eluent. After completion of the reaction, the catalyst
Fe3O4@ β-CD@Pd was separated with an external magnet.
The reaction mixture was then extracted with ethyl acetate (3
× 10.0 mL) from the aqueous solution using a separatory
funnel. The combined organic phases were dried with
anhydrous Na2SO4, and finally, ethyl acetate was evaporated
to obtain the desired product. The product formation and yield
were determined by GC−MS.

Figure 1. FTIR spectra of Fe3O4 (A), pure β-CD (B), Fe3O4@ β-CD (C), and Fe3O4@ β-CD@Pd (D).

Figure 2. TGA curves for Fe3O4 (A), pure β-CD (B), Fe3O4@ β-CD (C), and Fe3O4@ β-CD@Pd (D).
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3. RESULT AND DISCUSSION
3.1. Characterization of the Catalyst Fe3O4@ β-CD@

Pd. The sequential functionalization of Fe3O4 with β-CD,
followed by the deposition Pd nanoparticles, is established by
FTIR spectra. For evidence, FTIR spectra of bare Fe3O4 (A),
pure β-CD (B), β-CD functionalized MNs Fe3O4@ β-CD (C),
and β-cyclodextrin functionalized Fe3O4-supported Pd nano-
particles Fe3O4@ β-CD@Pd (D) are shown in Figure 1. The
FTIR spectrum of Fe3O4 exhibits the characteristic band
attributed to the stretching vibration of Fe−O at 545 cm−1,
and the band at 3315 cm−1 is attributed to the O−H stretching
vibration of adsorbed water on the surface of Fe3O4 (curve A).
In the pure β-CD spectrum, appearance of strong bands at
3315, 2930, and 1642 cm−1 is attributed to the O−H
stretching vibration, asymmetric C−H stretching vibration,
and the C−O stretching vibration, respectively (curve
B).13,40,41

Other two characteristics bands of pure β-CD are observed
at 1160 and 1034 cm−1 which can be ascribed for the
symmetric and antisymmetric glycoside C−O−C vibration of
ether linkage in the β-CD ring.13,40,41 The presence of all of
these abovementioned bands in Fe3O4@ β-CD (curve C)
confirms the successful functionalization of Fe3O4 with β-CD.
In the FTIR spectrum of Fe3O4@ β-CD@Pd (curve D), the
appearance of characteristics bands at 2930, 1160, 1034, and
583 cm−1 clearly confirms the presence of β-CD and Fe3O4 in
the catalyst material. Also, a noticeable band shift in the FTIR
spectrum of Fe3O4@ β-CD@Pd from 3315 to 3394 cm−1 and
1642 to 1563 cm−1 reveals the effective decoration of β-CD
with Pd nanoparticles, which is comparable with the literature-
reported results.14,42

Thermal stability and nature of the component of the β-
cyclodextrin functionalized Fe3O4-supported Pd nanoparticles
Fe3O4@ β-CD@Pd is estimated by the TGA with an evaluated
weight % as the function of temperature. Figure 2 represents
the TGA curves of bare Fe3O4 (A), pure β-CD (B), β-CD
functionalized MNs Fe3O4@ β-CD (C), and β-cyclodextrin
functionalized Fe3O4-supported Pd nanoparticles Fe3O4@ β-
CD@Pd (D). The TGA analysis of bare Fe3O4 (Figure 2A)

