
NeuroImage 175 (2018) 340–353
Contents lists available at ScienceDirect

NeuroImage

journal homepage: www.elsevier.com/locate/neuroimage
Directed functional connectivity using dynamic graphical models

Simon Schwab a,b,c,*, Ruth Harbord d, Valerio Zerbi e, Lloyd Elliott f, Soroosh Afyouni a,
Jim Q. Smith b, Mark W. Woolrich g, Stephen M. Smith g, Thomas E. Nichols a,b,c

a Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Population Health, University of Oxford, United Kingdom
b Department of Statistics, University of Warwick, United Kingdom
c Institute of Digital Healthcare, WMG, University of Warwick, United Kingdom
d MOAC Doctoral Training Centre, University of Warwick, United Kingdom
e Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zurich, Switzerland
f Department of Statistics, University of Oxford, United Kingdom
g Oxford Centre for Functional MRI of the Brain, University of Oxford, Oxford, United Kingdom
A R T I C L E I N F O

Keywords:
Directed dynamic functional connectivity
Effective connectivity
Dynamic graphical models
Time-varying connectivity
Resting-state fMRI
* Corresponding author. Big Data Institute, Li Ka
United Kingdom.

E-mail address: simon.schwab@bdi.ox.ac.uk (S.

https://doi.org/10.1016/j.neuroimage.2018.03.074
Received 3 March 2018; Received in revised form
Available online 3 April 2018
1053-8119/© 2018 Elsevier Inc. All rights reserved
A B S T R A C T

There are a growing number of neuroimaging methods that model spatio-temporal patterns of brain activity to
allow more meaningful characterizations of brain networks. This paper proposes dynamic graphical models
(DGMs) for dynamic, directed functional connectivity. DGMs are a multivariate graphical model with time-
varying coefficients that describe instantaneous directed relationships between nodes. A further benefit of
DGMs is that networks may contain loops and that large networks can be estimated. We use network simu-
lations and human resting-state fMRI (N¼ 500) to investigate the validity and reliability of the estimated
networks. We simulate systematic lags of the hemodynamic response at different brain regions to investigate
how these lags potentially bias directionality estimates. In the presence of such lag confounds (0.4–0.8 s offset
between connected nodes), our method has a sensitivity of 72%–77% to detect the true direction. Stronger lag
confounds have reduced sensitivity, but do not increase false positives (i.e., directionality estimates of the
opposite direction). In human resting-state fMRI, the default mode network has consistent influence on the
cerebellar, the limbic and the auditory/temporal networks. We also show a consistent reciprocal relationship
between the visual medial and visual lateral network. Finally, we apply the method in a small mouse fMRI
sample and discover a highly plausible relationship between areas in the hippocampus feeding into the
cingulate cortex. We provide a computationally efficient implementation of DGM as a free software package
for R.
Introduction

Human behavior is underpinned by brain circuits and there is evi-
dence of abnormal connectivity in brain networks related to the psy-
chopathology of mental disorders (Bassett and Bullmore, 2009; Buckner
et al., 2008; Menon, 2011), for example, in schizophrenia (Zhou et al.,
2016), major depression (Cheng et al., 2016; Guo et al., 2016), dementia
(Chase, 2014), or anxiety disorders (Peterson et al., 2014). New treat-
ment strategies in the future may benefit from new computational
method developments that lead to an improved understanding of altered
functional networks of the brain (Friston et al., 2014b; Huys et al., 2016;
Stephan and Mathys, 2014). However, a majority of studies in functional
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connectivity (FC) are based on correlations (full, or partial) between
fMRI time series, and even though they are fast to compute and can
handle large networks, these have some major limitations (Smith et al.,
2013b).

First, FC in terms of correlation between time series reflects static,
stationary relationships with fixed connection strengths across time.
However, coupling between brain systems is not constant over time-
—there is evidence that brain connectivity is better described in terms
of time-varying connectivity (Allen et al., 2014; Liu and Duyn, 2013;
Shine and Poldrack, 2017; Smith et al., 2012). Emerging evidence
suggests that dynamic functional connectivity may reflect changes in
the underlying effective connectivity, where changes in effective
tion and Discovery, University of Oxford, Old Road Campus, Oxford OX3 7LF,
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1 Number of directed graphs with no self-loops, https://oeis.org/A053763.
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connectivity cause—or are caused by—crucial aspects of cognition and
behaviour (Allen et al., 2014; Braun et al., 2015; Hutchison et al.,
2013a; Smith et al., 2012; Zalesky et al., 2014). The study of these
processes can be highly relevant in psychiatry (Damaraju et al., 2014;
Kaiser et al., 2016; Zhang et al., 2016). Such dynamic coupling can
occur in different behavioral contexts and during cognitive control
(Cocchi et al., 2013; Gonzalez-Castillo et al., 2015; Shine et al., 2016).
In particular, intermodular connections seem to be dynamic, linking
different systems of the brain (Zalesky et al., 2014). Hence, it is more
plausible that the brain exhibits dynamic communication (Andrew-
s-Hanna et al., 2014; Betzel et al., 2016; Bressler and Kelso, 2001; Fox
et al., 2005; Hutchison et al., 2013b). Only recently have studies begun
to look closer at fluctuating dynamic connectivity, but proper valida-
tion is important (Laumann et al., 2017; Leonardi and Van De Ville,
2015; Lindquist et al., 2014; Ryali et al., 2011). Consequently, dynamic
methods will potentially have greater impact than static methods in the
future (Bassett and Gazzaniga, 2011; Calhoun et al., 2014; Preti et al.,
2017; Vidaurre et al., 2017).

Second, FC in terms of a correlation between nodes reflects undi-
rected relationships between them. A major challenge is to estimate the
direction of information flow in FC (Ramsey et al., 2010). Notably, the
rate of measurement for fMRI is much slower than the neural time lag,
and the hemodynamic response (HR) is subject to variation of the tem-
poral delay. Even though most variation is between subjects, there is also
variation between brain regions (Handwerker et al., 2004) which can be
problematic As a result, lag-based methods, such as Granger causality,
can be confounded by the variability of the HR in different brain areas
(Smith et al., 2013b, 2011). For example, if a node A is influencing a node
B, but node A has a slower HR compared to B, lag-based methods may
estimate the incorrect direction. An interesting issue here is the nature of
the lag induced by different haemodynamic response functions in
different nodes. Simply changing the parameters or shape of the hae-
modynamic response function does not necessarily invalidate Granger
causality (Barnett and Seth, 2017). However, the introduction of explicit
conduction delays violates the temporal precedence assumptions that
underlie Granger causality.

