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+e quality of positron emission tomography (PET) imaging is positively correlated with scanner sensitivity, which is closely
related to the axial field of view (FOV). Conventional short-axis PET scanners (200–350mm FOV) reduce the imaging quality
during fast scanning (2–3 minutes) due to the limitation of FOV, which reduce the reliability of diagnosis. To overcome hardware
limitations and improve the image quality of short-axis PETscanners, we propose a supervised deep learning model, CycleAGAN,
which is based on a cycle-consistent adversarial network (CycleGAN).We introduced the attention mechanism into the generator
and focus on channel and spatial representative features and supervised learning using pairs of data to maintain the spatial
consistency of the generated images with the ground truth. +e imaging information of 386 patients from Henan Provincial
People’s Hospital was prospectively included as the dataset in this study. +e training data come from the total-body PETscanner
uEXPLORER. +e proposed CycleAGAN is compared with traditional gray-level-based methods and learning-based methods.
+e results confirm that CycleAGAN achieved the best results on SSIM and NRMSE and achieved the closest distribution to
ground truth in expert rating. +e proposed method is not only able to improve the image quality of PET scanners with 320mm
FOV but also achieved good results on shorter FOV scanners. Patients and radiologists can benefit from the computer-aided
diagnosis (CAD) system integrated with CycleAGAN.

1. Introduction

Positron emission tomography (PET), a widely used clinical
imaging technique, can reflect metabolism in tissues by
detecting the distribution of tracers in the human body. It is
an effective means of current tumor detection [1] and early
diagnosis [2] and offers advantages to the differentiation of
benign and malignant tumors, and tumor staging and
grading [3, 4]. PET image quality is a key factor affecting
clinical diagnosis which is positively correlated with scanner
sensitivity, and the sensitivity is closely related to the axial
field of view (FOV). Large increases in signal collection

efficiency can be realized by extending the FOV of the
scanner [5]. Currently, clinically used PET devices mostly
have an axial FOV of 200–350mm and poor image quality in
fast scanning. +e uEXPLORER is the world’s first total-
body PET scanner, with a whole-body axial FOV (1940mm)
and ultrahigh sensitivity [6, 7]. +e emergence of a total-
body PET scanner with ultrahigh sensitivity can maximize
the collection efficiency and provide high-quality images for
PET image acquisition. However, currently, the cost of total-
body PET is high (about five to six times that of a con-
ventional scanner), and conventional short-axis PETscanner
remains the mainstream device for PET image acquisition.
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How to improve the quality of PET image has been a focus in
the nuclear medicine field [8]. Figure 1 shows the PET
images of the brain, lungs, and abdomen. +e images were
obtained from the same person with short-axis PET TOF
(320mm FOV) and total-body PETuEXPLORER (1940mm
FOV) scanners in 5 minutes. +e short-axis PET image had
significantly lower quality than the total-body PET image in
terms of noise and organ texture.

In clinics, the application of conventional short-axis PET
scanner is limited by FOV. A single bed position scan en-
ables the diagnosis of individual organs only, and the di-
agnosis of whole-body requires a combination of a series of
serial scans obtained from many patient positions. A large
amount of time-varying radiotracer distribution informa-
tion can only be obtained from a part of the body at a time,
and the whole-body PET images can be constructed through
multiple serial scans within the specified time (15 minutes),
with only 2–3 minutes per scan. Although this method can
meet the needs of clinical diagnosis, it has the problems of
significant image noise and unclear texture, which will re-
duce the reliability of diagnosis and offset the advantages of
PET imaging.

+erefore, the purpose of our study is to improve the
image quality of conventional short-axis PET scanners and
further exert their clinical application value. +e current
research about how to technically enhance image quality
mainly uses traditional and machine learning methods.
Traditional methods are mainly used to resolve problems,
such as low contrast, uneven intensity distribution, and edge
blur of medical images. Machine learning methods learn the
nonlinear mapping of low-quality PET (LQPET) and high-
quality PET (HQPET) images, which are used as models for
image quality enhancement.

