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Abstract

Background

Delivery of preventive care and chronic disease management are key components of a high

functioning primary care practice. Health Centers (HCs) funded by the Health Resources

and Services Administration (HRSA) have been delivering affordable and accessible pri-

mary health care to patients in underserved communities for over fifty years. This study

examines the association between health center organization’s health information technol-

ogy (IT) optimization and clinical quality performance.

Methods and findings

Using 2016 Uniform Data System (UDS) data, we performed bivariate and multivariate anal-

yses to study the association of Meaningful Use (MU) attestation as a proxy for health IT

optimization, patient centered medical home (PCMH) recognition status, and practice size

on performance of twelve electronically specified clinical quality measures (eCQMs). Bivari-

ate analysis demonstrated performance of eleven out of the twelve preventive and chronic

care eCQMs was higher among HCs attesting to MU Stage 2 or above. Multivariate analysis

demonstrated that Stage 2 MU or above, PCMH status, and larger practice size were posi-

tively associated with performance on cancer screening, smoking cessation counseling and

pediatric weight assessment and counseling eCQMs.

Conclusions

Organizational advancement in MU stages has led to improved quality of care that aug-

ments HCs patient care capacity for disease prevention, health promotion, and chronic care

management. However, rapid technological advancement in health care acts as a potential

source of disparity, as considerable resources needed to optimize the electronic health
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record (EHR) and to undertake PCMH transformation are found more commonly among

larger HCs practices. Smaller practices may lack the financial, human and educational

assets to implement and to maintain EHR technology. Accordingly, targeted approaches to

support small HCs practices in leveraging economies of scale for health IT optimization, clin-

ical decision support, and clinical workflow enhancements are critical for practices to thrive

in the dynamic value-based payment environment.

Introduction

In 2011, the Centers for Medicare & Medicaid Services (CMS) implemented the Medicare and

Medicaid Electronic Health Record (EHR) Incentive Programs to encourage clinicians and

practices to adopt, implement, upgrade, and demonstrate meaningful use of certified elec-

tronic health record technology (CEHRT) [1, 2]. The CMS Meaningful Use (MU) program,

which is now known as Promoting Interoperability, continued to compel all clinical practices

to optimize EHR functionality in order to achieve integrated platforms for better patient care,

lower healthcare costs, and to promote patient engagement. In particular, Stage 2 of MU

sought to expand the adoption of advanced EHR functions that included: clinical decision sup-

port; electronic prescribing; health information exchange; patient-tailored health and disease

management tools; secure electronic communication between patients and providers; health

education materials; and monitoring of clinical quality metrics [3, 4]. Other EHR functions,

such as the presence of clinical reminders and the production of clinic-level data, are common

to all CEHRT [1].

The Institute for Healthcare Improvement (IHI) first promulgated the Triple Aim in 2008,

as a means of improving the experience of care, the health of populations, and reducing per

capita costs of health care. Since that time, value-based care delivery programs have been

guided by national clinical quality metrics and the principles of continuous quality improve-

ment [5, 6]. Underlying this is the EHR, as it provides systematic assistance to clinical activi-

ties, communication, clinical decision support and enhanced reporting and monitoring of

quality metrics. In 2015, 86% of office-based physicians in the United States had adopted an

EHR, but the sophistication of EHR technology and its capacity for quality reporting varied

across practice settings [7–10]. Advancing the uptake of supports provided by EHR and health

information technology (health IT) innovations has the potential to promote parity in health

IT implementation across practice settings [11].

Studies have demonstrated a positive association between MU implementation and

improved process quality metrics in preventive screening, diabetes control, maternal and child

health measures in primary care clinics that leveraged health IT for patient engagement and

care coordination [12, 13]. Embedded decision support tools such as electronic reminders

have significant impact on the uptake of preventative care and performance of pertinent pre-

ventative risk assessments in the clinical setting [14, 15]. In many practices, health IT has been

used to disseminate evidence-based care guidelines and to provide clinical alerts that enhance

patient safety and decrease mortality [16–19].

In 2016, the Health Resources and Services Administration’s (HRSA) Health Center Pro-

gram (HCP) was comprised of over 1,300 health centers (HCs) operating more than 11,000

primary care service delivery sites [20]. These HCs provided comprehensive, affordable and

quality primary health care to nearly 26 million individuals in every U.S. state, the District of

Columbia, Puerto Rico, the U.S. Virgin Islands, and the Pacific Basin. From 2011 to 2016,
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EHR adoption rose from 65% to 95% among HCs. To standardize the monitoring of clinical

quality performance, HRSA collects data on electronically specified clinical quality measures

(eCQMs) annually; twelve eCQMs were collected in 2016. Additionally, 66% of HCs achieved

primary care patient-centered medical home (PCMH) recognition by meeting national stan-

dards for primary care that emphasized care coordination, comprehensive care and on-going

clinical quality improvement that included leveraging health IT [20]. The specific aim of this

study is to examine the association of Stage 2 MU attainment on eCQM performance among

HCs, and to explore surrogate levers of health IT implementation, specifically PCMH recogni-

tion and practice size, in clinical quality performance.

