

Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-
19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

Positive natural selection in the evolution of human metapneumovirus attachment glycoprotein

Abinash Padhi *, Bindhu Verghese
Department of Biological Science, University of Tulsa, 600 S. College Ave. Tulsa, OK 74104, USA
Received 10 April 2007; received in revised form 28 August 2007; accepted 30 August 2007
Available online 10 October 2007

Abstract

Human metapneumovirus (hMPV), a newly discovered virus of the family Paramyxoviridae, has been associated with upper and lower respiratory tract infections in different age groups in many countries. The putative attachment (G) glycoprotein of this virus was previously reported to have shown more extensive nucleotide and deduced amino acid sequence polymorphism than any other genomic regions of this virus, leading to four sub-lineages. Using a maximum likelihood-based codon substitution model of sequence evolution, here we report that sequences of extracellular domain of 8 amino acid sites in lineage 1 a , and 3 amino acid sites each in lineage $1 \mathrm{~b}, 2 \mathrm{a}$, and 2 b have a higher rate of nonsynonymous substitutions $\left(\mathrm{d}_{\mathrm{N}}\right)$ than the synonymous substitutions (d_{S}) with a posterior probability above 0.95 , thus suggesting the evidence of adaptive evolution driven by Darwinian selection. Although it is unclear whether these amino acid adaptations are driven by differential immune pressure or some other factors, identification of these positively selected amino acid sites would help in better screening using epitope mapping technology to identify and localize the sites that can be recognized by the immune system. We also observed surprisingly higher nucleotide substitution rates per site, per year for each lineage of hMPV than the rates that were previously reported for the human respiratory syncytial virus, suggesting rapid evolutionary dynamics of hMPV.

© 2007 Elsevier B.V. All rights reserved.
Keywords: Human metapneumovirus; Attachment glycoprotein; Phylogeny; Adaptive evolution; Substitution rate; Evolutionary dynamics

Human metapneumovirus (hMPV) of the family Paramyxoviridae and subfamily Pneumoviridae was first discovered in The Netherlands from infants and children suffering from acute respiratory tract disease (van den Hoogen et al., 2001). Since then considerable progress has been made in identification and characterization (Cote et al., 2003; Mackay et al., 2003; Ebihara et al., 2004; Maertzdorf et al., 2004; Skiadopoulos et al., 2004; Hamelin and Boivin, 2005; Leung et al., 2005; Gray et al., 2006a,b; Ulbrand et al., 2006; van den Hoogen, 2007) as well as in understanding its genetic diversity (Bastien et al., 2003, 2004; Biacchesi et al., 2003; Ishiguro et al., 2004; Peret et al., 2004; Carr et al., 2005; Ludewick et al., 2005; Galiano et al., 2006; Boivin et al., 2007). To date this virus has been identified in many countries from different age groups and reported to cause upper respiratory tract infections, flu-like infections, and has also been associated with lower respiratory tract infections

[^0](van den Hoogen et al., 2001; Stockton et al., 2002; Biacchesi et al., 2003; Bastien et al., 2003, 2004; Ishiguro et al., 2004; Peret et al., 2004; Carr et al., 2005; Ludewick et al., 2005; Fouchier et al., 2005; Regev et al., 2006; Galiano et al., 2006; Kahn, 2006; Gray et al., 2006a,b), a pattern similar to that reported for human respiratory syncytial virus (HRSV). Although comparative genome mapping analyses suggested that this virus has structural and functional similarities with HRSV (Kahn, 2006), recent studies reported that the attachment (G) glycoprotein of these paramimyxoviruses exhibit extensive nucleotide and amino acid variation, with most differences located in the extracellular domain (Peret et al., 2004; Kahn, 2006). Therefore, G-protein has been widely used to infer evolutionary relationships among the isolates from different geographic regions (e.g., Peret et al., 2004; Ishiguro et al., 2004). Although phylogenetic analyses of hMPVs from the complete nucleotide coding sequences revealed the existence of two major lineages of hMPVs (Ishiguro et al., 2004), recent analyses based on G-protein phylogeny revealed the existence of two minor subgroups within each major lineage (Peret et al., 2004). Despite the
knowledge of identification and characterization of hMPVs, the possible mechanism by which hMPV G-proteins have evolved is poorly understood.

Earlier studies on the molecular evolution of HRSV Gprotein reported that certain amino acid sites that correspond to sites of O-glycosylation, or amino acid sites that were previously described as monoclonal antibody-induced in vitro escape mutants, are under positive selection and thus showed strong association between these positively selected sites and the mapped neutralizing epitopes (Zlateva et al., 2004). Recently, Zhang et al. (2006) also reported that certain amino acid sites in severe acute respiratory syndrome (SARS) coronavirus (CoV) are evolved by positive Darwinian selection. These lines of evidence suggest an interesting evolutionary pattern of the respiratory viruses. At the genomic level, whether a gene, or a particular amino acid within a gene, is under relaxed selection or remains functionally constrained throughout evolution can be detected by comparing the rate of nonsynonymous nucleotide substitutions per nonsynonymous site (d_{N}) with that of synonymous substitutions per synonymous site (d_{S}) (Hughes and Nei, 1989). If d_{N} / d_{S} (hereafter referred as ω) is greater than one, then positive selection is said to be operating. Alternatively, if $\omega<1$, the gene is under strong purifying selection and presumed to be functionally constrained.

Identifying genes that have evolved by adaptation is central to understanding molecular evolution. However, not all amino acid differences observed among the closely related sequences from ecologically/geographically isolated strains are adaptive (e.g., Zlateva et al., 2004). Therefore, analyzing patterns of amino acid substitutions would provide insight into understanding protein adaptation by identifying candidate codon sites on which positive selection has been operating. Identifying the positively selected amino acid sites would also help in further immunization studies. Maximum likelihood (ML)-based codon substitution models, which account for variable ω ratios among codon sites and detect codon sites that are subjected to positive selection (Yang et al., 2000), have been widely used in detecting positive selection in a number of respiratory viral groups (e.g., Zlateva et al., 2004; Zhang et al., 2006). Here we used Yang et al's (2000) ML codon substitution models to test whether there was evidence at the nucleotide sequence level that a subset of amino acid sites in G-protein of hMPV sequences that represent each subgroup has been under positive selection. In addition, we used a Bayesian MCMC approach implemented in BEAST version 1.4.4 (Drummond and Rambaut, 2006) that utilize the number and temporal distribution of genetic differences among viruses sampled at different times (Drummond et al., 2002, 2006) to estimate the evolutionary change for each lineage.