Traditional image enhancement methods depend on
image gray value distribution, which can be divided into
frequency and spatial domain methods according to en-
hancement process space. Nonlocal means (NLM) [9] is a
typical spatial method, which estimates the center point of
the reference block by weighted averaging the self-similar
image blocks in the image, so as to reduce the noise, but
NLM does not protect the structure information of the
original image enough. Dabov et al. [10] proposed block-
matching and 3D filtering (BM3D) according to the sim-
ilarity between image blocks. +is method has a high
signal-to-noise ratio, but the block operation will lead to
fuzzy output and relatively high time complexity. Recently,
these nonlearning-basedmethods have reached a bottleneck,
whereas deep learning has made breakthroughs in medical
image processing [2, 11–13]. +e powerful mapping ability
of deep learning brings a new idea to image enhancement.
+e introduction of the generative adversarial network
(GAN) [14] in 2014 has provided new directions for many
image research tasks. It has been used in medical image
denoising, data simulation, classification, segmentation, and
reconstruction [15–22] and in MRI, CT, PET, and other
multimodal medical images. GANs can simulate data dis-
tribution, generate realistic images, and can solve the
problem of the weak generalization ability of early gener-
ation models [23]. One of the original purposes of GAN is

image enhancement, and their use in image enhancement
has unique advantages. Ouyang et al. [24] used a GAN with
texture feature matching and task-specific perceptual loss to
generate standard-dose PET images from ultralow-dose PET
images. Isola et al. [25] proposed the Pix2Pix supervised
image-to-image translation framework, which is based on
conditional generative adversarial network (CGAN) and
uses a set of pairs and aligned images to train and learn the
mapping between two image domains. To solve the problem
of data mismatch, Zhu et al. [26] proposed the unsupervised
training model of CycleGAN in 2017. +is model can
operate between the source domain X and target domain Y
without establishing the one-to-one mapping of training
data. Zhao et al. [27] proposed a nonlinear end-to-end
mapping model S-CycleGAN to restore low-dose PET im-
ages of the brain. Zhou et al. [28] proposed the supervised
deep learning model CycleWGAN, which was based on
CycleGAN, to improve the quality of the low-dose PET
images of the lungs and introduced Wasserstein distance
into the loss function [29, 30]. +e method achieved con-
siderable results in preserving edges and SUV values. In-
spired by these studies, we believe that an image
postprocessing method based on deep learning can over-
come the limitations of hardware and effectively improve the
image quality of conventional PET device.

+e attention mechanism was first proposed in the field
of vision. Since the publication of Google Mind in 2014 [31],
the attention mechanism has become popular. In this paper,
an RNN model with the attention mechanism was used for
image classification. Since the application of the attention
mechanism in the field of natural language is processed by
Bahdanau et al. [32], it has been applied to various fields and
became a widely used technology. By connecting different
modules in a weighted way, the attention mechanism allows
the neural network to focus on relevant information rather
than on irrelevant information. Vaswani et al. [33] proposed
a machine translation model using the attention mechanism
only, completely abandoning network structures, such as
CNN and RNN, and achieved good results. Woo et al. [34]
proposed a lightweight attention module and convolutional
block attention module (CBAM), which can pay attention to
channels and spatial dimensions and can be added to all
conventional convolution layers. Woo et al. [34] tested the
performance and versatility of CBAM in the ResNet network
and visualized the results for improved interpretation. +e
attention–GAN framework proposed by Chen et al. [35] can
learn accurate attention to improve image quality and can
effectively prevent object deformation.

+is paper proposes an image quality enhancement
method named CycleAGAN, which can combine a cycle-
consistent adversarial network (CycleGAN) [26] with the
attention mechanism.+emethod was used in reconstructing
HQPETimages with low noise and fine texture on a short-axis
PET device. Our main contributions are threefold:

(1) For the reconstruction of realistic texture details, the
attention mechanism module [34] is incorporated
into the two generator networks of CycleGAN, which
focus on channel and spatial representative features.

2 Journal of Healthcare Engineering



(2) For the reduction of the dependence on the position
information of the reference image and influence of
deformation on the generated image, the images of
the two image domains are aligned in space. +e
learning method of the network is changed to su-
pervised learning, and supervised learning loss is
added to the loss function to learn a nonlinear
mapping that contains structural information.

(3) To meet the amount of data required for deep
learning, the sample size of the data set used in this
experiment far exceeds the sample sizes of previous
studies. In the training process, the image is input
into the network in the form of a whole, and the
global characteristics of the image can be learned. A
large number of experiments are performed on
images with different FOV to verify the effectiveness
of the method.