Methods

Data acquisition

Data came from HRSA’s 2016 Uniform Data System (UDS), which is an administrative

data set containing information on patient sociodemographic characteristics, primary care

services provision, healthcare workforce, clinical quality measures (CQMs), and Meaningful

Use (MU) attestation that are reported and aggregated at the health center organizational

level. MU attestation for Stage 2 or above was identified through HCs self-report to the

following two questions: 1) Are your eligible providers participating in the CMS EHR Incen-

tive Program commonly known as “Meaningful Use”?; and 2) If yes, at what stage of Meaning-

ful Use are the majority of your participating providers who have most recently received

incentive payments? In addition, PCMH recognition status was ascertained for HCs who

received certification from national organizations and state-based initiatives. Finally, the study

categorized practice size by number of physician full time equivalents (FTEs) in HCs as fol-

lows: 1) small practice was defined as HCs with 0–5 physician FTEs; 2) medium practice was

defined as 6–20 physician FTEs; and 3) large practice was defined as 21 or more physician

FTEs [21, 22].

Study design

A descriptive cross-sectional study of the association of health IT optimization, PCMH recog-

nition status, and practice size on clinical quality measure performance was conducted. It was

hypothesized that HCs that are larger and have achieved MU stage 2 or above, as well as

PCMH recognition, would demonstrate better clinical quality performance. The dependent

variables of interest were the twelve preventive and chronic care eCQMs reported in the 2016

UDS. The eight preventive measures consisted of the following: 1) cervical cancer screening; 2)

colorectal cancer screening; 3) adult body mass index (BMI) screening and follow-up plan; 4)

weight assessment and counseling for nutrition and physical activity for children and adoles-

cents; 5) tobacco use screening and cessation intervention; 6) depression screening and follow-

up plan; 7) childhood immunization; and 8) dental sealant for children between 6–9 years old.

The four chronic care measures were as follows: 1) aspirin therapy for patients with ischemic

vascular disease; 2) blood pressure control (as defined by hypertensive patients with a blood

pressure less than 140/90mmHg); 3) uncontrolled diabetes (i.e. diabetic patients with an

HbA1c > 9%); and 4) asthma pharmacologic therapy [20].

Data analysis

In Table 1, we conducted bivariate analysis to compare the mean percentages of patient socio-

demographic attributes by practice size using an F test, as well as the HCs’ attainment of

PCMH recognition and MU Stage 2 or above using chi-square analysis. In Table 2, we
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examined the unadjusted association of clinical quality measure performance with MU attes-

tation at Stage 2 or above in order to compare the means of eCQM by MU attestation stage

using an F test. In Table 3, we looked at the association of practice size with eCQM perfor-

mance using an F test statistic. Mean percentages have been reported in Tables 1–3 as it is

the most commonly utilized measure of central tendency [23]. Finally, we carried out multiple

linear regression analyses to assess the association of MU stage, PCMH status, and practice

size on clinical quality performance. PCMH status was included due to previous established

associations with clinical quality improvement in health center research [24–27]. After con-

ducting the interaction testing, the interacting terms were found to be not statistically signifi-

cant and thus were not retained in the regression model [28]. Clinical quality measures with

statistically non-significant associations with MU stage and practice size from the bivariate

analyses were not included in the multiple linear regression analyses. Control variables in the

regression model included the following patient characteristics: percentage of racial/ethnic

minority patients, percentage of patients at or below 100% of the federal poverty level (FPL),

and percentage of uninsured patients. All statistical analyses were performed using SAS ver-

sion 9.4.

Table 1. Characteristics of Health Centers (HC) and patients served by practice size.