Several methods have been proposed to infer causal relationships
between nodes, for example exploiting non-Gaussian features of the
BOLD signal (Hyv€arinen and Smith, 2013; Ramsey et al., 2014) to
determine the edge direction between a node pair. The IMaGES (Ramsey
et al., 2011) method can successfully determine directionality on the
group level with concatenated time series across subjects (multi-subject
approach), and the GIMME algorithm recovers individual network
structure after estimating the group structure (Gates and Molenaar,
2012). A very popular method to estimate directed networks is dynamic
causal modeling (DCM; Friston et al., 2003). DCM is primarily designed
to make inferences about how experimental conditions change connec-
tivity (Stephan et al., 2010). When used to fit resting state time series,
DCM is usually deployed over sliding windows to estimate fluctuations in
effective connectivity (Cooray et al., 2016). Often, only small networks
are investigated in DCM studies, as investigators have specific hypotheses
on a small number of connections. However, new variants of DCM can be
applied to large graphs (rDCM; Fr€assle et al., 2017; Seghier and Friston,
2013). For example, spectral DCM is suitable to study networks with
dozens of nodes and is designed for resting-state experiments (Friston
et al., 2014a; Razi et al., 2017, 2015).

In the present study, we use dynamic graphical models (DGM) to
estimate dynamic, directed functional connectivity. There is over-
whelming evidence that brain areas are not acyclic due to reciprocal
polysynaptic connections (Friston, 2011; Markov et al., 2014). Therefore,
unlike our related work on “multiregression dynamic models” (MDMs;
Costa et al., 2015), we do not constrain the networks to be acyclic.
Without the acyclic constraint, we do not have a single statistical model
for all nodes, but a heuristic approach, comprised of a set of dynamic
linear models, one per node. We refer to our approach as the Dynamic
Graphical Model (DGM). A DGM is a dynamic network with time-varying
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connection strengths that can accommodate larger directed networks.
Here, “dynamic” refers to time-varying coupling strengths modeled (as
detailed below) by a random walk model of the underlying coupling. In
distinction to DCM, we do not consider any time varying experimental
conditions or designed input. While this dynamicmodel is stationary, e.g.
random walk smoothness parameters are constant in time, it can explain
time-varying correlations in observed fMRI time series. Further, DGM
have added interpretability as a regression model: for each child node, its
time series are regressed on the time series from one or more other parent
nodes; the directed relationship corresponds to the information flowing
from the parent to the child node. Crucially, DGM use instantaneous
interactions between the brain regions rather than lagged relationships to
estimate directionality.

A major challenge of DGM is the number of possible graphs which
increase exponentially as a function of the number of nodes. Searching
such a large solution space is not feasible, even with modern computa-
tional resources. For example, for n¼ 15 regions/nodes there
2n

2�n �1063 possible directed graphs.1 However, the DGM model evi-
dence factorizes by node (see below), and hence models can be optimised
for each node independently, and thus only n2n�1 model evaluations (e.g.
245,760 for n¼ 15) are required. Even so, networks larger than 25 nodes
are computationally intensive and could require several months to
compute (Fig. 1C), but, network discovery (stepwise model selection) are
promising to drastically speed up the computational time in the future
(Harbord et al., 2016). Also, we show that post-hoc pruning of the net-
works can further improve directionality estimates; such optimizations
are an efficient way to explore model spaces and improve the computa-
tional burdens. (Friston et al., 2016; Seghier and Friston, 2013).

The aim of this study is (1) to investigate the accuracy of DGM for
recovering the true network structures in simulation based data, (2) to
look at the reliability and consistency DGM networks in large samples
of real fMRI data, (3) to give a worked example with mouse data and
evaluate whether the network structures are plausible and relate to
existing literature, and (4) to provide a fast implementation of DGM as
an “R” package. Additionally, we include a post-hoc optimization that
improves directionality estimates. For the synthetic data, we use
generated data from network simulations that have similar properties
as real BOLD data (Smith et al., 2011), as we aim to compare network
estimates to a ground truth in terms of sensitivity and specificity. We
further compare DGM's performance to other directed functional con-
nectivity methods. In subsequent work, we will extend this comparative
evaluation to effective connectivity and DCM. At present, we are con-
cerned with establishing the face validity of DGM; namely, its perfor-
mance in terms of identifying true patterns of connectivity in relation to
alternative functional connectivity methods. In subsequent work, we
will address DGM's ability to discriminate among different models of
connectivity using Bayesian model comparison (although, a form of
Bayesian model comparison is used implicitly to optimise DGM in the
procedure described below). We hypothesize that DGM has better
detection performance specifically with non-stationary data as the
method can model the dynamic relationships between nodes. We also
change the simulated node's hemodynamic lags and hypothesize that
the DGM, which is based on instantaneous dependencies between
nodes, is not affected by variation in the haemodynamic response which
can confound and reverse directionality estimates, for example as in
purely lag-based methods. Having established the validity of DGM, we
estimate dynamic directed relationships of resting-state networks
(RSNs) in large samples from the Human Connectome Project to look at
the reproducibility of the estimated networks. Finally, we investigate a
hippocampal and a somatosensory network in mouse resting-state
fMRI, where we have a clear expectation of the directionality based
on findings from viral tracing studies in the mouse brain.

https://oeis.org/A053763


Fig. 1. (A) True 5-node network and corresponding adjacency matrix. (B) Mean Pearson correlations across 50 simulations for the dynamic (Sim22, top) and sta-
tionary network simulations (Sim1, bottom). (C) Computational time estimates for a single node of a given network size for a time series of length 1200 using a Intel
Xeon CPU (E5-2630 v2) with 2.6 GHz.

Table 1
Specifications of the simulated BOLD-fMRI data. Each of the simulations contain a simulated 5-node networks for 50 simulated subjects.

Simulation Name Number of nodes Neural lag Dynamic network strengths Duration TR Noise HRF lag variability (s)

Sim1 5 50ms No 10min. 3 s 1.0% �0.5a

Sim22 5 50ms Yes 10min. 3 s 0.1% �0.5a

Offset <0.4 s 5 50ms Yes 10min. 2 s 0.1% �0.3a

Offset 0.4 s 5 50ms Yes 10min. 2 s 0.1% þ0.21/-0.20b

Offset 0.8 s 5 50ms Yes 10min. 2 s 0.1% þ0.48/-0.35b

Offset 1.1 s 5 50ms Yes 10min. 2 s 0.1% þ0.69/-0.46b

Offset 1.4 s 5 50ms Yes 10min. 2 s 0.1% þ0.85/-0.54b

Offset 1.7 s 5 50ms Yes 10min. 2 s 0.1% þ1.04/-0.58b

Offset 1.9 s 5 50ms Yes 10min. 2 s 0.1% þ1.24/-0.59b

60min. 5 50ms Yes 60min. 2 s 0.1% �0.3a

8-nodes ST 8 500ms No 10min. 2 s 0.1% �0.5a

8-nodes NS 8 500ms Yes 10min. 2 s 0.1% �0.5a

a standard deviation of HRF peak.
b average increase (node 1 and 4)/average decrease (node 4 and 5) of the hemodynamic delay.