2. Methods

+e architecture of our proposed model, CycleAGAN, is
shown in Figure 2. +e network is a circular network
composed of two mirrored GANs, including two generators
(GAB, GBA) and two discriminators (DA, DB). GAB represents
the mapping from LQPET domain (A) to HQPET domain
(B), and GBA represents opposite mapping. In addition, the
two discriminators DA and DB are designed to identify
whether the output of each generator is real or fake. We
trained the generators and discriminators simultaneously.

Quality from the LQPET image domain A to HQPET
image domain B can be improved by training the generators
GAB and GBA. +at is, we need to learn a mapping
GAB: A⟶ B in order that the generated sample
􏽢b � GAB(a) is consistent with the distribution of the HQPET
image domain B. Another reverse mapping of GBA: B⟶ A

is added to make 􏽥a � GBA(GAB(a)) consistent with the
LQPET image domain of A distribution and ensure cycle
consistency, GBA(GAB(a)) ≈ a. To distinguish between the
image generated by A and the real image in B, discriminator
DB was used to determine the category of the images. As the
number of train epoch increases, GAB and DB are updated
until the output result of DB stabilizes to 0.5. In this case, the
generated sample 􏽢b is considered infinitely close to the
HQPET image domain B. Similarly, the GBA and DA

training processes are the same as GAB and DB.

2.1. Attention Module. +e general structure of CBAM [34]
includes two submodules: channel attention module and
spatial attention module, as shown in Figure 3. In an in-
termediate feature map, the attention weight is deduced
along the channel and spatial dimensions and then multi-
plied with the original feature map for feature adjustment.
Figure 4 shows the specific structures of the two submodules.
A 1D channel attention map (FC) and a 2D spatial attention
map (FS) are generated by the feature map through the
channel and the spatial attention modules, respectively.

Channel attention can generate a channel attention
featuremap by using the channel relationship of features and

(a) (b) (c)

(d) (e) (f )

Figure 1: Comparison of the image quality between a short-axis and total-body PET scanners. (a, d) Brain PET images. (b, e) Lung PET
images. (c, f ) Abdomen PET images.+e images scanned by the short-axis scanner are shown in the first row, and the images scanned by the
total-body scanner are shown in the second row.
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can focus on the most valuable part of input features. In the
calculation of channel attention, the spatial dimension of the
input feature map needs to be compressed, and average
pooling and maximum pooling are used simultaneously.
+is method not only facilitates the collection of unique
texture features but also retains background information.
After passing through the same convolution network, the

average pooling and maximum pooling features are com-
bined through element-wise summation and then activated
by sigmoid for the acquisition of the channel attention FC.

Spatial attention uses the spatial relationship of features
to generate a spatial attention feature map, focusing on the
most informative part, which is a supplement to channel
attention. In the computation of spatial attention, average
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Figure 2: CycleAGAN framework. Overview of the proposed framework for LQPET image quality improvement.
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Figure 3: +e overview of CBAM. +e module has two sequential submodules: channel and spatial.
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Figure 4:+e architecture of each attention submodule.+e channel attention module uses both max-pooling outputs and average-pooling
outputs with a common convolutional network; the spatial attention module uses two combined outputs converged along the channel axis
and forwards them to a convolution layer.
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pooling and maximum pooling are applied along the
channel axis, and then, the results are concatenated into a
valid feature descriptor.+en, the convolutional layer is used
to generate spatial attention FS, which encodes the positions
to be concerned or suppressed.

2.2. Generator Network. +e network architecture of gen-
erators GAB andGBA is shown in Figure 5.+e PETimage is a
single channel gray image, and the number of the input and
output channels of the network is set to 1. ResNet is used as
the basic network, and CBAM is introduced to make the
network pay attention to subtle features and adjust the
weights of the channel and spatial features. Change in the
network structure of ResNet [36] is prevented by adding
CBAM after the first layer convolution and before the last
layer convolution successively.

+e entire network comprises six convolutional
layers, two CBAMs, and nine residue learning modules.
+e first convolution layer uses 64 sets of 7 × 7 convo-
lution kernels to produce 64 channel feature maps and
inputs them into CBAM and then through the two layers
of the 3 × 3 down-sampling convolution, batch nor-
malization, and ReLU layers. Nine sets of residual blocks
are obtained, and each block contains two 3 × 3 convo-
lution, batch normalization layers. +e first is connected
with ReLU, and the other is connected with bypass and
ReLU. Reflection padding is used to reduce artifacts.
Residual blocks are followed by two 3 × 3 up-sampling
convolution, batch normalization, and ReLU layers.
+en, the features are input into CBAM. Finally, a 7 × 7
convolution kernel and a tanh layer are used in esti-
mating the HQPET image.