Small Practice Medium Practice Large Practices

N = 685 N = 517 N = 143

Characteristics p-value

Mean SD Mean SD Mean SD

Race/ethnicity

Hispanic 21.3% 0.24 30.1% 0.28 45.2% 0.28 <0.01

Non-Hispanic White 52.5% 0.52 42.6% 0.31 33.1% 0.27 <0.01

Non-Hispanic Black 20.5% 0.26 25.0% 0.27 18.7% 0.21 <0.01

Other 9.3% 0.19 7.0% 0.14 8.8% 0.17 0.06

Language Preferred

Patients Best Served in a language other than English 13.9% 0.20 21.8% 0.24 31.6% 0.24 <0.01

Age

0–17 Years 23.2% 0.13 29.7% 0.12 33.1% 0.10 <0.01

18–64 Years 67.0% 0.13 61.4% 0.11 58.9% 0.08 <0.01

65 Years and Older 10.0% 0.07 8.9% 0.05 7.9% 0.04 <0.01

Household poverty level

�100% 46.5% 0.24 49.2% 0.23 52.2% 0.23 0.02

101–200% 16.6% 0.11 15.9% 0.11 14.6% 0.08 0.09

>200% 6.9% 0.09 5.9% 0.07 5.8% 0.07 0.06

Not reported 30.2% 0.27 29.3% 0.26 27.5% 0.26 0.50

Insurance status

Uninsured 28.9% 0.20 22.8% 0.16 19.8% 0.12 <0.01

Medicaid/CHIP 39.2% 0.20 47.9% 0.18 54.9% 0.15 <0.01

Medicare 11.0% 0.08 10.0% 0.06 8.4% 0.05 <0.01

Private Insurance 20.7% 0.14 18.9% 0.12 17.0% 0.11 <0.01

Chi-Square P-value

Patient-Centered Medical Home Recognition 52.6% 78.9% 93.7% <0.01

Meaningful Use Stage 2 or 3 Attestation 38.3% 54.9% 72.0% <0.01

Source: 2016 UDS Data

Bold numbers indicate p-value� 0.05

https://doi.org/10.1371/journal.pone.0236019.t001
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Results

Table 1 describes demographic characteristics of HCs at the organizational level and by prac-

tice size. When compared to smaller practices, large practices cared for: a higher mean per-

centage of Hispanic patients (45.2% versus 21.3%, P<0.01); patients who are best served in a

language other than English (31.6% versus 13.9%, P<0.01); patients with a household poverty

level at or below 100% FPL (52.2% versus 46.5%, P<0.02); and patients with Medicaid or Chil-

dren’s Health Insurance Program (CHIP) insurance (54.9% versus 39.2%, P<0.01). In con-

trast, small practices reported a higher mean percentage of Non-Hispanic White patients

(52.5% versus 33.1%, P<0.01) and patients 65 years or older (10.0% versus 7.9%, P<0.01) in

comparison to their larger counterparts. Moreover, small practices served higher percentages

Table 2. Electronic Clinical Quality Measure (e-CQMs) performance by Meaningful Use (MU) attestation.

e-CQMs MU Stage� 1 MU Stage� 2

(mean percentages) p-value

1. Cervical Cancer Screening 46.4% 52.1% <0.01

2. Colorectal Cancer Screening 34.1% 40.0% <0.01

3. Adult Body Mass Index (BMI) Screening and Follow-Up Plan 57.7% 62.8% <0.01

4. Weight Assessment & Counseling for Nutrition & Physical Activity (PA) for Children & Adolescents 52.6% 60.6% <0.01

5. Diabetes A1C Poor Control 35.0% 31.6% <0.01

6. Ischemic Vascular Disease (IVD): Use of Aspirin or Another Antithrombotic 76.1% 78.2% 0.01

7. Controlling High Blood Pressure 60.8% 62.7% <0.01

8. Tobacco Use: Screening and Cessation Intervention 81.2% 84.6% <0.01

9. Asthma Pharmacologic Therapy 84.2% 86.5% <0.01

10. Childhood Immunizations 35.9% 39.3% 0.02

11. Depression Screening and Follow-Up Plan 58.0% 61.0% 0.03

12. Dental Sealant for Children between 6–9 years 48.4% 47.3% 0.49

Source: 2016 UDS Data

Bold numbers indicate p-value� 0.05

https://doi.org/10.1371/journal.pone.0236019.t002

Table 3. Electronic Clinical Quality Measure (e-CQMs) performance by health center practice size.

e-CQMs Small Practice Medium Practice Large Practice

(mean percentages) p-value

1. Cervical Cancer Screening 44.5% 53.6% 57.7% <0.01

2. Colorectal Cancer Screening 33.2% 40.9% 42.2% <0.01

3. Adult Body Mass Index (BMI) Screening and Follow-Up Plan 58.9% 62.0% 62.4% 0.03

4. Weight Assessment & Counseling for Nutrition & Physical Activity (PA) for Children & Adolescents 52.0% 61.3% 63.9% <0.01