2 http://www.fmrib.ox.ac.uk/datasets/netsim/.
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Materials and methods

Network simulations

We created various synthetic fMRI datasets based on network simu-
lations of a 5-node (N¼ 50 datasets) and a 8-node network (N¼ 20), see
Table 1. The simulated data follow the same approach as Smith et al.
(2011), using a forward model (Friston et al., 2003) that links neural
populations to a nonlinear balloon model (Buxton et al., 1998); for full
details see Smith et al. (2011). In brief, each node has a binary external
input consisting of a Poisson process with an added noise of 1/20 of the
neural amplitudes. Mean duration of the simulated firing was 2.7 s (on)
and 10 s (off); with a range between 770ms and 10.1 s. The network also
included self-connections to model within-node temporal decay; this was
set to approximately 50ms for the 5-node network, and 500ms for the
8-node network. These specifications of neural activity is rather ad hoc,
but these capture representative settings suitable for our evaluations.
Each node's neural signal was transformed into a simulated BOLD signal
using the balloon model resulting in data with approximately 4% signal
change, a signal that corresponds to typical fMRI data. These simulations
had a hemodynamic lag variability of 0.5 s, reflecting observed variation
of the HR from different brain regions. The first two simulated 5-node
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networks (Fig. 1A) were “Sim1” and “Sim22” from Smith et al. (2011).2

Sim1 is a stationary network, and Sim22 an non-stationary (dynamic)
network with time-dependent connection strengths. Both network's time
series were sampled to create 10min time series with a TR of 3 s. In
Sim22 the connection strengths are modulated over time by additional
random processes, such that the connection strength between two nodes
is randomly set to zero for random intervals of mean duration of 30 s. For
dynamic time series, correlation coefficients between truly connected
nodes ranged from 0.25 to 0.40 across the 5 nodes (mean 0.33), and for
stationary time series from 0.30 to 0.35 (mean 0.32), see Fig. 1B.

We created seven additional simulations with systematic offsets be-
tween the nodes using the “NetSim” framework of Smith et al. (2011).
With “offset”, we refer to the difference between two nodes with respect
to their hemodynamic delays. For example, if we increase the HR delay at
node 1 byþ0.5 s and decrease the delay at node 2 by�0.2 s, the resulting
total offset introduced between the two nodes is 0.7 s. The HR delay is the
increased/decreased lag compared to the canonical HRF at a node, which
is usually around 4–6 s. While Smith et al. (2011) randomly changed the
delay of each node with a standard deviation of �0.5 s, we systematically

http://www.fmrib.ox.ac.uk/datasets/netsim/
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altered the HRF delay at four of the five nodes to create a worst-case,
“slow parent, fast child” scenario for a lag-based method (Fig. 2A). To
achieve this, we changed the shape of the hemodynamic response func-
tion: we changed the transit time of blood τ in the balloon model, i.e., the
average time blood takes to traverse the venous compartment (Buxton
et al., 1998; Stephan et al., 2007). Values for τ were sampled from a
normal distributions with means provided in the Supplementary Table S2
and a variance of 0.05. For node 1 and 4, we increased τ, and for node 2
and 5 we decreased τ. We confirmed this by a simulation using a single
block of neural spiking with a duration of 2.5 s and measured the time to
peak in the simulated HR at each node as the signal moves through the
network; see Fig. 2C and Supplementary Table S3. As a result our in-
terventions increased node 1's delay, and decreased node 2's delay; the
same intervention was performed for node 4 and node 5, and node 3
remained unaffected (Fig. 2AC). Therefore, nodes 2 and 5 had their HRF
peaks occurring before their respective parent nodes 1 and 4. In our
simulations that included these offsets, node 1 and 4 had increased delays
by 0.21–1.24 s compared to the canonical HRF shape, and node 2 and 5
had decreased delays by 0.20–0.59 s. These seven additional simulated
datasets (Table 1) primarily differed regarding the strength of interven-
tion in terms of total systematic offset between connected nodes, with the
first dataset having no systematic intervention with an offset of <0.4 s,
and the other simulations having systematic offsets of 0.4 s, 0.8 s, 1.1 s,
1.4 s, 1.7 s, and 1.9 s. Additional descriptive statistics of these datasets
are reported in Supplementary Tables S3–S5. The simulated nodes' cor-
relations were comparable to the Sim22 dataset (Fig. 2B), and with
increased intervention strength, the correlations decreased, as expected.
Time series had a mean correlation of r¼ 0.32 across the five node-pairs
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and interventions. We also created a long 60min. simulation of dynamic
time series as session duration improved sensitivity in various network
modeling methods (Smith et al., 2011).

Finally, we extended the 5-node network and created a stationary and
nonstationary 8-node network simulation with two reciprocal connec-
tions, and a neural lag of 500 s (Fig. 7A). We aimed to investigate
whether DGM can successfully detect the bidirectional relationships. The
neural lag was changed from 50ms to 500ms as this more reasonably
reflects neural activity by populations of neurons with slower
fluctuations.

fMRI data

For real fMRI data, we used resting state network (RSN) time series of
500 participants (57% female; age distribution of 42%, 36%, 21% and
1% in ranges of 26–30, 31–35, 22–25, and 36 þ years) provided by the
Human Connectome Project (Smith et al., 2013a; Van Essen et al., 2013).
RSN time-series were from the HCP 900 d¼ 25 “PTN” data (Parcellation,
Time-series þ Netmats), a 25-dimension ICA decomposition of the
15 min of resting state data which was acquired with a TR of 0.72 s. From
the 25 spatial components we selected ten RSNs which had the highest
spatial correlation with the ten RSNs reported by Smith et al. (2009), see
Supplementary Table S1. Note that we are treating a RSN as a node in our
analyses, i.e., we are summarising the activity of a distributed mode (i.e.,
resting state network) with a single time series and then using the DGM to
understand how 'networks' are coupled to 'networks'. The reason we can
do this is that most resting state networks comprise spatially compact
regions that can be treated as a small collection of nodes. For mouse
Fig. 2. (A) Systematic interventions at four of the five
nodes with either increased (node 1 and 4) or
decreased HRF delay (node 2 and 5). We created
seven simulations with a total offset between two
nodes from 0.4 to 1.9 s (B) Pairwise node correlations
in the different simulations. (C) Signal output at the 5
nodes showing the BOLD amplitude for the seven in-
terventions where different DCM forward model pa-
rameters were used to shift peaks of the HR response,
with colors from red (<0.4 s offset) to pink (1.9 s;
maximal intervention). Vertical lines indicate average
time to peak after stimulus onset for each intervention
type.



Fig. 3. Dynamic Graphical Model (DGM) is a graphical model with directed relationships. θt(i) (r) are the time-varying connectivity strength of parent region i þ 1 on
child node r (i¼ 1 is the intercept), or in other words, the varying regression coefficients from a dynamic regression. In this 3-node network, the model equations for
the three nodes are written in the lower left box, showing the DGM to be a collection of dynamic linear models (DLM).