2.3. Discriminator Network. As shown in Figure 6, the
discriminator has four 2D 4× 4 CNN layers and a fully
connected layer. Each CNN layer is followed by batch

normalization and LeakyReLU layers as the activation
function. Let CkSs− n denote a convolution layer with a
kernel size of k× k, a stride of s, n output channels, batch
normalization, and LeakyReLU activation function with a
slope of 0.2. +e discriminator network architecture is as
follows: C4S2-64, C4S2-128, C4S2-256, C4S1-512. After the
last layer is obtained, we use convolution to produce a 1D
prediction map output.

2.4. Loss Functions. +e basic CycleGAN contains three
kinds of losses: adversarial loss (Ladv), cycle-consistency loss
(Lcyc), and identity loss (Lid). Although the CycleGAN was
originally proposed to solve unsupervised learningmodel for
unmatched data, the spatial consistency of images is still
obtained through registration or reconstruction for the
maintenance of quantized pixel values, the elimination of
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Figure 5: Generator. A generator architecture in the proposed framework.
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Figure 6: Discriminator. A discriminator architecture in the
proposed framework.
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unnecessary differences between two image domains, and
shifting of focus to the mapping of texture details. We add a
supervised learning loss (Lsup) into the loss function. +e
total loss function is defined as

L � Ladv + λcLcyc + λiLid + λsLsup, (1)

where λc, λi, and λs are hyperparameters.
Adversarial loss (Ladv) makes the PET image distribu-

tion generated by the generator close to the HQPET image

distribution, including two parts defined in a similar way.
One part isL(GAB, DB) between GAB and DA, and the other
part is L(GBA, DA) between GBA and DA. +e definition of
adversarial loss is as follows:

Ladv �
1
2

L GAB, DB( 􏼁 + L GBA, DA( 􏼁( 􏼁, (2)

where

min
GAB

max
DB

L GAB, DB( 􏼁 �

−ExB ∼ PB
DB xB( 􏼁􏼂 􏼃 + ExA ∼ PA

DB GAB xA( 􏼁( 􏼁􏼂 􏼃 + λE􏽥y ∇􏽥yDB(􏽥y)
�����

�����2
− 1􏼒 􏼓

2
􏼢 􏼣 .

(3)

Meanwhile, L(GBA, DA) is defined in the same way as
L(GAB, DB).

Adversarial loss can only ensure that the generated PET
and HQPET images have the same distribution. Cycle
consistency loss can make GAB and GBA retain LQPET

information and the consistency of content in the generation
process. +us, the generated PET image has high quality
without change in its original image structure. Cycle con-
sistency loss is defined as follows:

Lcyc GAB, GBA( 􏼁 � ExA ∼ PA
GBA GAB xA( 􏼁( 􏼁 − xA

����
����1􏽨 􏽩 + ExB ∼ PB

GAB GBA xB( 􏼁( 􏼁 − xB

����
����1􏽨 􏽩. (4)

In clinical applications, the input of GAB may be HQPET.
To ensure that GAB can still output high-quality PET images,

we define the identity loss as follows to enable the generator
to achieve identity mapping and vice versa.

Li d GAB, GBA( 􏼁 � ExA ∼ PA
GBA xA( 􏼁 − xA

����
����1􏽨 􏽩 + ExB ∼ PB

GAB xB( 􏼁 − xB

����
����1􏽨 􏽩. (5)

In this experiment, we use paired data and supervision
loss is defined as follows:

Lsup GAB, GBA( 􏼁 � ExA ∼ PA
GAB xA( 􏼁 − xB

����
����1􏽨 􏽩 + ExB ∼ PB

GBA xB( 􏼁 − xA

����
����1􏽨 􏽩. (6)

3. Experiments

3.1. Dataset. +e experimental data came from the imaging
department of Henan Provincial People’s Hospital. All the
data were collected using UNITED IMAGING total-body
PET/CT uEXPLORER with 0.11mCi/kg 18F-FDG. Data
collection was started 45–60 minutes after injection, and the
collection time is 5 minutes. A total of 386 age-matched
patients (18–70 years old) were enrolled. +e institutional
ethics committee approved this study, and all participants
gave informed written consent.