A total of 144 published unique nucleotide coding sequences of G-protein representing four sub-lineages $(1 a=46,1 b=40$, $2 \mathrm{a}=38,2 \mathrm{~b}=20$) were retrieved from GenBank (Table 1). Sequences were aligned using Mesquite version 1.2 (Maddison and Maddison, 2006), DAMBE version 4.5.2 (Xia, 2000; Xia and Xie, 2001), and BioEdit version 7.0.5.3 (Hall, 1999) software packages. To infer phylogenetic relationship among these strains of hMPVs, we reconstructed a neighbor joining tree from their predicted amino acid sequence data with p-distance
implemented in MEGA version 3.1 (Kumar et al., 2004). Using the same program, nodal supports were estimated with 10,000 nonparametric bootstrap replicates. For selection analyses, we reconstructed unrooted ML trees for each lineage from their respective nucleotide sequence data using the appropriate nucleotide substitution model identified by the hierarchical likelihood ratio test implemented in Modeltest version 3.5 (Posada and Crandall, 1998). PHYML version 2.4.4 (Guindon and Gascuel, 2003) was used to conduct ML analyses.

Overall substitution rate (nucleotide substitutions per site per year) of each lineage was estimated using the Bayesian skyline model, with both relaxed (variable) molecular clock (with uncorrelated lognormal model) and strict clock implemented in the BEAST version 1.4.4 (Drummond and Rambaut, 2006). This model employs a Bayesian MCMC approach and utilize the number and temporal distribution of genetic differences among viruses sampled at different times (Drummond et al., 2002, 2006). Bayesian skyline plots with 10 grouped intervals were reconstructed to infer demographic history (Drummond et al., 2005). Phylogenies were evaluated using a chain length of 30 million states under the HKY85 + Γ_{4} substitution model and with uncertainty in the data reflected in the 95% high-probability density (HPD) intervals. Convergence of trees was checked using Tracer version 1.3 (Rambaut and Drummond, 2006).

To determine the synonymous and nonsynonymous sequence divergence distribution pattern across the entire coding region of each lineage (Fig. 1), we used a sliding window approach (window size $=6$, step $=1$) implemented in DNAsp version 4.0 (Rozas et al., 2003).

To assess whether positive selection is operating in any codon sites, we used the alignment and ML trees of respective lineages as input for the CODEML program of PAML version 3.15 (Yang, 1997). The PAML program incorporates six different codon substitution models that account for variable ω for each codon site. The six codon substitution models are: M0 (one-ratio), M1a (nearly neutral), M2a (positive selection), M7 (β distribution; $0 \leq \omega \leq 1$), M8 ($\beta+\omega>1$: continuous) (Yang et al., 2000), and M8a $(\beta+\omega=1)$ (Swanson et al., 2003). The M0 model estimates overall ω for the data. The M1a model estimates a single parameter, p_{0}, with $\omega_{0}=0$, and the remaining sites with frequency $p_{1}\left(p_{1}=1-p_{0}\right)$ assuming $\omega_{1}=1$. The M2a model adds a class of positively selected sites with frequency p_{2} (where $p_{2}=1-p_{1}-p_{0}$) with ω_{2} estimated from the data. In the M7 model, ω follows a beta distribution and is allowed to vary between 0 and 1 , and two parameters (p and q) of the beta distribution are estimated from the data. In the M8 model, a proportion, p_{0}, of sites have ω drawn from the beta distribution and the remaining sites with proportion p_{1} are positively selected $\left(\omega_{1}>1\right)$. The LRTs between nested models were conducted by comparing twice the difference in \log-likelihood values ($2 \ln \Delta l$) against a χ^{2}-distribution with degrees of freedom equal to the difference in the number of parameters between models (Yang, 1997). Three LRTs were conducted. The first comparison was made between M1a, which allows for two site classes $(0<\omega<1$, $\omega=1$), and M2a, which allows three site classes $(0<\omega<1, \omega=1$ or $\omega>1$). The second comparison was between M7 and M8, and the last comparison was between M8 and M8a, in which ω for

Table 1
GenBank accession number, strain name, country of origin, and the year of isolation of 144 unique hMPV G-protein sequences used in the study

GenBank No.	Strain name	Country of origin	Year of Isolation	Source	Group
AF371337	00-1	The Netherlands		van den Hoogen et al. (2001)	1a
AY296015	FL/4/01	The Netherlands	2001	van den Hoogen et al. (2001)	1a
AY296016	FL/3/01	The Netherlands	2001	van den Hoogen et al. (2001)	1a
AY296017	FL/8/01	The Netherlands	2001	van den Hoogen et al. (2001)	1a
AY296018	FL/10/01	The Netherlands	2001	van den Hoogen et al. (2001)	1a
AY296019	NL/10/01	The Netherlands	2001	van den Hoogen et al. (2001)	1a
AY296020	NL/2/02	The Netherlands	2002	van den Hoogen et al. (2001)	1a
AY327802	201-7182	Australia		GenBank	1a
AY327803	201-4199	Australia	-	GenBank	1a
AY327804	Q01-6410	Australia	-	GenBank	1a
AY327805	Q01-7262	Australia	-	GenBank	1a
AY327806	Q01-6346	Australia	-	GenBank	1a
AY327807	Q01-7292	Australia	-	GenBank	1a
AY327808	Q01-7252A	Australia	-	GenBank	1a
AY327809	Q01-7292	Australia	-	GenBank	1a
AY327810	Q016297	Australia	-	GenBank	1a
AY485232	hMPV13-2000	Canada	2000	Peret et al. (2004)	1a
AY485235	hMP V193-2002	Canada	2002	Peret et al. (2004)	1a
AY485236	hMPV22-2001	Canada	2001	Peret et al. (2004)	1a
AY485238	hMPV23-2001	Canada	2001	Peret et al. (2004)	1a
AY485251	hMPV81-1999	Canada	1999	Peret et al. (2004)	1a
AY485254	hMPV86316-2002	Canada	2002	Peret et al. (2004)	1a
AY485255	hMPV88448-2002	Canada	2002	Peret et al. (2004)	1a
AY485256	hMPV88470-2002	Canada	2002	Peret et al. (2004)	1a
AY530092	JPS03-180	Japan	2003	Ishiguro et al. (2004)	1a
AY574225	CAN34-02	Canada	2002	Ishiguro et al. (2004)	1a
AY574226	CAN40-02	Canada	2002	Ishiguro et al. (2004)	1a
AY574228	CAN97-02	Canada	2002	Ishiguro et al. (2004)	1a
AY574231	CAN187-02	Canada	2002	Ishiguro et al. (2004)	1a
AY574237	CAN216-02	Canada	2002	Ishiguro et al. (2004)	1a
AY574243	CAN464-02	Canada	2002	Ishiguro et al. (2004)	1a
AY574244	CAN532-02	Canada	2002	Ishiguro et al. (2004)	1a
AY848881	RSA/39/01	South Africa	2001	Ludewick et al. (2005)	1a
AY848882	RSA/1/02	South Africa	2002	Ludewick et al. (2005)	1a
AY848885	RSA/4/02	South Africa	2002	Ludewick et al. (2005)	1a
AY848887	RSA/17/02	South Africa	2002	Ludewick et al. (2005)	1a
AY848889	RSA/31/01	South Africa	2001	Ludewick et al. (2005)	1a
AY848890	RSA/33/01	South Africa	2001	Ludewick et al. (2005)	1a
AY848893	RSA/8/02	South Africa	2002	Ludewick et al. (2005)	1a
AY848896	RSA/3/02	South Africa	2002	Ludewick et al. (2005)	1a
AY848897	RSA/10/02	South Africa	2002	Ludewick et al. (2005)	1a
AY848901	RSA/14/02	South Africa	2002	Ludewick et al. (2005)	1a
AY848903	RSA/34/01	South Africa	2001	Ludewick et al. (2005)	1a
DQ312444	IA3-2002	USA	2002	Gray et al. (2006a,b)	1a
DQ362949	Arg/1/03	Argentina	2003	Galiano et al. (2006)	1a
DQ362950	Arg/2/02	Argentina	2002	Galiano et al. (2006)	1a
AY296021	NL/17/00	The Netherlands	2000	van den Hoogen et al. (2004)	1 b
AY296022	NL/1/81	The Netherlands	1981	van den Hoogen et al. (2004)	1b
AY296023	NL/1/93	The Netherlands	1993	van den Hoogen et al. (2004)	1 b
AY296025	NL/3/93	The Netherlands	1993	van den Hoogen et al. (2004)	1 b
AY296026	NL/1/95	The Netherlands	1995	van den Hoogen et al. (2004)	1b
AY296028	NL/13/96	The Netherlands	1996	van den Hoogen et al. (2004)	1 b
AY296029	NL/22/01	The Netherlands	2001	van den Hoogen et al. (2004)	1 b
AY296030	NL/24/01	The Netherlands	2001	van den Hoogen et al. (2004)	1b
AY296032	NL/29/01	The Netherlands	2001	van den Hoogen et al. (2004)	1b
AY296033	NL/302	The Netherlands	2002	van den Hoogen et al. (2004)	1b
AY485234	hMPV17-2000	Canada	2000	Peret et al. (2004)	1b
AY485250	hMPV80-1999	Canada	1999	Peret et al. (2004)	1 b
AY530090	JPS03-176	Japan	2003	Ishiguro et al. (2004)	1 b
AY530091	JPS03-178	Japan	2003	Ishiguro et al. (2004)	1 b
AY530093	JPS03-187	Japan	2003	Ishiguro et al. (2004)	1 b
AY530095	JPS03-240	Japan	2003	Ishiguro et al. (2004)	1b
AY574227	CAN58-02	Canada	2002	Bastien et al. (2004)	1b
AY574229	CAN164-02	Canada	2002	Bastien et al. (2004)	1 b