Fig. 4. Pruning method's model comparison approach, illustrated on a 3 node
network. Each DGM with a bidirectional edge (red; here between node A and B)
is a model-pair composed of two DLMs, one for node A (parents of A) and one
for B (parents of B). We compare the model evidence (ME) between three
models, the bidirectional (red) m1 and two unidirectional models (m2 and m3;
green) where one or the other of the edges has been removed. We could choose
a simpler model, and select the better unidirectional model if the difference in
model evidence does not exceed an a priori defined value (in terms of a log
Bayes factor).
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rs-fMRI data, we analyzed two networks from a previously published
dataset of 16 mice, the first is an amygdala-hippocampal-entorhinal
network (8 nodes), the second a cortico-striatal-pallidum network with
6 nodes (Sethi et al., 2017; Zerbi et al., 2015).

Dynamic Graphical Models

Dynamic Graphical Models (DGM) are graphical models with directed
relationships and time-varying connectivity weights. The connectivity
weights are the regression coefficients that reflect the effect of a set of
parent nodes as covariates on a child node; see Fig. 3. DGM are closely
related to the Multiregression Dynamic Model (Costa et al., 2015; MDM;
Queen and Smith, 1993), except that a DGM need not be a directed
acyclic graph (DAG). A DGM is a set of dynamic linear models (DLMs),
state space models that are linear and Gaussian (Petris et al., 2009a; West
and Harrison, 1997). In a DLM, the time series of a given child node are
regressed on the time series from one or more other parent nodes using
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dynamic regression. The directed relationship corresponds to informa-
tion flowing from the parent to the child. A DGM is notable for its
computational tractability: conditional on an easily estimated ‘discount
factor’, the model is fully conjugate and the model evidence available in
closed form.

We define a DGM as a collection of multiple regression DLMs
described by the following set of equations (Harrison and Stevens, 1976;
West and Harrison, 1997, p. 109):

Observation equation YtðrÞ ¼ F tðrÞTθtðrÞ þ υtðrÞ υtðrÞ � N ð0;VðrÞÞ
System equation θtðrÞ ¼ θt�1ðrÞ þwtðrÞ wtðrÞ � N

�
0;VðrÞW*

t ðrÞ
�

Initial information ðθ0ðrÞjy0;VðrÞÞ � N
�
m0ðrÞ;VðrÞC*

0ðrÞ
�

Prior on the precision ðϕðrÞjy0Þ � G

�
n0ðrÞ
2

;
d0ðrÞ
2

�
(1)

For some child region r, Yt(r) is the observed value at time t, (r¼ 1,
…,n, t¼ 1, …,T). Let Pa(r) denote the parents of r and jPa(r)j be the
number of parents. Then θt(r) is an unobservable system vector with
length jPa(r)j þ 1. The covariate vector Ft(r) has the same dimension as
θt(r) and contains the observations from the parent nodes Pa(r) at time t;
the first element of Ft(r) is 1 to provide an intercept. The observation
error vt(r) and the system error wt(r) are normally-distributed with var-
iances V(r) and Wt(r) ¼ V(r)Wt*(r) respectively. The error vectors are
assumed to be mutually independent and independent over time and
nodes. The observation variance V(r) is unknown and assumed to be
constant so that we may place a gamma-distributed prior on the precision
ϕ(r) ¼ V(r)�1 and express all of the variances in the DLM in terms of this
constant, unitless term (West and Harrison, 1997). Finally, the initial
system vector θ0(r), conditioned on y0, is the available information at
time t¼ 0, and represents prior knowledge of the regression coefficients
before observing any data; θ0(r) follows a normal distribution with mean
m0(r) and variance C0 ¼ V(r)C0*(r).

The system variance is re-parameterized in terms of the posterior
variance Ct-1(r) ¼ V(r)C*t-1(r) of the state variables θt(r) at time t - 1 with

W*ðrÞ ¼ 1� δðrÞ
δðrÞ C*

t�1ðrÞ (2)

where δ(r) is a scalar ‘discount factor’. From this expression, it can be
seen that δ(r)¼ 1 corresponds to a static model, while lower values allow
dynamic connectivity estimates.



Fig. 5. Sensitivity, specificity, and accuracy of the methods DGM, Patel and Lingam for dynamic (A) and stationary simulations (B). (C) Proportions (top) and sig-
nificant proportions (below, binomial test, 5% FDR threshold) for dynamic network simulations. (D) same as (C) for stationary network simulations.

Fig. 6. Sensitivity, specificity and accuracy for DGM (e¼ 20) for different node
offsets (from 0.4 s up to 1.9 s total offset between the hemodynamic response of
two nodes).

S. Schwab et al. NeuroImage 175 (2018) 340–353
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The prior hyperparameters m0(r), C0*(r), n0(r), and d0(r) must be
specified a priori. We used the same values as Costa et al. (2015) which
are m0(r) ¼ 0, C0*(r)¼ 3IjPa(r)jþ1 where I is the identity matrix,
n0(r)¼ 0.001 and d0(r)¼ 0.001. We conducted prior sensitivity analyses
and found these values are suitable for mean zero time series at each node
and scaled (globally, over all time series and nodes) such that the average
temporal standard deviation (SD) across nodes is 1 (it is crucial not to
variance-normalize each node individually, as relative variance contains
important directionality information).

The forecast distribution for Yt(r) given parents Pa(r) and past ob-
servations yt�1(r) follows a Student's t-distribution (West and Harrison,
1997). This distribution allows us to evaluate the log likelihood of an
observed time series by summing over time and regions. For an indi-
vidual node r with parents Pa(r), the log likelihood, ie. the model evi-
dence (ME), is



Fig. 7. (A) The 8-node network with two reciprocal connections. (B) Pair-wise correlation matrix for both networks. (C) Proportions (top) and significant proportions
(below, binomial test, 5% FDR threshold) for DGM and Lingam with dynamic network simulations. (D) same as (C) for stationary network simulations. (E) Sensitivity,
specificity, and accuracy of the two network estimation methods for both types of simulations.
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MEðrÞ ¼ pðy1ðrÞ; y2ðrÞ;…; yT ðrÞjPaðrÞÞ ¼
XT

log p
�
ytðrÞjyt�1ðrÞPaðrÞ�
t¼1

(3)

so that the model evidence for some model m with parents Pa ¼ (Pa(1),
…,Pa(n)) is expressed as follows:

ME ¼
Xn

r¼1

MEðrÞ (4)

For each possible Pa(r), the ME is first maximised with respect to the
discount factor δ(r) using a 1D grid search, δ(r) ∊ [0.5, 1]. While the MDM
of Queen and Smith (1993) requires a DAG constraint, finding the highest
ME with an acyclic configuration of parents (Pa(1), …, Pa(n)), for DGM
we simply find the maximum ME for each node individually (i.e. select
the highest scoring set of parents). A model m1 is preferred to m2 if
ME(m1)>ME(m2). Differences in ME correspond to log Bayes factors,
and thus provide an interpretable magnitude of evidence for one model
over another. In other words, a model is defined by the parents of a node;
namely, whether there can be an influence or not. Given the model, it is
possible to optimise the parameters in Equation (1), and evaluate the
model evidence in Equations (3) and (4). The differences in model evi-
dence can be used to directly compare models in terms of log Bayes
factors (assuming that they have the same prior probability).

