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Abstract: At present, COVID-19 is still spreading, and its transmission patterns and the main
factors that affect transmission behavior still need to be thoroughly explored. To this end, this
study collected the cumulative confirmed cases of COVID-19 in China by 8 April 2020. Firstly, the
spatial characteristics of the COVID-19 transmission were investigated by the spatial autocorrelation
method. Then, the factors affecting the COVID-19 incidence rates were analyzed by the generalized
linear mixed effect model (GLMMs) and geographically weighted regression model (GWR). Finally,
the geological detector (GeoDetector) was introduced to explore the influence of interactive effects
between factors on the COVID-19 incidence rates. The results showed that: (1) COVID-19 had obvious
spatial aggregation. (2) The control measures had the largest impact on the COVID-19 incidence rates,
which can explain the difference of 34.2% in the COVID-19 incidence rates, while meteorological
factors and pollutant factors can only explain the difference of 1% in the COVID-19 incidence rates. It
explains that some of the literature overestimates the impact of meteorological factors on the spread
of the epidemic. (3) The influence of meteorological factors was stronger than that of air pollution
factors, and the interactive effects between factors were stronger than their individual effects. The
interaction between relative humidity and NO2 was stronger. The results of this study will provide a
reference for further prevention and control of COVID-19.

Keywords: COVID-19 incidence rates; spatial autocorrelation; GWR; GeoDetector; interaction

1. Introduction

On 31 December 2019, the Chinese government first reported the outbreak of COVID-19
in Wuhan, the capital of Hubei Province, and the epidemic spread swiftly from Wuhan to
all provinces in China. At the beginning of 2020, COVID-19 quickly swept across the world,
forming a new global “international public health emergency”, which had a tremendous
impact on the world economy and public safety [1].

Atmospheric conditions are considered an important factor affecting the spread and in-
fection of COVID-19 [2–4]. From 4 to 6 August 2020, the World Meteorological Organization
held an online international conference to discuss the relationship between environmental
meteorological factors and COVID-19, emphasizing that the epidemic situation may be
affected by environmental meteorological factors [5]. Since the epidemic of the COVID-19,
the relationship between its spread and meteorological factors has attracted much atten-
tion [6–8]. Research on the relationship between climatic factors and COVID-19 epidemic
situation in different provinces of China shows that the temperature in Hubei, Hunan,
and Anhui provinces is positively correlated with COVID-19 spread. There is a negative
correlation between Zhejiang Province and Shandong Province; Guangdong Province,
Henan Province, Jiangxi Province, Jiangsu Province, and Heilongjiang Province have a
mixed relationship of positive and negative correlation [9]. The transmission speed of
COVID-19 in Beijing, Shanghai, Guangzhou, and Chengdu is negatively correlated with
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air temperature, relative humidity, and absolute humidity [10]. Under the condition of
controlling population migration, meteorological factors play an independent role in the
transmission process of COVID-19 [11]. Xie et al., analyzed 122 cities in China by applying
the generalized additive model and found that when the average temperature is lower
than 3 ◦C, there is a positive linear correlation with the incidence of COVID-19. The daily
number of confirmed cases can increase by 4.861% when the temperature rises by 1 ◦C, but
the relationship tends to be flat when the temperature rises above 3 ◦C, [12]. A study based
on 224 cities in China shows that temperature does not affect the spread of COVID-19 [13].
The research on the relationship between climatic factors and COVID-19 in the United
States shows that the average temperature, minimum temperature, and air quality are
significantly related to COVID-19 transmission. However, there is no evidence that climate
warming can inhibit COVID-19 transmission [2]. The research in India shows that meteoro-
logical factors are the important factors that determine the incidence of COVID-19, among
which the highest, lowest and average temperatures are related to COVID-19. There is
a significant positive correlation between the average temperature in Jakarta, India, and
the incidence of COVID-19 [14]. However, according to the research on the relationship
between the temperature and the COVID-19 epidemic in Spain, there is no evidence of
a relationship between them [15]. The literature reaffirms the inhibition of temperature
on the spread of COVID-19 according to samples from Brazil [16]. Jahangiri et al., have
found contradictory results [17]. Therefore, the influence of temperature on the COVID-19
epidemic situation needs to be further studied. Humidity is also a crucial contributor to
the transmission of COVID-19 [6,18]. The influence of wind on COVID-19 transmission
is controversial in the empirical literature, ranging from positive [19] to negative [20], to
insignificant [2].