Table 1 (Continued)

GenBank No.	Strain name	Country of origin	Year of Isolation	Source	Group
AY574230	CAN182-02	Canada	2002	Bastien et al. (2004)	1 b
AY574234	CAN197-02	Canada	2002	Bastien et al. (2004)	1b
AY574235	CAN208-02	Canada	2002	Bastien et al. (2004)	1b
AY574236	CAN215-02	Canada	2002	Bastien et al. (2004)	1b
AY574241	CAN348-02	Canada	2002	Bastien et al. (2004)	1 b
AY848910	RSA/27/00	South Africa	2000	Ludewick et al. (2005)	1 b
AY848911	RSA/7/00	South Africa	2000	Ludewick et al. (2005)	1b
AY848912	RSA/26/00	South Africa	2000	Ludewick et al. (2005)	1b
AY848914	RSA/7/01	South Africa	2000	Ludewick et al. (2005)	1b
AY848915	RSA/20/00	South Africa	2000	Ludewick et al. (2005)	1b
AY848916	RS A/20/01	South Africa	2001	Ludewick et al. (2005)	1b
AY848917	RSA/49/00	South Africa	2000	Ludewick et al. (2005)	1 b
AY848919	RSA/44/00	South Africa	2000	Ludewick et al. (2005)	1 b
DQ270215	BJ1819	China	2000	GenBank	1b
DQ312449	IA-8-2003	USA	2003	Gray et al. (2006a)	1b
DQ270217	BJ1824	China	-	GenBank	1b
DQ312458	IA-17-2003	USA	2003	Gray et al. (2006a)	1b
DQ312462	IA21-2004	USA	2004	Gray et al. (2006a)	1b
DQ312463	IA22-2004	USA	2004	Gray et al. (2006a)	1b
DQ312464	IA23-2004	USA	2004	Gray et al. (2006a)	1b
DQ362952	Arg/3/00	Argentina	2000	Galiano et al. (2006)	1b
NC_004148	CAN97-83	Canada	1997	Biacchesi et al. (2003)	1b
AY296040	NL/1/94	The Netherlands	1994	van den Hoogen et al. (2004)	2a
AY296041	NL/1/82	The Netherlands	1982	van den Hoogen et al. (2004)	2a
AY296042	NL/1/96	The Netherlands	1996	van den Hoogen et al. (2004)	2a
AY296044	NL/9/00	The Netherlands	2000	van den Hoogen et al. (2004)	2a
AY296045	NL/3/01	The Netherlands	2001	van den Hoogen et al. (2004)	2a
AY296046	NL/4/01	The Netherlands	2001	van den Hoogen et al. (2004)	2a
AY296047	UK/5/01	UK	2001	van den Hoogen et al. (2004)	2a
AY297748	CAN98-75	Canada	1998	Biacchesi et al. (2003)	2a
AY485243	hMPV73-1998	Canada	1998	Peret et al. (2004)	2a
AY485244	hMPV74-1998	Canada	1998	Peret et al. (2004)	2a
AY485245	hMPV75-1998	Canada	1998	Peret et al. (2004)	2a
AY485246	hMPV76-1998	Canada	1998	Peret et al. (2004)	2a
AY485247	hMPV77-1998	Canada	1998	Peret et al. (2004)	2a
AY485248	hMPV78-1998	Canada	1998	Peret et al. (2004)	2a
AY485249	hMPV79-1998	Canada	1998	Peret et al. (2004)	2a
DQ270219	BJ1921	China	-	GenBank	2a
DQ270220	BJ2034	China	-	GenBank	2a
DQ270221	BJ4879	China	-	GenBank	2a
DQ270222	BJ4944	China	-	GenBank	2a
DQ270223	BJ5128	China	-	GenBank	2a
DQ270224	BJ5129	China	-	GenBank	2a
DQ312443	IA2-2002	USA	2002	Gray et al. (2006a)	2a
DQ312457	IA16-2003	USA	2003	Gray et al. (2006a)	2a
DQ312460	IA19-2003	USA	2003	Gray et al. (2006a)	2a
DQ393715	Peru1-2002	USA	2002	Gray et al. (2006b)	2a
DQ843658	BJ1816	China	-	GenBank	2a
AY848861	RSA/4/00	South Africa	2000	Ludewick et al. (2005)	2a
AY848862	RSA/71/00	South Africa	2000	Ludewick et al. (2005)	2a
AY848864	RSA/37/00	South Africa	2000	Ludewick et al. (2005)	2a
AY848865	RSA/16/00	South Africa	2000	Ludewick et al. (2005)	2a
AY848866	RSA/12/00	South Africa	2000	Ludewick et al. (2005)	2a
AY848868	RSA/29/00	South Africa	2000	Ludewick et al. (2005)	2a
AY848869	RSA/58/00	South Africa	2000	Ludewick et al. (2005)	2a
AY848875	RSA/54/00	South Africa	2000	Ludewick et al. (2005)	2a
AY848878	RSA/23/00	South Africa	2000	Ludewick et al. (2005)	2a
AY848879	RSA/90/00	South Africa	2000	Ludewick et al. (2005)	2a
AY848880	RSA/93/00	South Africa	2000	Ludewick et al. (2005)	2a
DQ312453	IA12-2003	USA	2003	Gray et al. (2006a)	2a
AY296034	NL/1/99	The Netherlands	1999	van den Hoogen et al. (2004)	2b
AY296035	NL/11/00	The Netherlands	2000	van den Hoogen et al. (2004)	2b
AY296036	NL/12/00	The Netherlands	2000	van den Hoogen et al. (2004)	2b
AY296037	NL/5/01	The Netherlands	2001	van den Hoogen et al. (2004)	2b
AY296038	NL/9/01	The Netherlands	2001	van den Hoogen et al. (2004)	2b