indicates that there is only a 4% weight loss in the temperature
range of 30 to 800 °C, which may be attributed to the loss of
moisture content in the Fe3O4 sample. On the other hand, all
other TGA curves (Figure 2B−D), except for Fe3O4,
demonstrate a pseudo two-stage decomposition pattern as
the temperature increases. The initial stage of thermal
decomposition within 30−100 °C is associated with the
removal of moisture or remaining solvent content from the
nanocomposites. The subsequent stage involves the primary
mass loss, which entails mainly the removal of organic moieties
from the β-CD component. The TGA analysis clearly
demonstrates that Fe3O4 has been functionalized with β-CD,
as evidenced by the lower weight loss compared to pure β-CD
(Figure 2B, C). Furthermore, the deposition of Pd nano-
particles onto the functionalized surface of Fe3O4@β-CD
results in even lower weight loss in the composite Fe3O4@ β-
CD@Pd (Figure 2D), indicating an increase in the inorganic
component ratio. The amount of palladium in the composite is
semi-quantitatively estimated to be 8.08% by comparing the
mass loss of Fe3O4@ β-CD and composite Fe3O4@ β-CD@
Pd, which is found to be in good agreement with the ICP-OES
analysis result of 7.62% palladium content. The composite
materials exhibit excellent stability at temperatures of 300 °C
and above as there is no significant mass loss is observed.

The crystalline nature of the composite Fe3O4@ β-CD@Pd
is determined using XRD analysis. As shown in Figure 3,
comparison between the XRD patterns of bare Fe3O4 (A), β-
CD functionalized MNs Fe3O4@ β-CD (B), and β-cyclo-
dextrin functionalized Fe3O4-supported Pd nanoparticles
Fe3O4@ β-CD@Pd (C) is displayed to observe the sequential
modification of Fe3O4. All composite materials (Figure 3A−C)
exhibit characteristic peaks at 2θ = 30.2, 35.4, 43.2, 53.1, 57.2,
and 62.7 corresponding to the reflections of (220), (311),
(400), (422), (511), and (440).

The presence of these peaks indicates that the crystalline
core structure of Fe3O4 remains unchanged in all composites,
even after the functionalization with β-CD and deposition of
palladium nanoparticles on the modified surface. This confirms
that no phase transition occurred during the process and the

Figure 3. XRD pattern of bare Fe3O4 (A), Fe3O4@β-CD (B), and the catalyst Fe3O4@ β-CD@Pd (C).
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functionalization of the surface of Fe3O4 with palladium
nanoparticles. A similar behavior is observed in previously
reported Fe3O4-based functionalized materials43,44 and con-
firmed by the JCPDS card NO 75-1609 37.45 Additionally, the
XRD pattern of Fe3O4@ β-CD@Pd shows three extra peaks at
2θ = 40.1, 46.6, and 67.9 degrees, corresponding to the
reflection of (111), (200), (111), and (220). The presence of
these diffracted peaks confirms that the palladium nano-
particles are successfully deposited onto the β-CD function-
alized surface of magnetic Fe3O4.

13

The surface structure and morphology of the Fe3O4@β-
CD@Pd composite materials is analyzed using field-emission
scanning electron microscopy (FE-SEM). The FE-SEM image
of the Fe3O4@β-CD@Pd material is captured before its use in
catalytic reduction of nitroarenes reaction and represented in
Figure 3a. Additionally, the energy dispersive X-ray (EDX)
elemental composition and mapping spectra are studied during
the FE-SEM image recording. Figure 4b,c exhibits the
elemental composition EDX spectrum and mapping of the
composite material Fe3O4@β-CD@Pd which clearly demon-
strates that the magnetic Fe3O4 core is successfully function-
alized with β-CD. The surface of the β-CD functionalized
Fe3O4 is then further modified by the deposition of palladium
nanoparticles on the same surface. In addition, EDX spectrum
reveals that the palladium nanoparticles are evenly dispersed
on the surface of the Fe3O4@ β-CD@Pd composite materials.

The transmission electron microscopy (TEM) technique is
employed to investigate the physical characteristics of Fe3O4@
β-CD@Pd, such as its morphology, size, and crystallinity. The
TEM image that is displayed in Figure 5a illustrates that the
Fe3O4 nanoparticles are being coated onto an amorphous-

carbon film (a−c film) support. The nanoparticles appear to be
evenly dispersed on the a-c film and comprise numerous nearly
spherical particles based on the gray-scale contrasts. The

Figure 4. FE-SEM image and energy-dispersive X-ray spectrum (a and b; above) and energy dispersive X-ray (EDX) mapping (c and d; below) of
Fe3O4@ β-CD@Pd.