Air pollutants are another crucial atmospheric factor affecting COVID-19 transmis-
sion [21,22]. Air pollution aggravates the impact of COVID-19 on people, which may not
only increase the number of infected people but also aggravate COVID-19 symptoms and
increase the risk of death [23]. Zhu et al., utilized the generalized additive model to study
the relationship between particulate matter and the daily number of COVID-19 confirmed
cases in 120 cities in China and found that short-term exposure to PM2.5, PM10, CO, NO2,
and O3 is positively correlated with the number of COVID-19 confirmed cases, while
exposure to SO2 could decrease the risk of COVID-19 infection [24]. Many researchers have
demonstrated that COVID-19 infections increase in a person exposed to air pollution for
both long and short periods [3,24]. A study in Wuhan, Huanggang, and Xiaogan, Hubei
province, where the epidemic situation is difficult, found that the average daily incidence
of COVID-19 positively correlates with PM2.5, while PM10 is negatively correlated with
COVID-19 [25].

At present, many studies have analyzed the temporal and spatial evolution of the
epidemic situation. In foreign countries, they investigated the distribution of the COVID-19
epidemic at the provincial scale in Iran and the county scale in the United States [26,27].
In China, many scholars have conducted a number of research on the spatiotemporal
evolution characteristics of the COVID-19 epidemic at the national [28], provincial [29],
and municipal scales [30]. These studies reveal that the COVID-19 epidemic has significant
agglomeration characteristics at the provincial, municipal, and street scales.

Through analysis, it is found that there are three problems in the current research on
atmospheric environment and COVID-19: 1. The existing studies have only discussed its
spatial characteristics based on epidemiology, and the research from the perspective of
geography needs to be further improved. 2. The correlation between average temperature
and the COVID-19 epidemic situation is positive or negative, but there is no consistent rela-
tionship; 3. Most studies only focus on the influence of a single atmospheric environmental
factor on COVID-19 but do not explore the interaction between atmospheric environmental
factors and COVID-19.

To solve the above problems, firstly, the Geoda software 1.20 (Dr. Luc Anselin and
his team [31], Urbana, IL, USA) was used to analyze the spatial autocorrelation of the
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cumulative confirmed cases of COVID-19, and Moran’s I scatter diagram and LISA cluster
diagram were drawn to analyze the spatial characteristics of COVID-19 in China. Then,
the generalized linear mixed effect model (GLMMs) was used to evaluate the explanation
degree of COVID-19 incidence rates variation caused by City-specific characteristics, control
measures, meteorological factors, and pollution factors. In addition, the geographically
weighted regression model (GWR) was used to analyze the impact of meteorological
factors and air pollutants on the COVID-19 incidence rates. Finally, the geological detector
(GeoDetector) was introduced to explore the influence of interactive effects between factors
on the COVID-19 incidence rates.

2. Materials and Methods
2.1. Study Area

In this study, we used the cumulative confirmed cases of COVID-19 in China from
24 January 2020 (Wuhan closed city) to 8 April 8 2020 (the government lifted the travel
limitations) [32]. The research period of this paper is from January to April 2020. During
this period, Hubei province was the “disaster area” of the epidemic. Every day, there
were a large number of confirmed cases in Hubei province, the epidemic situation was
out of control, and there were a large number of undocumented cases [33]. The COVID-19
epidemic situation in Hubei exhibited different spatial transmission characteristics and
temporal dynamic changes [34], so we excluded Hubei Province. In addition, ArcGIS Pro
2.8.3 (Esri Company, Redlands, CA, USA). was used to draw cumulative confirmed cases
of COVID 19 in China, as shown in Figure 1.

Figure 1. Cumulative confirmed cases of COVID 19 in China. (Note: The base map is from the National
Bureau of Surveying and Mapping Geographic Information (http://bzdt.nasg.gov.cn) (accessed on
7 May 2022). We ensure that we have obtained the permission and there is no copyright issue.).

2.2. Data Sources

There are four main types of data in this research: (1) From 24 January to 8 April 2020,
the daily COVID-19 confirmed cases were released on the official website of each city’s
health commission. To rule out the effect of population density, we selected daily COVID-19
incidence rates. (2) Air pollutants data including particles with diameters ≤ 2.5 µm (PM2.5),
particles with diameters ≤ 10 µm (PM10), and nitrogen dioxide (NO2) were obtained from

http://bzdt.nasg.gov.cn
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the China National Environmental Monitoring Centre (http://www.cnemc.cn/ (accessed
on 10 April 2020)). (3) Meteorological data, including daily average temperature, relative
humidity, and wind speed, were provided by the National Meteorological Information
Center (http://www.cma.gov.cn/ (accessed on 10 April 2020)). (4) Control measures are
represented by the stringency index. The stringency index was provided by Our World
in Data (https://ourworldindata.org/covid-stringency-index (accessed on 7 May 2022)).
The nine metrics used to calculate the stringency index are: closures of public transport;
school closures; cancellation of public events; workplace closures; restrictions on public
gatherings; stay-at-home requirements; public information campaigns; restrictions on
internal movements; and international travel controls. The index for any given date is
calculated as an average score for nine metrics, each with a value between 0 and 100.