Table 1 (Continued)

| GenBank No. | Strain name | Country of origin | Year of Isolation | Source |
| :--- | :--- | :--- | :--- | :--- | :--- |
| AY296039 | NL/21/01 | The Netherlands | 2001 | Group |
| AY485242 | hMPV33-2001 | Canada | 2b | |
| AY485252 | hMPV82-1997 | Canada | 2001 | 2b den Hoogen et al. (2004) |
| AY530089 | JPS02-76 | Japan | 1997 | Peret et al. (2004) |
| DQ312445 | IA4-2002 | USA | Peret et al. (2004) | |
| DQ312446 | IA5-2002 | USA | Ishiguro et al. (2004) | |
| DQ312448 | IA7-2003 | USA | Gray et al. (2006a) | |
| DQ312454 | IA13-2003 | USA | 2002 | Gray et al. (2006a) |
| DQ312455 | IA14-2003 | USA | 2002 | Gray et al. (2006a) |
| DQ312461 | IA20-2003 | USA | 2003 | Gray et al. (2006a) |
| DQ393716 | Peru2-2002 | Peru | 2003 | Gray et al. (2006a) |
| DQ393717 | Peru3-2003 | Peru | 2003 | Gray et al. (2006a) |
| DQ393718 | Peru4-2003 | Peru | 2003 | Gray et al. (2006b) |
| DQ393719 | Peru5-2003 | Peru | 2002 | Gray et al. (2006b) |
| AY530094 | JPS03-194 | Japan | 2003 | Gray et al. (2006b) |

M8a was constrained to 1 . In all LRTs good evidence for positive selection is found if the LRT indicates that models that allow for selection (i.e. M2a and M8; alternative models) are significantly better than their respective null models (M1a, M7 and M8a) (Yang, 1997). Posterior probabilities of the inferred positively selected sites were estimated by the Bayes empirical Bayes (BEB) approach that takes sampling errors into account (Yang et al., 2005).

Consistent with earlier studies (Peret et al., 2004), G-protein based phylogeny in the present study has also revealed the existence of multiple lineages of this virus (Fig. 1). All four lineages showed some degree of spatial structure; however, few strains in each lineage did not show any spatial structure, indicating extensive viral gene flow across the regions in a given epidemic season. Relatively weak temporal structure across the regions further suggested that either certain strains can remain stable for more than one epidemic season (e.g., HRSV, Zlateva et al., 2004, 2005), or mutations might not have occurred in a linear fashion with the preservation of changes in the circulating viral strains. Thus, virus genotypes would frequently appear and disappear along with new mutations in the populations. However, HRSV (Zlateva et al., 2004, 2005) showed a strong correlation between the accumulation of genetic divergence and the isolation date of the sequences. Based on the relaxed clock assumption, the evolutionary rate of each major lineage of hMPVs (1 and 2; Table 2) are 5.18×10^{-3} and 6.49×10^{-3} substitutions/site/year, respectively. Although these rates are compatible with the substitution
rates reported for influenza viruses (Chen and Holmes, 2006), these rates are higher than the estimates of HRSV (HRSV A: 1.83×10^{-3}, Zlateva et al., 2004; HRSV B: 1.95×10^{-3}, Zlateva et al., 2005; HRSV-BA: 3×10^{-3} substitutions/site/year, Trento et al., 2006; HRSV-A: 2.6×10^{-3}, HRSV-B: 3.5×10^{-3}, Matheson et al., 2006) and other paramyxoviruses (e.g., measles: Woelk et al., 2002). These discrepancies in the evolutionary rates could be associated with the differential selective pressures targeting different genomic regions. For example, the presence of a greater number of adaptively evolved amino acid sites in the gene can cause an accelerated rate of evolution. As a consequence, the overall evolutionary rate is expected to be higher (Trento et al., 2006). Both major lineages of hMPVs showed interesting population dynamics (Fig. 2). The times to the most recent common ancestor for lineage 1 and 2 are 49.452 (29.08-70.8) and 26.091 (21-36.651) years, respectively. While the population size of lineage 1 recently declined, the lineage 2 population size did not show any declining trend. This contrast in the population size could be associated with fitness of the virus.

Despite the weak temporal and spatial structure, viral strains belonging to lineage 1a (Australia, Canada, The Netherlands, South Africa, USA, Argentina, and Japan) and 1b (Canada, The Netherlands, South Africa, USA, Japan, China, and Argentina) have a wider geographic spread than the strains belonging to lineage 2a (Canada, UK, The Netherlands, USA, China, and South Africa) and 2b (The Netherlands, Canada, USA, Peru, and Japan), indicating that fitness of the viral strains might have

Table 2
Mean nucleotide substitution rates (95\% HPD interval in parenthesis) in hMPV G-gene estimated using Bayesian MCMC approach, with both relaxed and strict clock

Lineage	Relaxed clock		Strict clock	
	Substitution rate $\left(\times 10^{-3}\right.$ substitutions/site/year $)$	Likelihood score		Substitution rate $\left(\times 10^{-3}\right.$ substitutions/site/year $)$
1 a	$4.58(2.400-7.048)$	-2250.481	$4.152(2.235-6.196)$	-2256.156
1 b	$5.344(3.995-6.898)$	-2946.824	$4.817(3.809-5.889)$	-2975.021
2 a	$6.139(4.318-7.825)$	-2530.280	$5.275(3.733-6.798)$	-2556.508
2 b	$7.865(4.060-11.63)$	-1840.066	$3.795(2.687-7.625)$	-1868.507
$1(\mathrm{a}+\mathrm{b})$	$5.182(3.761-6.781)$	-4689.161	$4.621(3.639-5.647)$	-4702.717
$2(\mathrm{a}+\mathrm{b})$	$6.494(4.599-8.438)$	-3783.320	$4.770(3.555-6.012)$	-3833.563

[^1]

Fig. 1. NJ tree inferred from 144 amino acid sequences of human metapneumovirus G glycoprotein representing four lineages. Nodal support is mentioned at the base of the node. The sliding window analyses of respective lineages show the synonymous and nonsynonymous divergence.