As DGM is fitting a collection of models, one per node, this collection
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may not necessarily correspond to a single statistical model (i.e. with a
positive definite covariance posterior at every time point). This pseudo-
likelihood approach (Neville and Jensen, 2007) is an approximation to an
ideal model, where (e.g.) latent nodes are introduced to account for
reciprocal connections or other sources of cyclic behaviour. Each fitted
DGM, thus, is best interpreted as a set of marginal node models that best
describe the directed influence of parents on children nodes. This
factorization of DGM model evidence by node is the same device used in
regression DCM (Fr€assle et al., 2017).
Example of a DGM with 3 nodes

Let's assume a in a 3-node network with observed time series at the
three nodes Yt(1), Yt(2), and Yt(3), see Fig. 3. For example, node 3 has
node 1 and node 2 as parents. Given the graphical structure, the model
equations for the three nodes are written in Fig. 3. The time-varying
coefficients of the three edges e1→2, e1→3, e2→3 are θt

(2)(2), θt(2)(3), and
θt
(3)(3), respectively. These estimates are for every time t, allowing the
connectivity strengths to evolve over time.
Model-comparison based pruning of reciprocal connections

We have considered an optional pruning process where bidirectional
connections are converted to unidirectional connection as long as there is
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only modest reduction in model evidence. We find the optimal network,
i.e. the configuration of parents (Pa(1), …,Pa(n)) that maximises the
model evidence (ME). For each pair of nodes i and j with a bidirectional
connection, we compare the model evidence for three possible models m
(see also Fig. 4):

m1 : i⇆j MEðm1Þ ¼ MEPaðiÞ þMEPaðjÞ
m2 : i→j MEðm2Þ ¼ MEPaðiÞ þMEPaðjÞ\i
m3 : i←j MEðm3Þ ¼ MEPaðiÞ\j þMEPaðjÞ

(5)

where m1 is the (ME-optimal) bidirectional edge, and the ME for these
two nodes is the sum of the MEs of the two winning parent models node i
and node j. m1 and m2 are the two models with unidirectional relation-
ships, where each model evidence is likewise the sum of two MEs but
with modified set of parents. For example inm2, where i is the child node,
the likelihood (model evidence) is the sum of the ME of the winning
parent model for i and the ME for j without i as a parent. Note that the
total model evidence for the graph is a sum over all nodes, but since we
will only change the model at these two nodes we can disregard the other
n - 2 contributions to the total ME for this comparison. The choice be-
tween m1, m2, and m3 is determined as follows: first, we define the evi-
dence of the best unidirectional model as

ME
�

^
m

�
¼ maxðMEðm2Þ;MEðm3Þ Þ (6)

and then the model used is determined as

chosen model ¼

8>><
>>:

m1 if MEðm1Þ �MEðm̂ Þ > e ; or
if MEðm2Þ ¼ MEðm3Þ ; otherwise

m2 if MEðm2Þ > MEðm3Þ
m3 if MEðm2Þ < MEðm3Þ

(7)

where e is a chosen penalty, interpreted as the log Bayes Factor
comparing the original bidirectional model m1 to the best unidirectional
modelbm. If the Bayes Factor form1 is more than e we retain both the
edges, otherwise, we chose a simpler uni-directed model. One can regard
e as a prior over unidirectional versus bidirectional connections. In other
words, if we use the value of e¼ 20, we are effectively saying that our
prior odds for unidirectional connections over bidirectional connectivity
is exp(20). For the simulation data, we used e¼ 20 for the 5-node
network, and e¼ 10 for the 8-node network. For the 10 RSNs in human
rs-fMRI, the estimated networks had strong evidence for unidirectional
connections, with only 0.6% of edges altered with e¼ 20; as a result we
used no pruning (e¼ 0). The same occurred with the mouse fMRI net-
works: we used no pruning as e¼ 20 altered only 7% of the edges.
3 https://github.com/schw4b/DGM.
Statistical inference for edge consistency

After estimating the full networks for a dataset, we aim to test the
reproducibility of the edges across simulated datasets or over real sub-
jects and runs. We use a binomial test to identify edges that are more
prevalent than expected by chance. First, we compute the sample pro-
portion of edges at each directed edge from i to j

pij ¼ 1
N

XN
n¼1

Eijn (8)

and define a null edge connection rate as

p0 ¼ 1
N

1
RðR� 1Þ

XN
n¼1

XR
i 6¼j

Eijn (9)

where Eijn is a binary variable indicating the presence/absence of an edge
for child node i and parent j from subject n, 1� i 6¼ j� R, n¼ 1,…,N. We
then test each edge for edge prevalence that differs from the null edge
connection rate, with null and alternative hypotheses:
347
H0 : E pij ¼ p0 HA : E pij 6¼ p0 (10)

� � � �

where E(pij) is the true population probability of a specific edge with
child i and parent j across N subjects. As we perform multiple testing
across edges, we also adjust all p-values from the binomial test using false
discovery rate (FDR) correction at the 5% level.
Comparison with other directed methods

We compared DGM's directionality estimates to a method proposed
by Patel et al. (2006). Patel's approach is based on pairwise conditional
probability: An asymmetry in the probability of node A given node B, and
B given A indicates a directed relationship. The model for the joint
activation of each node pair is based on a multinomial likelihood with a
Dirichlet prior distribution. As done in previous work (Smith et al.,
2011), before calculating these conditional probabilities, the time series
were scaled to an interval between 0 and 1 and then binarized with a
cutoff at the 0.75 percentile. There are two measures derived from the
conditional dependencies, the connection strength (κ) and the direction
(τ). We implemented a permutation test for Patel's κ that creates a dis-
tribution of κ values under the null hypothesis by shuffling the time series
across subjects while keeping the nodes fixed. For each edge with a
significant connection strength κ, we assigned the direction based on the
sign of τ.