2.3. Research Methods

Firstly, the generalized linear mixed effect model (GLMMs) is used to analyze to
what extent the variability of COVID-19 is attributed to the city-specific characteristics,
meteorological factors, air pollution factors, and the control measures at the city level, in
order to evaluate the impact of meteorological factors and air pollution factors on COVID-19
after the implementation of control measures. Secondly, the Spearman correlation analysis
of meteorological factors, air pollution factors, and COVID-19 incidence rates is carried
out, and the significant related influencing factors are screened out at the 0.05 significance
level. Thirdly, the geographically weighted regression model (GWR) is used to analyze the
significant correlation factors in Spearman and the COVID-19 incidence rates. Finally, the
geographical detector (Geodetector) is used to explore the explanation of the interaction
between factors on the COVID-19 incidence rates.

2.3.1. Statistical Analysis

We evaluated the extent to which the variability of COVID-19 can be attributed to
city-specific characteristics, meteorological factors, air pollution factors and stringency
index at the city level. We used the generalized linear mixed effect model (GLMM) to test
the explanation degree of five schemes composed of different variables to the variability of
COVID-19 incidence rates. We denote yij as the daily incidence on day j in city i, following
a Poisson distribution with mean λij. The M5 scheme form is as follows:

ln
(
˘ij
)
= β0 + ∑

p
βpxpi + ∑

q
βqxqij + βdxdij

+ βt time ei + αi (1)

where β0 is the grand intercept, xpi is the p-th city-specific characteristic variable of city i
with regression coefficient βp, xqij is the q-th time-varying meteorological and air pollution
variables of city i on day j with regression coefficient βq, variable time ei is a time trend
variable which is the number of days since the date of the first case with illness in city i
with regression coefficient βt in the model, xdij

is the variable with regression coefficient βd
which captures the incremental effect of city-specific stringency index implemented on day
k. xdij

is defined as below:

xdij
=

{
0 where j ≤ date of stringency index implementation

j− k where j > date of stringency index implementation
(2)

In the GLMM, the city-specific random effect is modeled as αi which follows a normal
distribution with mean 0 and variance σα

2. The use of the random effect is to capture the
city-specific heterogeneity that cannot be accounted for by our data.

We compared five schemes: the M1 scheme only has time trend, the M2 scheme has
city-specific characteristics and time trend, the M3 scheme has city-specific characteristics,
meteorological factors, air pollution factors, and time trend, the M4 scheme has city-specific
characteristics, stringency index variables and time trend, the M5 scheme has city-specific
characteristics, meteorological factors, air pollution factors, stringency index and time

http://www.cnemc.cn/
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trend (Figure 2). R2 proposed by Nakagawa and colleagues [35] is used to determine
which scheme can best explain the variance of COVID-19 incidence rates. We use R2

fixed to
describe the proportion of variance explained by the fixed effect, and R2

random to describe
the proportion of variance explained by the random effect of urban heterogeneity. The
relative risk (RR) and the corresponding 95% confidence interval (CI) are used to quantify
the influence of these variables on COVID-19.

Figure 2. Variables included in the five schemes.

2.3.2. Geographically Weighted Regression (GWR)

A geographically weighted regression model (GWR) is an expansion of the ordinary
linear regression model, which integrates the spatial characteristics of the data into the
regression model so that the model has both linear regression characteristics and spatial
correlation [36]. Compared with the traditional least squares (OLS) regression model,
the geographically weighted regression model can estimate the influence degree of the
explanatory variables in different spatial locations, reflecting the spatial stationarity of the
parameters in different regions.

Some studies have confirmed that the distribution of COVID-19 shows spatial hetero-
geneity [37–39], so this study used the geographically weighted regression model (GWR)
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to estimate the degree of influence of the explanatory variables on COVID-19 incidence in
different spatial locations, the COVID-19 incidence rates yi

yi = β0(ui, vi) +
n

∑
k=1

βk(ui, vi)xik + εi i = 1, 2, n (3)

where, yi is the COVID-19 incidence rates of the city i at location (µi , vi); βk(ui, vi) is
the k-th local regression coefficient value at the i-th sampling point, which is a function
of the geographic location, depending on the spatial weight matrix; The local regression
coefficient indicates the degree of influence of explanatory variables on COVID-19 in
different spatial positions. β0 means intercept at a special position (µi , vi), xik denotes
PM2.5, PM10, NO2, relative humidity, temperature, and wind speed, respectively. The
location (µi , vi) represents the central coordinates of city i, and εi represents the error term
of sample i. In this paper, the geographic weighting tool in ArcGIS Pro 2.8.3 is used to
build the model, and the best parameter settings are obtained after many experiments and
comparisons. Finally, the fixed distance method of the Gaussian kernel function is selected
to create a smoother kernel surface. The specific formula is as follows

Wij = exp

[
−
(dij

b

)2
]

(4)

where: Wij is the weight between the i region and the j region; dij is the distance between
the i region and the j region; b is the bandwidth coefficient, which means that the farther the
distance is, the slower the weighted attenuation is. An appropriate bandwidth coefficient
is very important for analyzing the GWR model because the estimation deviation of the
regression coefficient will increase if the bandwidth variable is too small. In order to make
the estimation effect of the local regression coefficient better, this research adopts the Akaike
information criterion (AIC) to select the optimal bandwidth parameters.