Figure 5. Bright field HRTEM micrographs showing (a) magnetic
Fe3O4 (b) surface-modified magnetic Fe3O4@β-CD and (c) Fe3O4@
β-CD@Pd nanoparticles. The inset in (a) and (c) shows the SAED
pattern. The encircled particle in (c) is shown in (d).
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aggregation that is observed in this thin cluster could be
attributed to the magnetic attraction between the nano-
particles. The statistical image analysis is used to determine the
crystal size distribution and reveals an average size of 17 ± 3.5
nm (SI, Figure S2). Additionally, lattice-resolved images
confirm that individual nanoparticle surfaces are free of any
sheathed amorphous phase and are being clean and smooth.
The selected area electron diffraction (SAED) pattern of Fe3O4
is displayed in the inset of the image in Figure 5a and indexed
to the polycrystalline face centered cubic Fe3O4 [(400), (511),
(422), (400), (311), and (220)] (JCPDS File No. 19-0629).
Figure 5b presents TEM images of Fe3O4@β-CD particles,
where the Fe3O4 nanoparticles are successfully grafted by the

β-CD matrix with an interplanar spacing of 2.94 Å
corresponding to the (220) plane of Fe3O4 being identified.

Figure 5c also displays TEM images of Fe3O4@β-CD@Pd
nanoparticles, where the mixture contains aggregated Fe3O4
and Pd nanoparticles, and the Pd nanoparticles are attached to
the β-Cd-functionalized Fe3O4@β-CD. The corresponding
SAED pattern of the sample shows diffraction peaks consistent
with the XRD analysis for both Fe3O4 and Pd nanoparticles.
Figure 5c displays the SAED rings that are matched with the
(111), (200), and (220) crystallographic planes of fcc-
structured Pd nanoparticles (JCPDS file No. 87-0638). An
interplanar spacing of 1.94 Å corresponding to the (200) plane
of Pd is also identified (Figure 5d). The topotactic growth of
Pd nanoparticles near the Fe3O4@β-CD matrix is demon-

Figure 6. XPS spectra of (a) full range, (b) C 1s, (c) O 1s (d) Pd 3d, and (e) Fe 2p of Fe3O4@β-CD@Pd.
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strated through HRTEM observation and SAED analysis.46

The TEM image of Fe3O4@β-CD@Pd after the fifth catalytic
cycle of nitroarene reduction is presented in Figure 9 along
with the corresponding SAED pattern exhibiting diffraction
peaks of Fe3O4 and Pd nanoparticles that are aligned with the
originally synthesized particles. No significant alterations in the
structure or morphology of the catalyst Fe3O4@β-CD@Pd are
detected after the fifth catalytic cycle (Figure 9).

The surface composition and chemical nature of the catalyst
Fe3O4@β-CD@Pd are evaluated by the XPS analysis. Figure
6a exhibits the full range XPS survey of Fe3O4@β-CD@Pd
which indicates the presence of expected C (286. 3 eV), Pd
(337.9 eV), O (530.9 eV), and Fe (717.1 eV) elements in the
catalyst material. The high-resolution XPS curve of carbon
(Figure 6b) reveals three characteristic peaks at 285.2, 286. 7,
and 288.4 eV in the C 1s region corresponding to the C−C,
C−OH, and C−O−C bond, which indicates the successful
functionalization of Fe3O4 with the β-cyclodextrin moiety.47

Figure 6c shows the XPS curve of O 1s and appearance of two
peaks at 530.0 and 531.8 eV which are responsible for Fe−O
and C−O bonds, respectively. The successful deposition of Pd
nanoparticles on the surface of β-CD-functionalized Fe3O4 is
confirmed by the high regulation XPS in the range of 330 to
350 eV (Figure 6d). The binding energies 335.57 and 340.3 eV
are attributed for Pd 3d5/2 and Pd 3d3/2, respectively. These
two intense peaks confirm the efficient formation of Pd
nanoparticles on the surface of the materials.