We also compared DGM to the pairwise Lingam method (Hyv€arinen
and Smith, 2013), an extension to the standard structural equation model
that exploits non-Gaussianity of the data.
Sensitivity and specificity

We investigated sensitivity and specificity for DGM and the various
other network estimation methods to detect the true directed network in
the simulations. For each simulation setting, we estimated networks from
the simulated datasets and measured the number of true positives (TP),
false positives (FP), true negatives (TN) and false negatives (FN), where
sensitivity is the proportion true positives from condition positive [TP/
(TP þ FN)], and specificity is the proportion of true negatives from
condition negative [TN/(TN þ FP)]. Additionally, we computed “c-
sensitivity” (Smith et al., 2011), the proportion of correct connections
among all simulated datasets, regardless of the directionality.
R package “DGM”

We released an R (RRID:SCR_001905) package “DGM” that imple-
ments DGM, Patel's method and all the statistical procedures described
above; the package is available on Github and on CRAN.3 We used
version 1.6.1 for all analyses. The number of parent models evaluated for
each child node is 2n�1, and hence the total number of evaluations is
n2n�1; for example a 25-node networks has 419 million possible models.
Thus, we implemented some of the time critical functions in Cþþ using
“Rcpp” (Eddelbuettel et al., 2011) and “RcppArmadillo” (Eddelbuettel
and Sanderson, 2014). Currently, up to a 20-node network is computa-
tionally feasible (20 h per node on a Intel Xeon CPU (E5-2630 v2) with
2.6 GHz), see Fig. 1C. There is a future important extension that we will
report separately: we have developed a greedy search algorithm that
performs a stepwise search adding or removing a parent node in each
step which drastically reduces the search space of all possible parent
models (Harbord et al., 2016). The computations can be parallelized on
the node level and example jobs are available for both Sun Grid Engine
and Slurm on Github. “DGM” is free software, licensed under GPL3 and
runs on all three major platforms (Linux, OS X and Windows).

rridsoftware:SCR_001905
https://github.com/schw4b/DGM
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Results

Network simulations

We evaluated the performance of the DGM to detect the true re-
lationships4 of the non-stationary and stationary network nodes and
compared to Patel's and the Lingam method. On dynamic data the DGM
(with e¼ 20) had higher sensitivity compared to Patel and Lingam (DGM:
sensitivity and specificity, 70% and 79%; Patel: 42% and 82%; Lingam:
41% and 80%), see Fig. 5A. DGM detected the 5 true edges in 14% of the
cases, and 4 out of 5 in 56% of the time; Patel's method detected 0% and
10%, and Lingam 0% and 8%, respectively. Looking at individual edges,
the highest correct detection rate was 88% for 1→ 5 and the lowest was
52% for 4→ 5 for the DGM; Patel's proportion of correct edges was lower,
ranging from 24% (3→ 4) to 66% (1→ 5), and Lingam from 26% (1→ 2)
to 60% (4→ 5), see Fig. 5C. For DGM binomial significance tests on the
edge proportions revealed all the 5 edges of the true underlying network
for dynamic time series. Only the false positive edge 2→ 1 had a sig-
nificant proportion of 62%, but was lower compared to the 78% for the
true edge 1→ 2. With Patel's method, only 3/5 of the true edges had
proportions that reached significance, and there was a false positive edge
at 1→ 3; Lingam discovered 3/5 edges but had 5 false positives and
mainly estimated the inverse directions. When we increased the pruning
to reach the same specificity as Patel's method (82%) using e¼ 26, we
found a sensitivity of 67% for DGM. Using no pruning (e¼ 0), DGM's
sensitivity was 84% and specificity was 64% (Fig. 5A). For the DGM, the
overall accuracy was best with e¼ 20 (76%) and e¼ 26 (78%), see
Fig. 5A. c-sensitivity was higher for DGM (89%) compared to Patel's
method (72%); we did not evaluate c-sensitivity for Lingam as this
method only determined directionality. We also evaluated a longer
simulation with DGM (60min. instead of 10min.) and found an increase
in sensitivity to 91%, however, specificity was reduced to 60%; c-sensi-
tivity was 98%.

For stationary data, performance was best for Lingam with a sensi-
tivity of 70% (DGM 50%; Patel: 47%), and a specificity of 90% (DGM:
79%; Patel: 86%), see Fig. 5B. For DGM, the highest edge proportion was
62% for 2→ 3 and the lowest was 34% for 3→ 4, see Fig. 5D. Using
Patel's method the proportion of correct edges ranged from 30% (3→ 4)
to 60% (1→ 5), and for Lingam from 58% (4→ 5) to 84% (1→ 2). DGM
discovered three of the five true edges that reached significant pro-
portions with two significant edges that were false positive Patel showed
4/5 true edges that reached significance with one false positive edge, and
Lingam recovered all true edges and one false positive.

For simulations with the systematic changes to the HRF delay, we
found a sensitivity of 80%, 77% and 72% for the first three interventions,
node offsets <0.4 s, 0.4 s, 0.8 s, respectively (Fig. 6). Stronger in-
terventions reduced sensitivity to 68%, 62% and 55%, for node offset
1.1 s, 1.4 s, 1.7 s, respectively. The strongest intervention with an offset
of 1.9 s reduced sensitivity to 48%. Specificity ranged between 62% and
69%.

We looked at the discount factors δ(r), the temporal smoothness of the
connectivity strengths θ(r) for nodes with at least one parent. Median δ(r)
across the 5 nodes was 0.86 (0.84–0.89) (Q1–Q3) for the dynamic data
Sim22, and 0.67 (0.66–0.67) for the dynamic simulations with the least
intervention (<0.4 s) and 0.71 (0.65–0.75) for the one with the strongest
intervention (1.9 s). For the stationary simulation (Sim1), a median δ(r)
of 0.994 (0.992–0.996) was fitted.

We also tested a 8-node network with reciprocal connections
(Fig. 7A). The reciprocal connections showed higher correlation
4 Although we refer to the known connections generating the data as 'true' we
do not necessarily imply that these are the 'best' explanations of the observed
data. It is commonplace to generate data for which there are simpler explana-
tions. In other words, it is possible that our analyses identified more parsimo-
nious explanations for particular realisations of the data.
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compared to the unidirectional edges, which was expected (Fig. 7B). On
dynamic data the DGM (with e¼ 10) had higher sensitivity compared to
Lingam (DGM: sensitivity and specificity, 81% and 73%; Lingam: 49%
and 93%), see Fig. 5E. However, note here that Lingam cannot detect a
relationship between two nodes, only the direction of the edge, and
therefore we informed Lingam with the edges that have a true connec-
tion. For DGM binomial significance tests on the edge proportions
revealed all the 10 edges of the true underlying network for dynamic time
series with 3 false positives (Fig. 5C). With Lingam, only 7/10 of the true
edges had proportions that reached significance, and there were 5 false
positive edges. On stationary data the DGM (with e¼ 10) had higher
sensitivity compared to Lingam (DGM: sensitivity and specificity, 80%
and 65%; Lingam: 65% and 97%), see Fig. 5E. After significance testing,
DGM revealed all the 5/10 edges with 6 false positives, and Lingam
recovered all the 10 edges that are true with 2 false positives, see Fig. 7D.