2.3.3. Geographic Detector Model (Geodetector)

The geographical detector can detect the spatial divergence of the distribution of
geographical things or phenomena, revealing the driving factors behind this divergence [40].
This method was first used to explore the mechanism of influence of disease risk. In this
study, the Geodetector was used to study the driving mechanism behind the COVID-19
incidence rates and the influence of interactive effects between factors on the COVID-19
incidence rates [40]. Factor detection was used to detect the spatial differentiation of
COVID-19 incidence rates and the explanatory power of different influencing factors on
COVID-19 incidence rates [41]. Interaction detection was used to detect whether the joint
effect of two or more influence factors on the COVID-19 incidence rates is significantly
greater or less than the independent effect of a single influence factor and whether the
influence of these factors on the COVID-19 incidence rates is independent [40], and the
interaction relationship is determined by the location of q (x ∩ y) in the seven intervals (see
Table 1). q is an indicator to measure the explanatory power of independent variables to
COVID-19 incidence rates. The formula for q-value is as follows:

q = 1− ∑L
h=1 Nhσ2

h
Nσ2 = 1− SSW

SST

SSW =
L
∑

h=1
Nhσ2

h , SST = Nσ2
(5)

where, L is a classification of COVID-19 incidence rates or explanatory variables; N is the
number of sample units in the study area, and Nh is the numbers of units in layer h; σ2 and
σ2

h and are the variance of the Y value of study area and layer h, respectively. SSW and SST
are the sum of intra-layer variance and the total variance of the study area, respectively.
q ∈ [0, 1], the larger the value of q, the stronger the explanation of independent variables
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to dependent variables. This model is freely available. Free utility sharing software from
(http://geodetector.cn/ (accessed on 7 May 2022)).

Table 1. Types of interaction between two covariates.

Interaction Categories Description

Enhance q (X1 ∩ X2) > q (X1) or q (X2)
Bi-enhance q (X1 ∩ X2) > q (X1) and q (X2)

Enhance, nonlinear q (X1 ∩ X2) > q (X1) + q (X2)
Weaken q (X1 ∩ X2) < q (X1) + q (X2)

Weaken, uni-enhance q (X1 ∩ X2) < q (X1) or q (X2)
Weaken, nonlinear q (X1 ∩ X2) < q (X1) and q (X2)

Independent q (X1 ∩ X2) = q (X1) + q (X2)

3. Results
3.1. Global Spatial Autocorrelation Analysis

To investigate the spatial autocorrelation of COVID-19 propagation, Moran’s I index
was used to estimate the interaction among cities in China. According to Moran’s I scatter
plot, the correlation between the cumulative confirmed cases and the spatial lag vector can
be retrieved. Calculated by Geoda software [42], Figures 3 and 4 show Moran’s I scatter
diagram and Z score plot of the cumulative confirmed cases. As seen from Figure 3, on
8 April 2020, the global Moran’s I = 0.129, the cumulative confirmed cases demonstrated
positive spatial autocorrelation and “agglomeration” characteristics.

Figure 3. Moran’s I scatter plot of the cumulative number of COVID-19 on 8 April 2020.

As can be seen from Figure 4, under the significance level of 0.05, Moran’s I of the
cumulative confirmed cases on 8 April was 0.129, and z = 6.7610, z > 1.96, p = 0.0001, p < 0.05,
which had statistical significance, indicating that the positive spatial autocorrelation of
epidemic spread in the whole country.

3.2. Local Spatial Autocorrelation Analysis

The Geoda software was used to conduct spatial local autocorrelation analysis on the
cumulative confirmed cases, and the LISA agglomeration map was drawn (Figure 5). As
seen from Figure 5, the level of cumulative confirmed cases varied largely among cities
in China, which was in a state of polarization. The spatial distribution of cumulative con-
firmed cases in different provinces showed agglomeration: (a). The cumulative confirmed
cases in central provinces and neighboring provinces were large, and the difference of the
non-cumulative confirmed cases was small (HH); (b). The cumulative number of confirmed
cases in central and neighboring provinces was small, and the difference of cumulative

http://geodetector.cn/
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confirmed cases was small (LL); (c). The cumulative confirmed cases in central provinces
were large, while that in surrounding provinces was small, and the cumulative confirmed
cases varied greatly (HL); (d). The cumulative confirmed cases in central provinces were
relatively small, while the cumulative confirmed cases in surrounding provinces were
relatively large, with a large difference in the cumulative confirmed cases (LH). The cumu-
lative confirmed cases were HL in Sichuan province, HH in Hubei, Hunan, Jiangxi, Anhui,
Shandong, Chongqing, and Henan provinces, and LL in Xinjiang and Qinghai provinces.
Local Moran’s I was not significant in other provinces.