This observation has close resemblance with the reported
literature result.48 Figure 6e represents the Fe 2p scan of
Fe3O4@β-CD@Pd materials which exhibit two peaks at 710.6
and 723.6 eV, respectively. The appearance of these two
binding energy peaks is indicative of Fe 2p3/2 and Fe 2p1/2,
which confirms the presence of the Fe3O4 core in the material
Fe3O4@β-CD@Pd.49

After completing the state-of-art characterization of Fe3O4@
β-CD@Pd through employing various techniques such as
FTIR, TGA, XRD FE-SEM, EDX, TEM, and XPS, the precise
amount of palladium content present on the catalyst has been

estimated using ICP-OES analysis. The results from the ICP-
OES analysis reveal that the Fe3O4@β-CD@Pd catalyst
material has a palladium loading of 7.62% (w/w) or 0.72
mmol/g. Even in 1.04 g scale of ICP-OES analysis, the
Fe3O4@β-CD@Pd shows the same 0.72 mmol/g palladium
loaded in the materials. The details of the experimental
procedure for ICP-OES analysis for the determination of
palladium content in the catalyst material can be found in
Section 5 of the Supporting Information. All the physicochem-
ical characterization techniques which are used confirm that Pd
nanoparticles are effectively deposited on the β-CD-function-
alized surface of magnetic Fe3O4@β-CD.

3.2. Catalytic Activity of Fe3O4@β-CD@Pd for the
Reduction of Nitroarenes. After completing the state-of-art
characterization, the catalytic activity of Fe3O4@β-CD@Pd is
investigated for the reduction of nitro compounds. Initially, 2-
nitroaniline is chosen as the standard substrate for the
reduction reaction employing Fe3O4@β-CD@Pd as the
catalyst. The results for the optimization of catalyst screening
by varying the parameters such as catalyst loadings, temper-
ature, hydrogen source, and reaction times for the reduction of
2-nitroaniline are summarized in Table 1. The reaction
progress is monitored by thin layer chromatography (TLC).
The conversion and product yield are determined by gas
chromatography−mass spectrometry (GC−MS). Initially, the
reduction reaction is carried out in an aqueous medium in the
absence of Fe3O4@β-CD@Pd to check whether the reduction
reaction proceeded without the catalyst. Noticeably, 2-
nitroaniline is converted to only a trace amount of the desired
product after 60 min of stirring at room temperature in the
presence of 2.0 equivalent of NaBH4 (Table 1, entry 1).
However, 15−30% of the products are obtained in the
presence of 10.0 mg of bare Fe3O4 and β-CD functionalized
Fe3O4@β-CD (Table 1, entries 2−3) under the same reaction
conditions. Remarkably, the product yield is increased to 75%,
while 10.0 mg (0.6 mol % Pd) of Fe3O4@β-CD@Pd has been
used under the same investigated conditions (Table 1, entry
4). For verifying the compatibility of the use of hydrogen

Table 1. Optimization of the Reduction of 2-Nitroaniline Using Fe3O4@β-CD@Pd as the Catalysta