5. Diabetes A1C Poor Control 34.6% 32.4% 30.0% <0.01

6. Ischemic Vascular Disease (IVD): Use of Aspirin or Another Antithrombotic 75.6% 78.5% 80.0% <0.01

7. Controlling High Blood Pressure 60.6% 62.5% 64.3% <0.01

8. Tobacco Use: Screening and Cessation Intervention 80.4% 85.0% 86.6% <0.01

9. Asthma Pharmacologic Therapy 83.8% 86.3% 89.2% <0.01

10. Childhood Immunizations 33.2% 40.9% 45.8% <0.01

11. Depression Screening and Follow-Up Plan 60.0% 59.1% 58.7% 0.74

12. Dental Sealant for Children between 6–9 years 48.9% 46.7% 48.8% 0.41

Source: 2016 UDS Data

Bold numbers indicate p-value� 0.05

https://doi.org/10.1371/journal.pone.0236019.t003
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of uninsured (28.9% versus 19.8%, P<0.01), Medicare (11.0% versus 8.4%, P<0.01), and pri-

vately insured patients (20.7% versus 17.0%, P<0.01) than large practices. The percentage of

practices with PCMH recognition were as follows: 52.6% of small practices; 78.9% of medium

practices; and 93.7% of large practices, (P<0.01). 38.3% of small practices attested to MU Stage

2 or above as compared with 54.9% of medium sized practices and 72.0% of large practices

(P<0.01).

Table 2 contains eCQM performance by MU attestation status. Performance on eleven out

of twelve eCQMs were significantly higher among HCs attesting to MU Stage 2 or above.

Although the dental sealants for children eCQM, which was introduced in the 2015 UDS,

demonstrated an inverse pattern, this finding was not statistically significant. Notably, signifi-

cant differences in performance of 5 percentage points or more were observed in: cancer pre-

vention measures of cervical cancer screening (46.4% vs. 52.1%); colorectal cancer screening

(34.1% vs 40.0%); and obesity prevention measures for adult (57.7% vs. 62.8%) and pediatric

patients (52.6% vs. 60.6%).

Table 3 presents the bivariate analysis of eCQMs performance by small, medium, and large

practice size. Ten out of twelve eCQMs had the highest mean percentage among large HCs. In

particular, we observed significant differences in performance of 5 or more percentage points

when comparing eCQMs of small to large practices with respect to cervical cancer screening

(44.5% vs. 57.7%), colorectal cancer screening (33.2% vs. 42.2%), obesity prevention measure

for pediatric patients (52.0% vs 63.9%), tobacco use screening and cessation intervention

(80.4% vs 86.6%), asthma pharmacologic therapy (83.8% vs 89.2%), and childhood immuniza-

tion (33.2% vs. 45.8%). Similar to the findings in Table 2, the dental sealants for children

eCQM showed a reverse pattern that was not statistically significant. In addition, the depres-

sion screening and follow-up plan eCQM had no statistical significance findings.

Table 4 describes results from multiple linear regressions performed between eCQMs as the

dependent variables and MU stage, PCMH status, and HC practice size as the independent

variables. MU Stage 2 or above was a significant predictor of performance on cancer preven-

tion, obesity prevention, tobacco screening and cessation counseling, childhood immuniza-

tion, and diabetes control measures. PCMH recognition was a significant predictor for all

eCQMs except childhood immunization. With respect to practice size, large practice size was a

significant positive predictor for cancer prevention, hypertension control, diabetes control,

tobacco screening and cessation counseling, depression screening and follow-up plan, and

childhood immunization measures. For prevention care eCQMs, MU Stage 2 or above,

PCMH and practices size were significant positive predictors for colorectal cancer screening,

cervical cancer screening, smoking cessation counseling, and pediatric weight assessment and

counseling.

Discussion

Our findings suggest that health IT optimization, PCMH transformation, and larger practice

size correlate with better clinical quality performance in the majority of eCQMs reported by

HRSA HCs. Health IT optimization by primary care practices facilitates quality improvement

(QI) and enables effective implementation of PCMH to enhance care coordination, deliver

high quality care, prevent unnecessary acute care visits and ultimately improve patient out-

comes. It further holds the promise of better continuity of care, particularly for underserved

populations that faces multiple competing priorities in accessing health care [29, 30]. Federal

investments that accelerate health IT optimization in HCs through strengthening health IT

infrastructure, as well as promoting targeted health IT training and technical assistance (T/

TA) will continue to be critically important.
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In demonstrating that successful health IT optimization can support improvement in clini-

cal quality outcome measures, this study is aligned with previous analyses of these factors that

impact HC performance [24–27]. The associations of MU Stage 2 or above, PCMH, and large

practice size with diabetes control are very positive news for chronic care management. Fur-

thermore, the positive association of PCMH recognition with nine eCQMs demonstrates the

importance of PCMH transformation in clinical quality performance among HCs. Finally, as

health IT optimization reaches the stage where health, social, economic, behavioral, and envi-

ronmental data can be fully integrated to customize care for the patient, primary care teams

might be able to more comprehensively address social determinants of health within the

PCMH [31, 32].