Given that the raw data collected by uEXPLORER come
from the whole body of a patient, and the raw data collected
was reconstructed into three consecutive bed positions. Each
bed is 320mm in length, and the beds correspond to the

head (bed1), lung (bed2), and abdomen (bed3). Tomaximize
the consistency between the estimated image and the LQPET
image structure, uEXPLORER was used in reconstructing
LQPET and HQPET with different reconstruction param-
eters. In each bed scan, the HQPET image is reconstructed
with the signal from the full detector range (1940mm),
whereas the LQPET image was reconstructed with the signal
from 320mm FOV only [37]. +e reconstruction algorithm
was standard ordered-subset expectation maximization
(OSEM) with time-of-flight (TOF). All necessary corrections
such as scatter, normalization, dead time, random, attenu-
ation, decay corrections were applied. +e reconstruction
parameters of bed1 are 300mm visual field, 1.4mm layer
thickness, 4 iterations, 20 subsets; the reconstruction pa-
rameters of bed2 and bed3 are 500mm visual field, 2mm
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layer thickness, 2 iterations, 20 subsets. +e difference be-
tween HQPET and LQPET reconstructed images lies in
attenuation correction: the attenuation correction sequence
used by HQPETcomes from the whole detector range, while
the attenuation correction sequence used by LQPET comes
from the corresponding area of each bed. +e image size of
the bed1 was 150×150× 230 with a voxel size
2× 2×1.4mm3, and the image size of the bed2 and bed3 was
192×192×160 with a voxel size 2.6× 2.6× 2mm3. +is
procedure not only ensured the spatial consistency of the
image but also enabled paired data to be trained with su-
pervision. After verification, the image quality was equiv-
alent when the reconstruction parameters on uEXPLORER
were the same as those in the short-axis scanner.

After comparison and screening, the cases available for
each bed composed of 344 head cases, with a total of 79,046
pairs of images; 361 cases of lung, with a total of 57,900 pairs
of images; and 351 cases of abdomen, with a total of 56,746
pairs of images. Each bed position is trained separately, and
the above data are randomly divided into training and test
sets in an allocation ratio of 9 :1. All PET voxel values are
scaled to [−1,1] aiding to network training.

3.2. Experimental Settings. In the training process, we use an
Adam [38] optimizer to minimize the total loss function (1)
of CycleAGAN. +e optimizer parameter is β1 � 0.5,
β2 � 0.999. In the total loss function, the hyperparameters λc,
λi, and λs are set at 10, 0.5, and 0.5, respectively, and λs is
determined by experiment.+ewhole training epoch is set at
200, and the batch size is set at 32. In the first 100 epochs, the
learning rate is set at 2e− 4. In the last 100 epochs, the
learning rate is gradually reduced to 0. All implementation
processes are performed using Python 3.6 and PyTorch 1.6
on PyCharm. All the experiments are performed on a
Windows workstation with an Intel Xeon W-2135 64GB
CPU and two NVIDIA Quadro P5000 16GB GPUs. With
the current hardware facilities, model training for each bed is
completed for 480 hours. Although the training requires a
large amount of training time, it can result in good gen-
eralization performance because of the large amount of data.
All the test images are entered in the model sequentially, and
each image slice is generated for 9.4 milliseconds in average.

3.3. EvaluationMethod. Image quality is analyzed according
to radiologist rating and qualitative and quantitative data
[39, 40].

Two radiologists with 10 years of experience assess image
quality through blind review. +e evaluation process has
three aspects: overall impression, image noise, and focus

significance. +e doctor formulates a five-point scoring
system based on three factors. +e evaluation scale is shown
in Table 1. +e score is only used for images and does not
consider other clinical data. First, the images to be evaluated
are imported into the AMIDE software and then ranked by
doctors in random for the reduction of deviation. Finally, the
evaluation results of the two radiologists are sorted out for
the consistency of image evaluation.

NRMSE, PSNR, and SSIM [41] are used in measuring the
difference between the estimated PET image and ground
truth HQPET image, and the performance of the proposed
network model is quantitatively evaluated. +e indicators
are defined as follows:

NRMSE �

�����������������

􏽐
N
i�1 􏽐

M
j�1 xij − yij􏼐 􏼑

2

􏽐
N
i�1 􏽐

M
j�1 y

2
ij

􏽶
􏽴

× 100,

PSNR � 20 × log10
MAX
����
MSE

√􏼠 􏼡,

SSIM �
2μxμy + C1

μ2x + μ2y + C1
×

2σxy + C2

σ2x + σ2y + C2
,

(7)

where C1 and C2 are constants; μx, μy, σx, σy, and σxy are
the average and standard deviation of the plane centered on
the pixel (i, j); MAX is the peak intensity of the image; and
MSE is the absolute mean square error.