entry catalyst amount (mol % Pd) temp. (°C) hydrogen source time (min) yieldb

1 RT NaBH4 60 trace
2 Fe3O4 10 mg RT NaBH4 60 15
3 Fe3O4@ β-CD 10 mg RT NaBH4 60 30
4 Fe3O4@β-CD@Pd 10 mg (0.6) RT NaBH4 60 75
5 Fe3O4@β-CD@Pd 10 mg (0.6) RT HCOOH 60
6 Fe3O4@β-CD@Pd 10 mg (0.6) RT HCOONa 60
7 Fe3O4@β-CD@Pd 10 mg (0.6) RT N2H4 H2O 60
8 Fe3O4@β-CD@Pd 10 mg (0.6) RT isopropanol 60 18
9 Fe3O4@β-CD@Pd 10 mg (0.6) 50 ° C NaBH4 60 99
10 Fe3O4@β-CD@Pd 10 mg (0.6) 50 ° C NaBH4 40 99
11 Fe3O4@β-CD@Pd 10 mg (0.6) 50 ° C NaBH4 30 99
12 Fe3O4@β-CD@Pd 10 mg (0.6) 50 ° C NaBH4 20 90
13 Fe3O4@β-CD@Pd 5 mg (0.3) 50 ° C NaBH4 30 99
14 Fe3O4@β-CD@Pd 3 mg (0.2) 50 ° C NaBH4 30 95
15 Fe3O4@β-CD@Pd 5 mg (0.3) 50 ° C NaBH4 30 60c

aReaction conditions: 2-nitroaniline (1.0 mmol), H2O (3.0 mL) as the solvent, hydrogen donor (2.0 mmol), and catalyst Fe3O4@β-CD@Pd.
bYield was determined using GC−MS. cNeat condition.
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source, no detectable amounts of the desired products are
obtained when HCOOH, HCOONa, and N2H4 ·H2O and
NaHCO3 are used instead of NaBH4 (Table 1, entries 5−7).
However, only 18% of the desired benzene-1,2-dimanie is
detected using isopropanol as the hydrogen source under the
same investigation conditions (Table 1, entry 8). Therefore,
NaBH4 is the effective hydrogen source for the reduction of 2-
nitroaniline in the presence of Fe3O4@β-CD@Pd as the
catalyst. Remarkably, in the same reaction, upon heating at 50
°C for 60 min, the yield significantly increases to 99% (Table
1, entry 9). The product yield remains at 99% even when the
heating time decreases to 40 and 30 min, respectively (Table 1,
entries 10−11). However, further decrease in the heating time
to 20 min lowers the product yield to 90% (Table 1, entry 12).
For optimizing the catalyst loading, lowering the amount of
Fe3O4@β-CD@Pd from 10.0 to 5.0 mg (0.3 mol % Pd)
produces the same 99% of the desired product (Table 1, entry
13). Further decrease in the catalyst loading to 3.0 mg lowers
the product yield to 95% (Table 1, entry 14). To check the
requirement of solvent H2O for the reduction of 2-nitroaniline,
neat reaction condition produces only 60% of the desired
product (Table 1, entry 15).

After optimizing the reduction of 2-nitroanilne, the further
applicability of the Fe3O4@β-CD@Pd catalyst is explored to
other nitroarenes reduction reactions. Substrate scope of
nitroarenes reduction using Fe3O4@β-CD@Pd is summarized
in Table 2. Five milligrams (0.3 mol % Pd) of Fe3O4@β-CD@
Pd reduce nitrobenzene to aniline very efficiently (99%) in the
presence of 2.0 equiv of NaBH4 in water (Table 2, entry 1).
Nitrobenzene with electron-withdrawing group substituents (I,
Br, Cl, and F) produces a high yield of desired amine products
under the same reaction conditions (Table 2, entries 2−5).
Nitrobenzene with electron-donating group substituents such
as −NH2 also produces excellent yield of diamines (Table 2,
entries 6−8). Nitrobenzene with both electron-withdrawing
and -donating groups such as −Br and −CH3 containing 1-
bromo-2-methyl-4-nitrobenzene reduces to corresponding 4-
bromo-3-methylaniline in 98% yield (Table 2, entry 9).
Nitrobenzene with both electron-donating groups such as
−NH2 and −CH3 containing 4-methyl-2-nitroaniline also
produces excellent yield of the desired 4-methylbenzene-1,2-
diamine under the same experimental conditions (Table 2,
entry 11). Nitrobenzene with other substituents such as −CF3,
−OH, and −CHO containing nitroarenes also produce an
excellent amount of the corresponding desired products (Table
2, entries 10, 11, and 13). Overall, the catalyst Fe3O4@β-CD@
Pd shows an excellent reducing performance for the reduction
of a variety of nitroarenes in water at 50 °C within 0.5 h. A
comparison of the catalytic performance of current Fe3O4@β-
CD@Pd is compared with the previously reported Fe3O4-
based catalysts for the reduction of nitroarenes. The
comparison results are summarized in Table 3.