Table 3
Test for variable selection pressures on different codons based on ML-based codon substitution models of Yang et al. (2000)

Model	Free parameters	Parameter estimates	Likelihood scores	Model comparison (2 Δl, d.f., p)	Positively selected sites	$\omega \pm$ S.E.
Lineage 1a						
M0: One-ratio	1	$\omega=0.6152$	-2510.069374		None	
M1a: Nearly neutral	1	$\begin{aligned} & \omega_{0}=0.1, \omega_{1}=1,\left(p_{0}=0.62,\right. \\ & \left.p_{1}=0.38\right) \end{aligned}$	-2473.399503		Not allowed	
M2a: Positive selection	3	$\begin{aligned} & \omega_{0}=0, \omega_{1}=1, \omega_{\mathbf{2}}=7.31 \\ & \left(p_{0}=0.62, p_{1}=0.32,\right. \\ & \left.\boldsymbol{p}_{\mathbf{2}}=\mathbf{0 . 0 6}\right) \end{aligned}$	-2444.710131	(M1a vs. M2a), 57.378744, d.f. $=2, p=0.0000$	93-H(0.989)	7.523 ± 1.614
					105-Y (0.987)	7.504 ± 1.640
					106-F (1.000)	7.595 ± 1.464
					143-K (0.748)	5.832 ± 3.077
					154-P (1.000)	7.594 ± 1.466
					$155-\mathrm{R}(0.667)$	5.263 ± 3.239
					158-S (0.980)	7.456 ± 1.718
					171-R(0.958)	7.323 ± 1.953
					173-T (0.971)	7.380 ± 1.805
					176-T (0.583)	4.674 ± 3.305
					188-T (0.973)	7.393 ± 1.788
M7: β	2	$p=0.1085, q=0.1183$	-2474.985643	Not allowed		
M8: $\beta+\omega_{\mathrm{s}}>1$	4	$\begin{aligned} & p_{0}=0.94, \boldsymbol{p}_{\mathbf{1}}=\mathbf{0 . 0 6} \\ & p=0.36716, q=0.47347, \\ & \boldsymbol{\omega}=\mathbf{6 . 8 3} \end{aligned}$	-2444.453952	$\begin{aligned} & (\mathrm{M} 7 \text { vs. M8), } 61.063382, \\ & \text { d.f. }=2, p=0.0000 \end{aligned}$	93-H (0.993)	7.265 ± 1.428
					105Y (0.993)	7.264 ± 1.426
					106-F (1.000)	7.307 ± 1.332
					143-K (0.814)	6.055 ± 2.779
					154-P (1.000)	7.306 ± 1.332
					155-R (0.744)	5.575 ± 3.020
					156-T (0.649)	4.762 ± 2.999
					158-S (0.990)	7.242 ± 1.468
					171-R(0.970)	7.119 ± 1.718
					173-T (0.989)	7.228 ± 1.480
					176-T (0.664)	5.028 ± 3.191
					188-T (0.991)	7.239 ± 1.460
M8a: $\beta+\omega_{\mathrm{s}}=1$	3	$\begin{aligned} & p_{0}=0.62, p_{1}=0.38 \\ & p=11.37, q=99, \omega=1 \end{aligned}$	-2473.400411	(M8 vs. M8a), 57.892918, d.f. $=1, p=0.0000$	Not allowed	
Lineage 1b						
M0: One-ratio	1	$\boldsymbol{\omega}=\mathbf{0 . 4 6 4 9}$	-3088.137934		None	
M1a: Nearly neutral	1	$\begin{aligned} & \omega_{0}=0.166, \omega_{1}=1 \\ & \left(p_{0}=0.72, p_{1}=0.28\right) \end{aligned}$	-3048.588195		Not allowed	
M2a: Positive selection	3	$\begin{aligned} & \omega_{0}=0.179, \omega_{1}=1 \\ & \boldsymbol{\omega}_{2}=9.729 ;\left(p_{0}=0.696,\right. \\ & \left.p_{1}=0.289, \boldsymbol{p}_{\mathbf{2}}=\mathbf{0 . 0 1 3}\right) \end{aligned}$	-3028.791341	$\begin{aligned} & (\mathrm{M} 1 \mathrm{a} \text { vs. M2a), 39.593708, } \\ & \text { d.f. }=2, p=0.0000 \end{aligned}$	146-P (1.00)	8.326 ± 1.713
					183-F (1.00)	8.325 ± 1.714
					196-L (0.999)	8.316 ± 1.732
M7: β	2	$p=0.393, q=0.546$	-3054.125576	Not allowed		
M8: $\beta+\omega_{\mathrm{s}}>1$	4	$\begin{aligned} & p_{0}=0.89, \boldsymbol{p}_{\mathbf{1}}=\mathbf{0 . 1 1} \\ & p=1.777, q=4.03, \boldsymbol{\omega}=\mathbf{2 . 8 4} \end{aligned}$	-3034.377594	$\begin{aligned} & (\mathrm{M} 7 \text { vs. M8), } 39.495964, \\ & \text { d.f. }=2, p=0.0000 \end{aligned}$	146-P (1.000)	5.183 ± 1.880
					157-F (0.718)	3.601 ± 2.137
					183-F (1.000)	5.183 ± 1.880
					196-L (0.999)	5.181 ± 1.882
					199-S (0.573)	2.935 ± 2.110
M8a: $\beta+\omega_{\mathrm{s}}=1$	3	$\begin{aligned} & p_{0}=0.72, p_{1}=0.28 \\ & p=19.98, q=99, \omega=1 \end{aligned}$	-3048.6126	$\begin{aligned} & \text { (M8 vs. M8a), 28.470012, } \\ & \text { d.f. }=1, p=0.0000 \end{aligned}$	Not allowed	
Lineage 2a						
M0: One-ratio	1	$\boldsymbol{\omega}=\mathbf{0 . 6 8 9 8}$	-2927.296491		None	
M1a: Nearly neutral	1	$\begin{aligned} & \omega_{0}=0.248, \omega_{1}=1 \\ & \left(p_{0}=0.565, p_{1}=0.435\right) \end{aligned}$	-2913.654666		Not allowed	
M2a: Positive selection	3	$\begin{aligned} & \omega_{0}=0.382, \omega_{2}=4.487 ; \\ & \left(p_{0}=0.69, p_{1}=0.23,\right. \\ & \left.\boldsymbol{p}_{\mathbf{2}}=\mathbf{0 . 0 7 3}\right) \end{aligned}$	-2898.698295	(Mla vs. M2a), 29.912742, d.f. $=2, p=0.0000$	85-L (1.000)	5.340 ± 1.570

Table 3 (Continued)