Human resting-state fMRI

The ICA-based resting-state networks from the HCP data had
consistent edges in up to 60% of the participants. The cerebellar, audi-
tory, and also the visual medial networks were child nodes to other RSN's
(Fig. 8). The visual medial network receives input most prominently from
the two other visual networks (visual pole and visual lateral) and the
DMN. The visual lateral network is reciprocally connected with the visual
medial network and also receives input from the occipital pole. Notably,
the estimated networks look very similar across runs. Fig. 9 shows the
within-subject consistency of the estimated networks, both in terms of
presence (Fig. 9A) and absence (Fig. 9B) of edges. We quantified the
edges that occurred in three out of the four runs, and those that occurred
in all of the runs. We found that some of the edges described above are
reproducible in up 50% of the participants in three runs, and in 30% of
the participants in all the four runs. This applied to the reciprocal visual
medial and lateral connections and the cerebellum inputs from the DMN,
the visual medial, and the auditory network. In terms of reliably absent
edges, the visual occipital pole, the DMN, both the right and left fron-
toparietal network, and also partly the executive control network had
consistently no other RSNs as their parents (Fig. 9B). An example of time-
varying connectivity estimates for two parents of the cerebellar network
is shown in Fig. 10.

The discount factors δ(r) of the connectivity strengths for nodes with
at least one parent had a median (Q1-Q3) across the 10 RSNs of 0.80
(0.74–0.88) in run 1; the runs 2–4 showed similar values.

Mouse resting-state fMRI

We used DGM to investigated dynamic directed functional networks
in rs-fMRI data from 16 mice under light anesthesia. We analyzed time
series from two networks: the first network has 8 nodes which are regions
that are functionally connected with the dentate gyrus of the hippo-
campus (DG). Directed anatomical connectivity based on tracer data
suggests that hippocampal areas (DG and CA1) receive projections from
the entorhinal and other associative cortices (Weilb€acher and Gluth,
2016), the nucleus accumbens and the amygdala, and project to pre-
frontal areas (Eichenbaum, 2017; Hintiryan et al., 2016; Jin and Maren,
2015; Oh et al., 2014). We found that the DG received inputs from several
nodes, but missed significance. However, a large proportion, 94%, of
mice showed directed connectivity from the orbital cortex (OrbM) to the
cingulate cortex, see Fig. 11A. We also found multiple parent regions of
the OrbM area, including the DG (63% of mice). Furthermore, the node
CA1 (63% of the mice) and DG (75%) were parent nodes of the cingulate
cortex.

The second network contains six nodes that communicate with the
motor and somatosensory barrel field areas. Based on axonal/white-
matter connections, the cortical motor and somatosensory areas project
to the striatum, and also contralateral flow between the areas can be
expected (Lee et al., 2016). We found the highest consistency across mice



Fig. 8. Proportions of edges in participants (N¼ 500) from 4 runs (top to bot-
tom) during resting-state of approximately 15min. Left shows all proportions,
right shows proportions for significant edges (binomial test, 5% FDR threshold).
Legend: VO, visual occipital pole; DMN, default mode; VM, visual medial; VL,
visual lateral/ventral; FPR, frontoparietal right; FPL, frontoparietal left; SM,
sensorimotor; Cer, cerebellum; Au, auditory; Ex, executive control
(including thalamus).

Fig. 9. (A) Proportions of edges (red) from 500 participants that reoccur in
three of the four runs, or in all the four runs (within-subject reproducibility). (B)
Proportion of participants that had no edge (blue) across all runs. Left shows all
proportions, right shows proportions only for significant edges (binomial test,
5% FDR threshold).
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in the contralateral connectivity from the right to the left motor cortex
(94%), and from the right to the left putamen (81%), see Fig. 11B.

The discount factors δ(r) of the connectivity strengths for nodes with
at least one parent had a median (range) across nodes of 0.99
(0.990–0.994) in the 8-node network, and 0.99 (0.955–0.995) in the 6-
node network.

Discussion

Dynamic graphical models (DGM) are a collection of dynamic linear
models (DLM) at each node where we treat parent nodes as covariates in
a dynamic multiple regression. Even though the (graphical) model
structure is static once we optimised the family of parental nodes, we
allow for time-varying correlations in the observed fMRI time-series. We
extended previous work by (Costa et al., 2015), relaxing the DAG
constraint and allowing for cycles. Furthermore, we introduced
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systematic lags to test robustness against hemodynamic confounds and
we could successfully invert time-varying node relationships in simula-
tion data generated by a the Smith et al. (2011) generative model based
on a deterministic DCM. In determining directed relationships we were
partly successfully, but this remains a challenging task. We could estab-
lish consistent relationships across a large number of subjects that
demonstrated top-town influence from the DMN to the cerebellum and
limbic regions, as well as to temporal and memory related areas; and we
found a reciprocal connection of the visual medial and visual lateral
areas. In the future, DGM has the potential to estimate large networks
with 100 of nodes (by optimization of network discovery) which can be
suitable for further analyses with graph theory (Bullmore and Sporns,
2009; Fornito et al., 2016). Hopefully, this device allows to study path-
ological network topologies of brain disorders in the future (Fornito
et al., 2015), but further validation of the methods are required.

We found that DGM had a sensitivity and specificity between 70%
and 80% for the 5 and 8-node network with nonstationary node re-
lationships. Patel's method suffered low sensitivity to detect a relation-
ship between nodes but can establish the correct directionality in a
majority of edges. Lingam oriented the network correctly, but only in the
stationary case. However, one limitation here is that Lingam in not a full
model, i.e. the approach requires to know the edges a priori and then
orients those based on non-gaussian properties.

DGM showed lower sensitivity with stationary data in the 5-node
network but not for the 8-node network. This is interesting as DGM has
the ability to fit a fully stationary model, and indeed such a stationary



Fig. 10. Example of time-varying connectivity estimates θt(r) for two parents of the cerebellar network, subject 108525, T¼ 0–450 s. (A) Cerebellar network time
series (blue), plotted with the default mode network (green) and its directed influence reflected by the θt(r) time series (orange); note the transient positive
dependence around 70 s contrasted with otherwise negative dependence. (B) Cerebellar network time series plotted with the auditory network (violet) and its θt(r)
connectivity; the influence of the auditory network is generally negative.

Fig. 11. Proportion of edges in two functional networks of mice (N¼ 16). (A)
amygdala-hippocampal-entorhinal network and (B) an cortico-striatal network.
Left shows all proportions, right shows significant proportions of edges (bino-
mial test, 5% FDR threshold). Legend: orbital area, medial (OrbM) and lateral
part (OrbL); nucleus accumbens (NAcc); anterior cingulate area, dorsal part
(Cing); lateral amygdalar nucleus (Amyg); cornu ammonis area 1 (CA1); dentate
gyrus (DG); entorhinal area, lateral part (Entorh); primary somatosensory area,
barrel field right and left (SomSensR, SomSensL); primary motor area right and
left (MotorR, MotorL); caudoputamen right and left (PutamR, PutamL).
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model was generally fitted with the stationary data. However, the
directionality structure then often suffers in this case and it appears the
dynamic information in the data is highly relevant in the determination
of directionality.