Figure 4. Z-score score chart of the cumulative number of COVID-19 on 8 April 2020.

Figure 5. Local Indicator of Spatial Association (LISA) cluster map of the cumulative number of
diagnoses on 8 April 2020.
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3.3. Descriptive Analysis

It can be seen from Table 2 that the average population was 6.05 million; the pop-
ulation density ranged from 66 people/km2 to 6523 people/km2. GDP per capita was
22 thousand to 190 thousand Chinese yuan. Beijing had the highest proportion of people
with higher education (42.3%), while Chongqing had the highest proportion of people over
64 (12.9%). In addition, Table 2 also illustrates the statistical indicators of air pollution and
meteorological variables. During the observation period, the daily average concentrations
of PM2.5, PM10, and NO2 in this study were 46.43 µg/m3, 62.97 µg/m3, and 19.28 µg/m3.
The average values of daily average temperature, relative humidity, and wind speed were
2.82 ◦C, 67.25%, and 2.11 m/s, respectively. Stringency Index ranged from 5.56 to 79.17.

Table 2. Descriptive statistics of city-specific characteristics, air pollution, meteorological factors, and
stringency index in China.

Mean Min Max

City-specific characteristics
Population (in 10,000) 605 60 3397

Population density (in people/km2) 514 66 6523
GDP per capita (in 10,000 Chinese Yuan) 6.3 2.2 19

Proportion of population with higher education (%) 12.0 8.5 42.3
Proportion of elderly population (%) 10.8 7.4 12.9

Distances to Wuhan (in 100 km) 9.3 2.1 32.7
Meteorological factors
Mean temperature (◦C) 6.46 −33.8 26.5
Relative humidity (%) 67.26 17 100

Wind speed (m/s) 1.27 0 15.4
Air pollution

PM2.5 (µg/m3) 39.86 2 554
PM10 (µg/m3) 53.99 4 632
NO2 (µg/m3) 16.74 2 86

Stringency Index 29.87 5.56 79.17

3.4. The Generalized Linear Mixed Effect Model (GLMM) Analysis Results

Figure 6 shows that temperature, relative humidity, wind speed, PM2.5, PM10 and NO2
were significantly correlated with the COVID-19 incidence rates (temperature: RR = 0.984,
95% CI: 0.969–0.999; relative humidity: RR = 0.993, 95% CI: 0.988–0.997; wind speed:
RR = 0.958, 95% CI: 0.939–0.976; PM2.5: RR = 0.983, 95% CI: 0.968–0.998; PM10: RR = 0.985,
95% CI: 0.969–0.999; NO2: RR = 0.967, 95% CI: 0.939–0.996). No significant correlation was
found between city characteristics and the COVID-19 incidence rates.

Figure 7 shows the comparison results of five schemes. Compared with M1, M2 with
added city-specific characteristics can only explain 4.2% of the COVID-19 incidence rates
variation. Based on the M2 scheme, adding meteorological factors and air pollutants
as time-varying fixed effects to M3 can explain the 11.8% variation of the COVID-19
incidence rates. However, by adding control measures to the M4 scheme, the 45%
variation of the COVID-19 incidence rates could be explained. The M5 scheme added
meteorological factors and air pollutants based on the M4, and the explanation degree
of the COVID-19 incidence rates variation was only 1% higher than the M4 scheme. By
comparing and analyzing the results of the five schemes, it can be found that the control
measures significantly impacted the COVID-19 incidence rates, which can explain the
34.2% (R2

fixed of M5 minus R2
fixed of M3) variation of the COVID-19 incidence rates. On

top of this effect, including the meteorological factors and environmental pollutants in
the M5 only resulted in 1% increase in the explained variance even though temperature,
relative humidity, wind speed, PM2.5, PM10, and NO2 showed a statistically significant
association with the incidence rate of COVID-19 (Figure 6).
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Figure 6. Compare the relative risks (95% confidence intervals) of variables among different schemes
(RR: Relative risk in incidence rate of COVID-19 for each unit change in variable).

Figure 7. Comparison of changes in R2 among different schemes (R2
fixed: Proportion of variance in

the COVID-19 incidence rate explained by the fixed effect terms; R2
random: Proportion of variance

explained the random effect term of cities’ heterogeneity).