Model	Free parameters	Parameter estimates	Likelihood scores	Model comparison (2 Δl, d.f., p)	Positively selected sites	$\omega \pm$ S.E.
					93-Q (0.888)	4.839 ± 2.038
					105-L (0.878)	4.694 ± 1.966
					109-S(0.913)	4.898 ± 1.899
					113-L (0.732)	3.959 ± 2.193
					121-P (0.510)	2.849 ± 2.078
					180-L (0.535)	3.024 ± 2.228
					202-S (0.508)	2.890 ± 2.196
					232-Y (0.989)	5.295 ± 1.627
					239-P (0.975)	5.226 ± 1.690
M7: β	2	$p=0.606, q=0.379$	-2917.092133		Not allowed	
M8: $\beta+\omega_{\mathrm{s}}>1$	4	$\begin{aligned} & p_{0}=0.89, \boldsymbol{p}_{\mathbf{1}}=\mathbf{0 . 1 1} \\ & p=28.418, q=31.77 \\ & \boldsymbol{\omega}=\mathbf{3 . 6 5} \end{aligned}$	-2898.947133	$\begin{aligned} & \text { (M7 vs. M8), } 36.29, \text { d.f. }=2 \text {, } \\ & p=0.0000 \end{aligned}$	85-L (1.000)	5.381 ± 1.324
					93-Q (0.900)	4.945 ± 1.872
					105-L (0.920)	4.988 ± 1.751
					109-S (0.939)	5.093 ± 1.673
					113-L (0.777)	4.282 ± 2.179
					121-P (0.528)	3.028 ± 2.275
					180-L (0.546)	3.173 ± 2.375
					202-S (0.519)	3.038 ± 2.358
					232-Y (0.992)	5.351 ± 1.376
					239-P (0.983)	5.306 ± 1.439
M8a: $\beta+\omega_{\mathrm{s}}=1$	3	$\begin{aligned} & p_{0}=0.57, p_{1}=0.43 \\ & p=33.25, q=99, \omega=1 \end{aligned}$	-2913.719868	$\begin{aligned} & \text { (M8 vs. M8a), } 29.54547 \\ & \text { d.f. }=1, p=0.0000 \end{aligned}$	Not allowed	
Lineage 2b						
M0: One-ratio	1	$\omega=0.7065$	-1855.459267	None		
M1a: Nearly neutral	1	$\begin{aligned} & \omega_{0}=0, \omega_{1}=1,\left(p_{0}=0.49,\right. \\ & \left.p_{1}=0.51\right) \end{aligned}$	840.547215	Not allowed		
M2a: Positive selection	3	$\begin{aligned} & \omega_{0}=0, \omega_{1}=1 \\ & \boldsymbol{\omega}_{2}=\mathbf{1 0 . 0 1 9 5} ;\left(p_{0}=0.45,\right. \\ & \left.p_{1}=0.52, \boldsymbol{p}_{\mathbf{2}}=\mathbf{0 . 0 3}\right) \end{aligned}$	-1829.903873	(M1a vs. M2a), 21.286684, d.f. $=2, p=0.00002$	100-E (0.999)	7.607 ± 2.041
					105-P (0.971)	7.432 ± 2.288
					109-P (0.911)	6.994 ± 2.703
					213-R (0.682)	5.477 ± 3.516
M7: β	2	$p=0.00517, q=0.005$	-1840.570751	Not allowed		
M8: $\beta+\omega_{\mathrm{s}}>1$	4	$\begin{aligned} & p_{0}=0.97, \boldsymbol{p}_{\mathbf{1}}=\mathbf{0 . 0 3} \\ & p=0.005, q=0.005, \boldsymbol{\omega}=\mathbf{9 . 6} \end{aligned}$	830.002479	(M7 vs. M8), 21.136554, d.f. $=2, p=0.00003$	100-E (1.000)	6.823 ± 2.093
					105-P (0.985)	6.745 ± 2.196
					109-P (0.958)	6.561 ± 2.375
					114-Y (0.515)	3.679 ± 3.226
					116-G (0.572)	4.071 ± 3.293
					$162-\mathrm{E}(0.606)$	4.080 ± 3.052
					201-T (0.500)	3.579 ± 3.206
					213-R (0.770)	5.424 ± 3.159
					220-P (0.629)	4.385 ± 3.236
M8a: $\beta+\omega_{\mathrm{s}}=1$	3	$\begin{aligned} & p_{0}=0.49, p_{1}=0.51 \\ & p=0.005, q=2.785, \omega=1 \end{aligned}$	840.547213	(M8 vs. M8a), 21.089468, d.f. $=1, p=0.0000$	Not allowed	

Null models (M1a, M7, and M8a) are compared with their respective alternative models (M2a, M8) that allow $\omega>1$. Proportion of positively selected sites and their corresponding ω-values in M2a and M8 models are in bold. The posterior probability of each positively selected amino acid site is in parenthesis. Posterior probabilities are estimated based on Bayes Empirical bayes analyses (Yang et al., 2005).
played a crucial role in the uneven distribution across the wide geographic regions. The extensive polymorphisms of the hMPV G-gene may have resulted from mutations occurring during virus propagation in cell culture; however, Peret et al. (2004) reported identical sequences of the same viral strain after multiple passages, and thus, the observed variation in the G-gene of hMPVs due to multiple passages is more unlikely. However, it is unclear
whether the hMPV G-gene experienced differential selection pressures, or all the deduced amino acid sites evolved due to stochastic mutational processes? Sliding window analyses of each lineage revealed that in the majority of regions synonymous divergence exceeds the corresponding nonsynonymous divergence, thus suggesting that the G-gene of hMPV is influenced by purifying selection (Fig. 1). However, a few coding regions

Fig. 2. Skyline plots estimated from Bayesian MCMC analyses of hMPV Gprotein sequences belong to lineage $1(a+b)$ and lineage $2(a+b)$. Population size (in Y-axis) is expressed in logarithmic scale. The solid line shows the median estimate of population size $(\mathrm{Ne} \times \mathrm{g})$ throughout the given time period. The grey area gives the 95% HPD interval of these estimates.
in all the lineages showed relatively higher nonsynonymous divergence than synonymous divergence, therefore indicating the pervasive role of positive selection in certain amino acid sites. To identify the codon sites that are positively selected, we performed ML-based codon substitution analyses. Consistent with sliding window results, the M0 model revealed that the average ω for each lineage is less than one (Table 3), thus suggesting each lineage experienced purifying selection. However, comparison of the models that assume positive selection (M2a, M8) with the models (M1a, M7, and M8a) that assume no positive selection, detected approximately $6 \%, 1.3 \%, 7.3 \%$, and 3% positively selected codons in lineage $1 \mathrm{a}, 1 \mathrm{~b}, 2 \mathrm{a}$, and 2 b , respectively (Table 3). There are eight positively selected sites (site 93, $105,106,154,158,171,173$, and 188) with posterior probability ≥ 0.95 within lineage 1 a , whereas lineage 1 b (site 146,183 , and 196) and lineage $2 \mathrm{a}(85,232$, and 239) each have three positively selected sites with posterior probability ≥ 0.95. Lineage 2 b has only two positively selected sites (site 100 and 105) with posterior probability ≥ 0.95. Except site 105 , which is positively selected in lineage 1 a and 2 b , none of the positively selected sites are overlapping among the lineages. It is unclear whether these positively selected sites are associated with the fitness of this virus. Research with monoclonal antibodies has shown that the hMPV F-protein carries neutralizing epitopes (Skiadopoulos et al., 2004; Ulbrand et al., 2006); therefore, antigenic variation due to immune selection in the hMPV F-protein is more likely. Although, the overall excess of synonymous substitutions at the
hMPV G-protein indicates that host immune selection might not be the dominant selective force, the findings of several hotspots of nonsynonymous substitutions in this protein suggests that host immune selection might also play a role in maintaining diversity. Recent study has shown that a majority of the neutralizing epitopes in the HRSV G-gene is strongly associated with positively selected sites, and some of the positively selected sites correspond to the sites of O-glycosylation (Zlateva et al., 2004). Like HRSV, although all the positively selected codons of hMPV G-gene are located in the extracellular domain and some of them correspond to sites of O-glycosylation, the putative role is still unclear for these positively selected sites, as is whether some of these positively selected sites are associated with the region of antigenic determinants. We intended to map these positively selected sites with the HRSV G-protein to see whether the same sites were also positively selected in HRSV (Zlateva et al., 2004, 2005); however, the predicted G-gene amino acid sequences of the two viruses could not be aligned (van den Hoogen et al., 2002; Kahn, 2006). Although a vast majority of codon sites ($>95 \%$ in most cases) are shown to have been under purifying selection, significantly higher ω values (>1) at certain codon sites (Table 3) indicate the hMPV G-gene is under positive selection. Identification of these positively selected amino acid sites would help in better screening using epitope mapping technology to identify and localize the sites that can be recognized by the immune system. Knowledge of sites that have adaptively evolved can greatly cut the cost of these screening processes and thereby help in developing better immunization techniques (Mes and van Putten, 2007).