An emerging body of research suggests that advanced EHR technologies are potentially

associated with improved information sharing, enhanced patient interaction with the EHR,

and less burdensome quality reporting [17, 18, 33, 34]. This could be especially true when prac-

tices customize their EHRs to better reflect clinical workflows, patient desired as well as pro-

vider and care team preferences. The significant improvement in cancer screening rates and

preventive care delivery in those HCs that attested to Stage 2 MU or higher, for example, sug-

gests that health IT optimization may be of benefit in augmenting a clinical encounter through

patient reminders and other readily available electronic educational resources that promote

health equity. The literature also demonstrates cost and time savings after configuration of an

EHR to facilitate data collection to automatically report quality metrics [34, 35].

Overall, HCs have made great strides in health IT implementation and optimization. With

respect to practice size, 72% of large HCs and 55% of medium-sized HCs successfully attested

to MU Stage 2 or above. This is compared to the 60% of all U.S. office-based physicians (MD/

DO) who reported meaningful use of certified health IT to the CMS EHR Incentive Programs

in 2016. The positive association between practice size and MU in adult and pediatric preven-

tive care suggests that successful implementation of clinical care and workflow supported by

health IT contributes to reducing the burden of preventable chronic disease [19, 36–38]. Previ-

ous research suggests that the relationship between eCQM performance and practice size is in

part attributable to available human and financial capital [39, 40]. In comparison to their larger

counterparts, small and medium sized practices are more likely to experience lower physician

to patient ratios and shorter consultation times [39]. Moreover, smaller practices are predomi-

nantly found in areas of higher economic need [21]. This has been determined to be an inde-

pendent marker of lower health outcomes, possibly due to the higher morbidity associated

with those underserved communities [41]. In this way, physicians in smaller practices face

time constraints that potentially make adherence to quality guidelines difficult, while also

treating a patient population that eschews preventative care in favor of acute management

[42–44]. In addition, our study showed that small HCs disproportionately serve uninsured

patients, which may impact their ability to allocate significant resources towards health IT.

This finding suggests strategically targeting small and medium sized practices for health IT T/

TA support in attaining CMS Promoting Interoperability Program requirements.

Limitations

The UDS is an administrative dataset reported by HRSA-funded HCs and aggregated at the

HC organizational level. Although HC may operate several health care clinical sites, data in the

UDS cannot be filtered by delivery site. While certain elements of the UDS (e.g., eCQMs) are

automatically extracted from the EHR, other elements of the UDS are self-reported including

Health Information Technology Capabilities and Staffing data. In addition, staffing is captured

as full-time equivalents, and not the actual number of physicians/providers.

PLOS ONE Health information technology and clinical quality performance

PLOS ONE | https://doi.org/10.1371/journal.pone.0236019 July 15, 2020 8 / 11

https://doi.org/10.1371/journal.pone.0236019


Policy implications

Practices that report being at MU Stage 2 or above experience tangible benefits in coordination

of communication, patient care and data management. Our findings suggest that optimization

of health IT, PCMH transformation, and practice size are closely related to enhanced quality

of care and health outcomes. Given this association, HRSA has strategically aligned CQM

reporting with eCQMs, where possible. However, the potential benefits of health IT optimiza-

tion are not being realized across all HCs, particularly among smaller practices. The underly-

ing financial, training, staffing and opportunity costs associated with the implementation and

maintenance of EHR technology may be potential sources of disparity for those small or

medium practices without access to significant human or financial capital. It is critical that

safety net providers remain current with advances in health IT adoption and utilization in

order to maximize quality of care, ensure patient safety, reduce health disparities, improve

care coordination and augment public health reporting. Better understanding of those EHR

functions that are most relevant and useful to smaller HCs would help direct HRSA’s technical

assistance assets and resource allocation efforts. Such assessments need to be ongoing and

multidimensional since advancement in health IT and EHR technology is rapid and also

uneven across practices of different sizes. Overcoming this disparity is an important way to

support patient care in underserved communities and to promote access to all health centers.
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