The main finding for the human resting-state data is that the cere-
bellar network is most consistently receiving input from many other
networks. A meta-analysis demonstrated that the cerebellum is not only
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relevant in fine motor skills but also involved in cognitive functions, such
as workingmemory, language, emotions, and executive control (Stoodley
and Schmahmann, 2009), and subregions of the cerebellum have been
functionally related to RSNs (Habas et al., 2009). It is important to note
that the cerebellar component we used also included appreciable weights
for the thalamus and the limbic system, most prominently the amygdala,
hippocampus, and the anterior cingulate gyrus. These regions received
input from the DMN, a finding which was consistent across subjects and
also within-subject across the four runs. This could reflect a intrinsic
dynamic coupling of regions associated with memory and emotion with
the DMN (Sestieri et al., 2011). The auditory component not only
involved the superior and middle temporal gyrus but also language
related left frontal structures and the temporal poles which are highly
relevant in semantic memory (Galton et al., 2001). We found that the
auditory/language network also receives input from various other net-
works which could reflect the dynamic access to the language and se-
mantic networks. Furthermore, we found that visual networks have high
consistencies in dynamic coupling, such as between the visual medial and
the visual lateral network.

We used DGM to explore directed functional connectivity in the
mouse brain. We found some highly reproducible edges (in up to 94% of
the mice), and could successfully determine that CA1 and DG are feeding
to the cingulate cortex; this finding is consistent with studies that use
viral tracers to determine the directed anatomical connectivity (Hin-
tiryan et al., 2016; Oh et al., 2014). A limitation here is that we compare
functional connectivity with findings from anatomical connectivity
which are conceptually different and certainly do not have a one-to-one
relationship, however, there is evidence from functional studies that the
hippocampus and the anterior cingulate cortex are prominent areas of the
limbic circuit and the DMN.

In DGM we use a discount factor δ (Petris et al., 2009b; West and
Harrison, 1997) that sets the temporal smoothness of the connectivity
strength θ for each node; this can range from a maximally smooth path
(i.e. a constant δ(r)¼ 1) to a highly variable path (δ(r)¼ 0.5). For each
node, and for each set of parents, we find the DF that optimizes the model
evidence (ME), and that optimised ME is used to identify the optimal set
of parents. We found that the δ was higher in Sim22 compared our own
dynamic simulations. A possible explanation is that we used a higher
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sampling rate (lower TR¼ 2) which preserves more dynamic information
in the time series. In the mouse data, we found a δ near 1 suggesting that
DGM were not driven by dynamic relationships and was mostly sta-
tionary. This may be related to the fact that the mice have been anes-
thetized (Barttfeld et al., 2015), however, other studies were successful to
determine dynamic relationships in anesthetized animals (Hutchison
et al., 2013b).

Various methods exist to establish directed relationships: Granger
causality for fMRI, as a lag-based method, can be confounded by the
variability in the HR of different brain areas. Latency correction can
improve detectability (Wen et al., 2013), but the magnitude of this
confound is usually unknown in real data. DCM (Friston, 2009; Friston
et al., 2003) implements a biophysical model and can, in principle, infer
upon the latent neural mechanisms, but has a high computational effort.
However, recent developments allow DCM to study larger networks and
also resting-state fMRI (Fr€assle et al., 2017; Razi et al., 2017). In future
work, we would like to establish construct validity between DGM and
spectral DCM (spDCM) for resting state (Friston et al., 2014a; Razi et al.,
2015). In the current paper, we focused on comparing DGM to Patel's
method and Lingam within the scope of purely observational models of
directed functional connectivity. In contrast, spDCM, which aims to infer
effective connectivity, has a different agenda which is to infer causal
influences between different neuronal populations. spDCM is a hierar-
chical model with two sets of neural and observation (hemodynamic)
equations. spDCM assumes neural fluctuations to have a power law
(scale-free) distribution whereas the deterministic (forward) DCM for our
simulations had an exogenous input (i.e., no endogenous fluctuations).
Therefore, our current simulations are not compatible with the genera-
tive model employed in spDCM. Another method to determine directed
functional connectivity is Group Iterative Multiple Model Estimation
(GIMME), a structural equation model (Gates andMolenaar, 2012). Here,
information on an estimated group-level network is used to improve
network structure estimates on the subject-level. The method showed a
high sensitivity and accuracy (both above 80%), but we have not eval-
uated it here as it does not provide subject-level estimates.

Considering the overall accuracy as the only measure of evaluation
can be biased, especially with a sparse network with only 5 out of 20
possible edges. With Patel's method for example, even though detection
of edges (sensitivity) was poor, overall accuracy was high due to the high
true negative rate. We evaluated sensitivity for both (1) the successful
detection of a relationship between nodes and (2) the correct estimation
of the directionality simultaneously; while other work (Costa et al., 2015;
Smith et al., 2011) looked separately at (1) and (2) and found good
directionality estimates (0.60–0.70; d-accuracy) but only under the
assumption of (1) being successful. We specifically addressed this issue
with a randomization test for Patel's connection strength κ and then
assigned the directionality based on the sign of τ.

We stress that the DGM is a heuristic approach, and demands thor-
ough simulations and critical evaluations in the context that it is to be
applied, as we have done here with resting fMRI. A particular problem to
fMRI is the variation of the hemodynamic response across brain regions
that may a confounding factor for lag based methods to estimate direc-
tionality. DGM, however, is driven by instantaneous relationships be-
tween nodes but does consider some information from the past to
regularise state variables (Equation (1); system equation). We created
network simulations with systematic changes on the balloon model
priors to increase the lag at parent nodes and decrease the lag at child
nodes. We found that if the total offset between a node pair is in the
problematic direction (i.e., which would cause Granger to infer incorrect
directionality) but below 1 s, the DGM’ sensitivity remains above 70%. If
this offset is further increased, sensitivity is declining, but specificity
remains intact. Thus, such edges cannot be detected anymore, but
incorrectly reversed directionality between the node-pair is not inferred
(i.e. the false positive rate).

Even though the main focus of this paper is on data from fMRI, DGM
are not restricted to this type of data and can potentially be applied in
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electroencephalography or magnetoencephalography that has a much
higher temporal resolution (Baker et al., 2014).

Conclusions

Our results demonstrate that DGM can discover directed functional
connectivity that constitutes reproducible edges in human and mouse rs-
fMRI. We observed that in humans the cerebellar/limbic network
consistently receives information from other networks. In network sim-
ulations, DGM demonstrated a sensitivity of 72%–77% for dynamic time-
series, even in the presence of systemic hemodynamic lag confounds.
DGM is a novel and promising approach that provides news insights into
directed dynamic relationships in functional connectivity.

Software and data availability

The source code of the R package “DGM” is available at https://
github.com/schw4b/DGM. Data and analyses can be found at https://
github.com/schw4b/DGM-Sim.
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