Acknowledgements

We thank the University of Tulsa for providing facilities to carry out this work and Dr. Peggy S.M. Hill for editing and comments for improving the manuscript. We thank two anonymous reviewers for the helpful comments on the earlier version of the manuscript.

References

Bastien, N., Liu, L., Ward, D., Taylor, T., Li, Y., 2004. Genetic variability of the G glycoprotein gene of human metapneumovirus. J. Clin. Microbiol. 42, 3532-3537.
Bastien, N., Ward, D., Caeseele, P.V., Brandt, K., Lee, S.H.S., McNabb, G., Klisko, B., Chan, E., Li, Y., 2003. Human metapneumovirus infection in the Canadian population. J. Clin. Microbiol. 41, 4642-4646.
Biacchesi, S., Skiadopoulos, M.H., Boivin, G., Hanson, C.T., Murphy, B.R., Collins, P.L., Buchholz, U.J., 2003. Genetic diversity between human metapneumovirus subgroups. Virology 315, 1-9.
Boivin, G., De Serres, G., Hamelin, M.E., Cote, S., Argouin, M., Tremblay, G., Maranda-Aubut, R., Sauvageau, C., Ouakki, M., Boulianne, N., Couture, C., 2007. An outbreak of severe respiratory tract infection due to human metapneumovirus in a long-term care facility. Clin. Infect. Dis. 44, 1152-1158.
Carr, M.J., McCormack, G.P., Crowley, B., 2005. Human metapneumovirusassociated respiratory tract infections in the republic of Ireland during the influenza season of 2003-2004. Clin. Microbiol. Infect. 11, 366-371.
Chen, R., Holmes, E.C., 2006. Avian influenza virus exhibits rapid evolutionary dynamics. Mol. Biol. Evol. 23, 2336-2341.

Cote, S., Abed, Y., Boivin, G., 2003. Comparative evaluation of real-time PCR assays for detection of the human metapneumovirus. J. Clin. Microbiol. 41, 3631-3635.
Drummond, A.J., Rambaut, A., 2006. BEAST version 1.4.4. Available from http://beast.bio.ed.ac.uk/.
Drummond, A.J., Ho, S.Y.W., Phillips, M.J., Rambaut, A., 2006. Relaxed phylogenetics and dating with confidence. PLoS Biol. 4, e88.
Drummond, A.J., Nicholls, G.K., Rodrigo, A.G., Solomon, W., 2002. Estimating mutation parameters, population history, and genealogy simultaneously from temporally spaced sequence data. Genetics 161, 1307-1320.
Drummond, A.J., Rambaut, A., Shapiro, B., Pybus, O.G., 2005. Bayesian coalescent inference of past population dynamics from molecular sequences. Mol. Biol. Evol. 22, 1185-1192.
Ebihara, T., Endo, R., Kikuta, H., Ishiguro, N., Ishiko, H., Kobayashi, K., 2004. Comparison of the seroprevalence of human metapneumovirus and human respiratory syncytial virus. J. Med. Virol. 72, 304-306.
Fouchier, R.A.M., Rimmelzawaan, G.F., Kuiken, T., Osterhaus, A.D.M.E., 2005. Newer respiratory virus infections: human metapneumovirus, avian influenza, and coronaviruses. Curr. Opin. Infect. Dis. 18, 141-146.
Galiano, M., Trento, A., Ver, L., Carballal, G., Videla, C., 2006. Genetic heterogeneity of G and F protein genes from Argentinean human metapneumovirus strains. J. Med. Virol. 78, 631-637.
Gray, G., Capuano, A., Setterquist, S., Sanchez, J., Neville, J., Olson, J., 2006 b. Human metapneumovirus, Peru. Emerg. Infect. Dis. 12, 347-350.
Gray, G.C., Capuano, A.W., Setterquist, S.F., Erdman, D.D., Nobbs, N.D., Abed, Y., Doern, G.V., Starks, S.E., Boivin, G., 2006a. Multi-year study of human metapneumovirus infection at a large US midwestern medical referral center. J. Clin. Virol. 37, 269-276.

Guindon, S., Gascuel, O., 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52, 696-704.
Hall, T.A., 1999. BioEdit: a user friendly biological sequence alignment editor and analyses program for windows 95/98/N. J. Nucl. Acids Symp Ser. 41, 95-98.
Hamelin, M.E., Boivin, G., 2005. Development and validation of an enzyme-linked immunosorbent assay for human metapneumovirus serology based on a recombinant viral protein. Clin. Diagn. Lab. Immunol. 12, 249-253.
Hughes, A.L., Nei, M., 1989. Nucleotide substitution at major histocompatibility complex class II loci: evidence for overdominant selection. Proc. Natl. Acad. Sci. U.S.A. 86, 958-962.
Ishiguro, N., Ebihara, T., Endo, R., Ma, X., Kikuta, H., Ishiko, H., Kobayashi, K., 2004. High genetic diversity of the attachment (G) protein of human metapneumovirus. J. Clin. Microbiol. 42, 3406-3414.
Kahn, J.S., 2006. Epidemiology of human metapneumovirus. Clin. Microbiol. Rev. 19, 546-557.
Kumar, S., Tamura, K., Nei, M., 2004. MEGA3, 1: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief. Bioinform. 5, 150-163.
Leung, J., Esper, F., Weibel, C., Kahn, J.S., 2005. Seroepidemiology of human metapneumovirus (hMPV) on the basis of a novel enzyme-linked immunosorbent assay utilizing hMPV fusion protein expressed in recombinant vesicular stomatitis virus. J. Clin. Microbiol. 43, 1213-1219.
Ludewick, H.P., Abed, Y., van Niekerk, N., Boivin, G., Klugman, K.P., Madhi, S.A., 2005. Human metapneumovirus genetic variability, South Africa. Emerg. Infect. Dis. 11, 1074-1078.
Mackay, I.M., Jacob, K.C., Woolhouse, D., Waller, K., Syrmis, M.W., Whiley, D.M., 2003. Molecular assays for detection of human metapneumovirus. J. Clin. Microbiol. 41, 100-105.
Maddison, Y., Maddison, D., 2006. Mesquite: a modular system for evolutionary analysis. Version 1.12. http://mesquiteproject.org.
Maertzdorf, J., Wang, C.K., Brown, J.B., Quinto, J.D., Chu, M., de Graaf, M., 2004. Real-time reverse transcriptase PCR assay for detection of human metapneumoviruses from all known genetic lineages. J. Clin. Microbiol. 42, 981-986.
Matheson, J.W., Rich, F.J., Cohet, C., Grimwood, K., Huang, Q.S., Penny, D., Hendy, M.D., Kirman, J.R., 2006. Distinct patterns of evolution between respiratory syncytial virus subgroups A and B from New Zealland isolates collected over thirty-seven years. J. Med. Virol. 78, 1354-1364.