3.3. Determination of the Heterogenous Nature of
the Catalyst Fe3O4@β-CD@Pd. The actual nature of the
catalyst in the optimized reaction conditions is determined by
conducting a hot filtration test. To know whether the catalyst
Fe3O4@β-CD@Pd is truly heterogeneous or homogenous in
reaction media, a control catalytic reduction experiment is
conducted for 2-nitroaniline. After 10.0 min of the reaction,
the solid magnetic catalyst Fe3O4@β-CD@Pd is separated with
an external magnet, and then, the clear solution part of the
reaction mixture is continuously stirred for 30 more minutes at
50 °C. As shown in Figure 7, the product yield remained

Table 2. Substrate Scope for the Reduction of Different
Nitroarenes Using Fe3O4@β-CD@Pd as the Catalysta

aReaction condition: Nitroarene (1.0 mmol), catalysts Fe3O4@β-
CD@Pd (5.0 mg; 0.3 mol % Pd), solvent H2O (3.0 mL), NaBH4 (2.0
mmol), stirred at room temperature. bYield (%) is measured by GC−
MS. cTurnover Number (TON) = number of moles of product/
number of moles of catalyst. dTurnover Frequency (TOF) = number
of moles of product formed per mole of catalyst/hour.
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constant after the removal of the solid catalyst from the
reaction mixture (GC traces and mass spectra of the reaction
are provided in the SI, section 8). This result concludes that no
detectable Pd has been leached out from the catalyst during
the reduction of nitro compounds and the catalyst remains in
the heterogeneous state.

Putting together these observations prove that the catalyst
that is used in the reduction of nitroarene reaction is indeed
heterogeneous and that no detectable Pd has been leached out
during the reaction. Furthermore, ICP-OES analysis of the
used catalyst reveals palladium content 7.60% (w/w) or 0.71
mmol/g, which is almost like the original value of 7.62% or
0.72 mmol/g.

3.4. Reusability of the Catalyst Fe3O4@β-CD@Pd.
Generally, the Fe3O4-based heterogeneous catalyst offers a
significant advantage in industrial applications due to its
effortless separation from the reaction mixture using an
external magnet, which is straightforward and uncomplicated
compared to other available processes. Therefore, this easy
magnetic separation capability makes the Fe3O4-based catalyst
a very attractive option for recycling and reusable in the
catalytic reaction in organic transformations. In this study, the
recycling and reusability of the catalyst Fe3O4@β-CD@Pd are
examined in the reduction of 2-nitroaniline to benzene-1,2-
diamine in the presence of NaBH4 under optimal conditions
(Figure 8). After each cycle, the catalyst is retrieved by the
external magnet and then washed with ethanol multiple times
and dried under vacuum.

The recovered catalyst is estimated after each cycle of the
reaction and found to be the same original amount 5.0 mg (0.3
mol % of Pd) of Fe3O4@β-CD@Pd. The catalyst is used for up

to five cycles for the reduction of 2-nitroaniline, and no
significant loss of catalytic activity (97%) is found.

In addition to that, other characterizations of the used
catalyst including TEM, FE-SEM (SI, S1), and XRD show the
same chemical and morphological properties as before. Figure
9 shows the bright field HRTEM micrographs (a), SAED
pattern (b), FE-SEM image (c), and XRD pattern (A; bare
Fe3O4 and B; Fe3O4@β-CD@Pd) (d) of the catalyst Fe3O4@
β-CD@Pd after the 5th cycle of the catalytic reaction.