3.5. The Effect of Meteorological Factors and Air Pollutants on COVID-19 Incidence Rates
3.5.1. Spearman Correlation Analyses

From the above results, it can be seen that the stringency index greatly influences
the incidence of COVID-19, but the meteorological factors have little influence. As the
influence of temperature on COVID-19 incidence is controversial at present, we will analyze
the influence of meteorological factors and air pollution factors on COVID-19 incidence
in detail. Spearman correlation coefficient is used to select the influencing factors of the
COVID-19 epidemic situation in southern and northern China. In this paper, the correlation
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analysis is carried out under the condition that the significance level is 0.05. There is no
correlation between the correlation coefficients of 0–0.09, with 0.1–0.3 as weak correlation,
0.3–0.5 as medium correlation, and 0.5–1 as strong correlation [43].

As shown in Figure 8a, temperature and relative humidity in northern cities were
negatively correlated with the COVID-19 incidence rates. There was no obvious correlation
between wind speed and COVID-19 incidence rates. Air pollution indicators were all
negatively correlated to the COVID-19 incidence rates at a 5% significance level. In southern
cities, temperature presented a positive correlation to COVID-19 incidence rates. On the
other hand, relative humidity and wind speed were significantly negatively correlated to
the COVID-19 incidence rates. Furthermore, all air pollution indicators were negatively
correlated with the COVID-19 incidence rates (Figure 8b).

Figure 8. Results of Spearman correlation analysis (* stands for a higher and more significant
correlation (p-value < 0.05)) in northern cities (a) and southern cities (b)).

3.5.2. Spatial Differences of Various Factors Based on GWR Model Analysis

Spearman correlation analysis was carried out on the six influencing factors and
COVID-19 incidence rates. Through the 0.05 significant difference test, the influencing
factors in the northern region are temperature, relative humidity, PM2.5, PM10, and NO2,
while those in the southern region are temperature, relative humidity, wind speed, PM2.5,
PM10, and NO2. Using ArcGIS Pro 2.8.3 to do GWR analysis on these factors and COVID-19
incidence rates, all of them have a good fitting effect (The overall R2 in the northern region
reached 0.75, and the overall R2 in the southern region reached 0.61)), and the spatial
heterogeneity is significant.

Figures 9 and 10 demonstrate that the influence of air pollutants and meteorological
factors on the COVID-19 incidence rates was spatially heterogeneous. Among them, the
influence of temperature, relative humidity, and PM10 on the epidemic situation in northern
China is mainly zonal differentiation, with the smallest influence on northeast China and
the largest influence on northwest China (Figure 9a,b,d). The influence of PM2.5 and NO2 on
the epidemic situation in northern China decreases gradually from northeast to northwest,
with the northeast region being the most affected and the northwest region being the least
affected (Figure 9c,e). The influence of temperature, PM2.5, and PM10 on the epidemic
situation in southern China gradually decreases from southeast to southwest. That is,
the southeast is the most affected and the southwest is the least affected (Figure 10a,d,e).
The influence of wind speed and relative humidity on the epidemic situation in southern
China increases from east to west (Figure 10b,c). The influence of NO2 on the epidemic
pattern in southern China has obvious zonal differentiation characteristics, and the degree
of influence decreases gradually from north to south, with the northern region being the
most affected and the southern region being less affected (Figure 10f).
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Figure 9. The local regression coefficient diagram of meteorological factors and air pollutants in
northern cities.
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Figure 10. The local regression coefficient diagram of meteorological factors and air pollutants in
southern cities.

As shown in Figure 8, temperature, relative humidity, PM2.5, and NO2 revealed a
positive impact on COVID-19 incidence rates in northern cities (Figure 9a–c,e). Contrarily,
PM10 adversely affected the COVID-19 incidence rates across northern cities (Figure 9d).
In southern China, temperature, PM10, and NO2 illustrated a positive effect on COVID-19
incidence rates (Figure 10a,e,f). Nevertheless, relative humidity, wind speed, and PM2.5
presented a passive influence on COVID-19 incidence rates (Figure 10b–d).

3.6. Interaction of Affecting Factors

Single-factor detection and multi-factor interactive analysis of meteorological and
pollution factors were carried out on the COVID-19 incidence rates of cities in China using
the geographic detector. In northern cities, the factor detector was used to determine the
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influence degree of each influencing factor on the COVID-19 incidence rates. It can be seen
from Figure 11a that, the q values of all influencing factors ranged from 0.233 to 0.595, and
the magnitude of the significant difference was as follows: temperature (0.595) > relative
humidity (0.544) > NO2 (0.343) > PM10 (0.243) > PM2.5. The influence of temperature
and relative humidity on the change in COVID-19 incidence rates ranked the first two,
indicating that meteorological factors played a leading role in the change in COVID-19
incidence rates. Secondly, NO2, which covers all aspects of human activities, including
industrial activities and transportation resources, so the change in NO2 concentration can
quantify the intensity of human activities, which can reflect the impact of human activities
on COVID-19 incidence rates to a certain extent. PM10 and PM2.5 also had a great influence
on the COVID-19 incidence rates.

Figure 11. Power of determinants in interaction in northern cities (a) and southern cities (b).