Mes, T.H.M., van Putten, J.P.M., 2007. Positively selected codons in immuneexposed loops of the vaccine candidate OMP-P1 of Haemophilus influenzae. J. Mol. Evol. 64, 411-422.

Peret, T.C., Abed, Y., Anderson, L.J., Erdman, D.D., Boivin, G., 2004. Sequence polymorphism of the predicted human metapneumovirus G glycoprotein. J. Gen. Virol. 85, 679-686.
Posada, D., Crandall, K.A., 1998. Modeltest: testing the model of DNA substitution. Bioinformatics 14, 817-818.
Rambaut, A., Drummond, A.J., 2006. Tracer version 1.3. Available from http://tree.bio.ed.ac.uk/software/tracer/.
Regev, L., Hindiyeh, M., Shulman, L.M., Barak, A., Levy, V., Azar, R., Shalev, Y., Grossman, Z., Mendelson, E.J., 2006. Characterization of human metapneumovirus infections in Israel. Clin. Microbiol. 44, 1484-1489.
Rozas, J., Sánchez-DelBarrio, J.C., Messeguer, X., Rozas, R., 2003. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19, 2496-2497.
Skiadopoulos, M.H., Biacchesi, S., Buchholz, U.J., Riggs, J.M., Surman, S.R., Carambot, E.A., McAuliffe, J.M., Elkins, W.R., Claire, M.S., Collins, P.L., Murphy, B.R., 2004. The two major human metapneumovirus genetic lineages are highly related antigenically, and the fusion (F) protein is a major contributor to this antigenic relatedness. J. Virol. 78, 6927-6937.
Stockton, J., Stephenson, I., Fleming, D., Zambon, M., 2002. Human metapneumovirus as a cause of community-acquired respiratory illness. Emerg. Infect. Dis. 8, 897-901.
Swanson, W.J., Nielsen, R., Yang, Q., 2003. Pervasive adaptive evolution in mammalian fertilization proteins. Mol. Biol. Evol. 20, 18-20.
Trento, A., Viegas, M., Galiano, M., Videla, C., Carballal, G., Mistchenko, A.S., Melero, J.A., 2006. Natural history of human respiratory syncytial virus inferred from phylogenetic analysis of the attachment (G) glycoprotein with a 60-nucleotide duplication. J. Virol. 80, 975-984.
Ulbrand, N.D., Ji, H., Patel, N.K., Riggs, J.M., Brewah, Y.A., Ready, S., Donacki, N.E., Folliot, K., Barnes, A.S., Senthil, K., Wilson, S., Chen, M., Clarke, L., MacPhail, M., Li, J., Woods, R.M., Coelingh, K., Reed, J.L., McCarthy, M.P., Pfarr, D.S., Osterhaus, A.D.M.E., Fouchier, R.A.M., Kiener, P.A., Suzich, J.A.A., 2006. Isolation and characterization of monoclonal antibodies which neutralize human metapneumovirus in in vitro and in vivo. J. Virol. 80, 799-7806.
van den Hoogen, B.G., 2007. Respiratory tract infection due to human metapneumovirus among elderly patients. Clin. Infect. Dis. 44, 1159-1160.
van den Hoogen, B.G., Bestebroer, T.M., Osterhaus, A.D., Fouchier, R.A., 2002. Analysis of the genomic sequence of a human metapneumovirus. Virology 295, 119-132.
van den Hoogen, B.G., de Jong, J.C., Groen, J., Kuiken, T., de Groot, R., Fouchier, R.A., Osterhaus, A.D., 2001. A newly discovered human pneumovirus isolated from young children with respiratory tract disease. Nat. Med. 7, 719-724.
van den Hoogen, B.G., Herfst, S., Sprong, L., Cane, P.A., Forleo-Neto, E., de Swart, R.L., Osterhaus, A.D.M.E., Fouchier, R.A.M., 2004. Antigenic and genetic variability of human metapneumoviruses. Emerg. Infect. Dis. 10 (4), 658-666.
Woelk, C.H., Pybus, O.G., Jin, L., Brown, D.W.G., Holmes, E.C., 2002. Increased positive selection pressure in persistent (SSPE) versus acute measles virus infections. J. Gen. Virol. 83, 1419-1430.
Xia, X., 2000. Data analysis in molecular biology and evolution. pp. 276.
Xia, X., Xie, Z., 2001. DAMBE: Data analysis in molecular biology and evolution. J. Heredity 92, 371-373.
Yang, Z., 1997. PAML: a program package for phylogenetic analysis by maximum likelihood. Comput. Appl. Biosci. 13, 555556.

Yang, Z., Nielsen, R., Goldman, N., Pederson, A.M., 2000. Codon-substitution models for heterogeneous selection pressures at amino acid sites. Genetics 155, 431-449.
Yang, Z., Wong, W.S., Nielsen, R., 2005. Bayes empirical bayes inference of amino acid sites under positive selection. Mol. Biol. Evol. 22, 11071118.

Zhang, C.-Y., Wei, J.-F., He, S.-H., 2006. Adaptive evolution of the spike gene of SARS coronavirus: changes in positively selected sites in different epidemic groups. BMC Microbiol. 6, 88.

Zlateva, K.T., Lemey, P., Moe"s, E., Vandamme, A.-M., Ranst, M.V., 2005. Genetic variability and molecular evolution of the human respiratory syncytial virus subgroup B attachment G protein. J. Virol. 79, 91579167.

Zlateva, K.T., Lemey, P., Vandamme, A.-M., Ranst, M.V., 2004. Molecular evolution and circulation patterns of human respiratory syncytial virus subgroup A: Positively selected sites in the attachment G glycoprotein. J. Virol. 78, 4675-4683.

[^0]: * Corresponding author. Tel.: +1 918631 3062; fax: +1 9186312762 .

 E-mail address: abinash-padhi@utulsa.edu (A. Padhi).

[^1]: Estimates with relaxed clock are better fit to the data.