Table 3. Comparison of the Catalytic Activity of Fe3O4@β-CD@Pd with Other Fe3O4-Based Catalysts for the Reduction of
Nitroarenes

entry catalyst (amount; mol) substrate reaction conditions time yield % ref

1 Fe3O4@Cu (5.0 wt %) 2-nitroaniline MeOH, RT, 5.0 wt % of catalyst, 3.0 mmol NaBH4 90 min 99 50
2 Fe3O4@Guanidine-Pd (0.13 mol %) 4-nitroaniline H2O, RT, 2.0 mmol NaBH4 40 min 96 51
3 Pd-GO/CNT−Fe3O4 (1.0 mol %) nitrobenzene H2O, H2 (1.0 atm), 60 °C 180 min 90 52
4 Fe3O4-pRGO@Ag (10 wt %; 6.5 mol % Ag) nitrobenzene 2-propanol, KOH (3.0 mmol), 1000 °C 24 h 96 53
5 C−Pd−Fe3O4 (20 mg) nitrobenzene EtOH, NaBH4 (3.0 mmol), 25 °C 30 min 99 54
6 Fe3O4@NC@Pt (0.5 mol %) 2-nitroaniline Toluene (3.0 mL), N2H4 H2O (4.0 mmol), 70 °C 4 h 94 55
7 Fe3O4@SiO2/Schif base/Pd(II) (0.52 mol %) 2-nitroaniline EtOH (3.0 mL), N2H4 H2O (3.0 mmol), 80 °C 1.83 h 94 56
8 Fe3O4@Cu(OH) × (10.0 mol %) 2-nitroaniline H2O (3.0 mL), NaBH4 (2.0 mmol), 60 °C 5.0 min 91 57
9 Fe3O4@C−Pd (40 mg) nitrobenzene NaBH4 (3 mmol), EtOH, 25 °C 60 min 99 58
10 Fe3O4@β-CD@Pd (0.3 mol % Pd) 2-nitroaniline H2O, NaBH4 (2.0 mmol), 50 °C 30 min 99 present work

Figure 7. Hot filtration test of the catalyst for the catalytic reduction
of 2-nitroaniline. Conditions: 2-Nitroaniline (1.0 mmol), H2O (3.0
mL) as the solvent, NaBH4 (2.0 mmol), and catalyst Fe3O4@β-CD@
Pd (0.3 mol % Pd), 50 ° C.

Figure 8. Reusability of the catalyst Fe3O4@β-CD@Pd for the
catalytic reduction of 2-nitroaniline. Conditions: 2-nitroaniline (1.0
mmol), H2O (3.0 mL) as the solvent, NaBH4 (2.0 mmol), and
catalyst Fe3O4@β-CD@Pd (0.3 mol % Pd), 50 ° C.

Figure 9. Bright field HRTEM micrographs (a), SAED pattern (b),
FE-SEM image (c), and XRD pattern (A; bare Fe3O4 and B; Fe3O4@
β-CD@Pd) (d) of the catalyst Fe3O4@β-CD@Pd after the 5th cycle
of the catalytic reaction.
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4. CONCLUSIONS
In conclusion, a highly effective magnetic heterogeneous
catalyst Fe3O4@β-CD@Pd has been synthesized and thor-
oughly characterized using cutting-edge techniques. The
catalyst exhibits exceptional catalytic activity for the reduction
of nitroarenes in water at 50 °C with the aid of NaBH4. A wide
range of nitroarenes with varying substituents, including both
electron-withdrawing (I, Br, Cl, F, CF3, CHO) and electron-
releasing groups (NH2, CH3), can be reduced using this
catalyst. Additionally, Fe3O4@β-CD@Pd is magnetic and can
be easily separated from the reaction mixture and can be
reused up to five times without a significant loss in catalytic
performance. This catalyst is made from environmentally
friendly materials, including the Fe3O4 core and the bio-
renewable feedstock β-CD. As a result, Fe3O4@β-CD@Pd can
be employed in sustainable and cost-effective nitroarenes
reduction reactions.
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