From the perspective of factor interaction, as shown in Table 3, there are two types
of COVID-19 epidemic in northern cities: one was nonlinear enhancement and two was
a bilinear enhancement. In addition, the interaction of all two factors was stronger than
that of a single factor. For example, the q value of the interaction between relative humidity
and NO2 on the change in COVID-19 incidence rates was 0.991, which had the strongest
influence on the COVID-19 incidence rates. Moreover, the interaction between relative
humidity and all other influencing factors had a significantly greater effect on the COVID-19
incidence rates than the single effect of relative humidity on the COVID-19 incidence rates
(0.544). In addition, compared with other factors, PM2.5 had the smallest contribution
to the COVID-19 incidence rates, the interaction type with temperature and PM10 was a
bilinear enhancement, and the interaction with other influencing factors had a non-linear
synergistic effect on the COVID-19 incidence rates. Compared with the interaction of other
factors, the q values of the average temperature, PM2.5, PM10, and NO2 interacting with
relative humidity significantly increased, being 0.969, 0.919, 0.979, and 0.991, respectively.

In southern cities, a factor detector was used to determine the impact of each influ-
encing factor on the change in COVID-19 incidence rates. It can be seen from Figure 11b
that the q value range of all impact factors was 0.051~0.907, and the magnitude of the
significant difference was as follows: relative humidity (0.274) > NO2 (0.155) > tempera-
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ture (0.149) >PM2.5 (0.059) > PM10 (0.051) = wind speed (0.051). The influence of relative
humidity on the change in COVID-19 incidence rates ranked first, indicating that relative
humidity played a leading role in the change in COVID-19 incidence rates; the second
was NO2, which covers all aspects of human activities, indirectly indicating that human
activities had a larger impact on the COVID-19 incidence rates; the contribution of PM10
and wind speed to the change in COVID-19 incidence rates was the smallest, q was less
than 10%.

Table 3. Results of interaction detector in northern cities.

Dominant Interaction Factor q Value Interact Result

Temperature ∩ Relative humidity 0.969 Bi-enhance
Temperature ∩ PM2.5 0.817 Bi-enhance
Temperature ∩ PM10 0.883 Enhance, nonlinear
Temperature ∩ NO2 0.779 Bi-enhance

Relative humidity ∩ PM2.5 0.919 Enhance, nonlinear
Relative humidity ∩ PM10 0.979 Enhance, nonlinear
Relative humidity ∩ NO2 0.991 Enhance, nonlinear

PM2.5 ∩ PM10 0.474 Bi-enhance
PM2.5 ∩ NO2 0.691 Enhance, nonlinear
PM10 ∩ NO2 0.679 Enhance, nonlinear

An interaction detector was used to detect the effect of interaction between factors
on the COVID-19 incidence rates. It can be seen from Figure 11b that the explanatory
power of the interaction between factors on the COVID-19 incidence rates was higher
than that of a single factor on the COVID-19 incidence rates. For example, the q value of
NO2 interacting with relative humidity on the change in COVID-19 incidence rates was
0.907, which had the strongest impact on the change in COVID-19 incidence rates. The
impact of NO2 interacting with all other influencing factors on the COVID-19 incidence
rates was significantly stronger than that of NO2 alone on the COVID-19 incidence rates
(0.155). In addition, compared with other factors, PM10 and wind speed made the smallest
contribution to the COVID-19 incidence rates, but the interaction type of wind speed and
PM10 was bilinear enhancement (see Table 4). High wind speed may significantly enhance
the effect of PM10 on the COVID-19 incidence rates. A similar result was acquired for PM2.5
and PM10. According to Figure 11b, PM2.5 and PM10 had relatively low explanatory power
(q = 0.059 and 0.051, respectively). After the interaction of PM2.5, PM10, and NO2, the q
values of the influence on the COVID-19 incidence rates increased significantly, which were
0.836 and 0.838, respectively.

Table 4. Results of interaction detector in southern cities.

Dominant Interaction Factor q Value Interact Result

Temperature ∩ Relative humidity 0.481 Enhance, nonlinear
Temperature ∩Wind speed 0.271 Enhance, nonlinear

Temperature ∩ PM2.5 0.278 Enhance, nonlinear
Temperature ∩ PM10 0.324 Enhance, nonlinear
Temperature ∩ NO2 0.329 Enhance, nonlinear

Relative humidity ∩Wind speed 0.411 Enhance, nonlinear
Relative humidity ∩ PM2.5 0.567 Enhance, nonlinear
Relative humidity ∩ PM10 0.801 Enhance, nonlinear
Relative humidity ∩ NO2 0.907 Enhance, nonlinear

Wind speed ∩ PM2.5 0.139 Enhance, nonlinear
Wind speed ∩ PM10 0.102 Bi-enhance
Wind speed ∩ NO2 0.531 Enhance, nonlinear

PM2.5 ∩ PM10 0.114 Bi-enhance
PM2.5 ∩ NO2 0.836 Enhance, nonlinear
PM10 ∩ NO2 0.838 Enhance, nonlinear
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4. Discussion

Through research, this paper found that control measures were the main factors
affecting the COVID-19 transmission, and meteorological factors had a very small impact on
the spread of COVID-19, which was consistent with the research results of Chong et al., [33].
Published related studies show that air pollutants have a great influence on the COVID-19
incidence rates [44]. In this paper, NO2 revealed a positive impact on COVID-19 incidence
rates in China, which was consistent with a previous study [24]. It has been reported that
PM10 was positively correlated with the COVID-19 incidence rates in southern cities, which
was consistent with the research results of Zhu et al. [24]. However, PM10 was negatively
correlated with the COVID-19 incidence rates in northern cities. This result supports the
research of Jiang et al. [25]. In addition, in this study, COVID-19 incidence rates were
positively correlated with PM2.5 in most northern cities with relatively high PM2.5 levels,
which was consistent with the research results of Jiang et al. [25]. COVID-19 incidence rates
were negatively correlated with PM2.5 in southern cities, this result was contrary to many
studies. Although there is no research to prove this, we suspect that this may be because
people have strengthened the protection against high concentrations of PM2.5 and tried to
avoid exposure to PM2.5. In conclusion, before reaching a clear conclusion, it is necessary
to further study the impact of PM2.5 on COVID-19 transmission.

In this paper, it was found that the correlation between average temperature and
COVID-19 was positive or negative, without a consistent relationship, which was consistent
with the research results of Alvaro B R et al. [15]. Studies have demonstrated that high
temperatures may destroy the cell membrane on the surface of the virus, reducing its
stability and infectivity [45]. The impact of temperature on COVID-19 needs to be further
studied. It has been found that higher wind speed helps to reduce the number of viruses in
the air, thus reducing the possibility of virus transmission, that is, the average wind speed is
negatively correlated with COVID-19 [46], which is similar to ours. Relative humidity was
negatively correlated with COVID-19 in southern cities, which was consistent with some
previous studies [47]. This may be due to the immune system having limited immunity
to the COVID-19 virus in low humidity environments. Nevertheless, in northern cities,
the COVID-19 incidence rates were positively correlated with relative humidity, consistent
with a previous study [48].

Our study has some limitations. First of all, the study time is short, and subsequent
studies need a longer period to study the COVID-19 incidence rates and its relationship
with influencing factors. Secondly, our study is not globally representative because only
Chinese cities are analyzed. Thirdly, the predicted R2 value in the geographically weighted
regression model is low, which indicates that our research results are statistically insuf-
ficient. Further analysis should introduce more explanatory variables and capture other
key concurrent factors, such as the number of doctors, medical conditions, sex and age of
infected patients, living environment and living standard of patients, and other possible
influencing factors. Finally, because of the complexity of distinguishing the influence of
each control measure, we use a single variable to express the effect of the control measure.
It is necessary to use more indicators of control measures for further modeling research in
order to rank the importance of the factors that explain the decline in COVID-19.

5. Conclusions

This paper mainly analyzed the spatial characteristics and influencing factors of
COVID-19 transmission in China in 2020 at the city scale. The following conclusions were
obtained from spatial autocorrelation, geographical detectors, geographically weighted
regression, and so on. (1) The epidemic distribution had spatial agglomeration. The
Moran’s I scatter diagram and LISA cluster diagram were drawn, and the analysis showed
that: the cumulative confirmed cases in each city were clustered in spatial distribution. The
cumulative confirmed cases were HL in Sichuan, HH in Hubei, Hunan, Jiangxi, Anhui,
Chongqing, and Henan, LL in Xinjiang and Qinghai, and Moran’s I in other provinces
were not significant. (2) Temperature, relative humidity, NO2, and PM2.5 exhibited positive
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effects on COVID-19 incidence rates in northern cities. Contrarily, PM10 was negatively
correlated with the COVID-19 incidence rates in northern cities; (3) in southern cities, the
COVID-19 incidence rates were negatively correlated with wind speed, relative humidity,
PM2.5, but positively correlated with PM10, NO2, and temperature. (4) The influence of
meteorological factors was stronger than that of air pollution factors, and the interactive
effects between factors were stronger than their individual effects. The interaction between
relative humidity and NO2 was the strongest, and the maximal q value of the interaction was
0.991 (p < 0.001); (5) the impacts of meteorological factors and air pollutants on COVID-19
incidence rates showed spatial heterogeneity; (6) the control measures had the largest
impact on the COVID-19 incidence rates, which can explain the difference of 34.2% in the
COVID-19 incidence rates, while meteorological factors and pollutant factors can only
explain the difference of 1% in the COVID-19 incidence rates.
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