PSNR is the most widely used objective image evaluation
index, which is based on the error between corresponding
pixels. However, it does not consider the visual recognition
and perception characteristics of human eyes, and the eval-
uation results are often different from people’s subjective
feelings [42]. +e ratio between useful information and noise
and image quality increases with PSNR.+e SSIM value range
is [0,1]. Image distortion decreases with increasing SSIM
value. When the SSIM value is 1, the two images are the same.

4. Results

4.1. Result of Image Quality Improvement Experiments.
+e experimental results are obtained from 105 samples (34
in bed1, 36 in bed2, and 35 in bed3) in the test set. +e
proposed CycleAGANmethod is compared with the original
CycleGAN and Pix2Pix, NLM, and BM3D algorithms.
CycleAGAN, CycleGAN, and Pix2Pix are deep learning
methods, whereas NLM and BM3D are traditional image
denoising methods. +e filtering strength of NLM is set to
20, the hard thresholding of BM3D is set to 2.7, and the block
size is 4. +e HQPET images estimated by these methods are

Table 1: Evaluation scale of radiologist experts.

Evaluation scale Score
+e image is not diagnostic, too large noise, poor lesions 1
Image quality is acceptable, large noise, poor description of lesions, reduce diagnostic confidence 2
Image quality is acceptable, reaching the clinical routine image quality 3
Image quality is better than average image quality 4
Image quality is excellent, low noise, the lesion is clear, no artifact 5

Journal of Healthcare Engineering 7



analyzed through qualitative and quantitative analyses and
on the basis of radiologist rating.

4.1.1. Qualitative and Quantitative Analysis. In qualitative
analysis, representative sample images are selected from
different beds. +e three subgraphs in Figure 7 show the

LQPET, HQPET, and generated HQPET sample images of
representative subjects in the test set in three beds. +e
images are estimated with the five image quality improve-
ment methods. Rows 1, 2, and 3 in each subgraph are PET
images in the axial, coronal, and sagittal directions, respectively.
In the first two columns of each subgraph, the quality of the
LQPET image collected with the 320mm FOV scanner is far

LQPET HQPET CycleAGAN CycleGAN Pix2Pix NLM BM3D

ax

cor

sag

(a)

LQPET HQPET CycleAGAN CycleGAN Pix2Pix NLM BM3D

ax

cor

sag

(b)

LQPET HQPET CycleAGAN CycleGAN Pix2Pix NLM BM3D

ax

cor

sag

(c)

Figure 7: Simple images of LQPET (320mm), HQPET (1940mm), and estimated PET images from CycleAGAN, CycleGAN, Pix2Pix,
NLM, and BM3D methods. (a) Brain PET images. (b) Lung PET images. (c) Abdomen PET images. Rows 1, 2, and 3 in each subgraph are
PET images in the axial, coronal, and sagittal direction, respectively.
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worse than that of the HQPET image scanned with
uEXPLORER, cannot show clear texture details, and contains a
substantial amount of noise, which affects the diagnosis results.
Compared with LQPET, GAN-based CycleAGAN, CycleGAN,
and Pix2Pix deep learning methods suppress image noise,
significantly improve image quality, and maintain rich details
and texture structures of PET images. However, the traditional
method NLM makes all contours and textures in a predicted
image extremely smooth, and BM3D overemphasizes contour
information and ignores texture details. Hence, the effect of
diagnosis is reduced. Compared with Pix2Pix and CycleGAN,
CycleAGAN has better image quality and better texture
matching with HQPET images. +e image quality improve-
ment effect of CycleAGAN is particularly obvious in the
restoration of organ texture details, such as the location of the
red box in the brain, lungs, and abdomen.

In quantitative analysis, CycleAGAN is compared with
CycleGAN, Pix2Pix, NLM, and BM3D. Table 2 shows the
quantitative analysis results of the five methods in the three
beds. +e average NRMSE, PSNR, and SSIM between the
predicted and real HQPET images obtained using CycleA-
GAN, CycleGAN, Pix2Pix, BM3D, and NLM methods are
calculated. +e proposed CycleAGAN achieves the best
results in terms of NRMSE and SSIM in the three beds. +e
PSNR of BM3D reaches the highest value in all three beds.
However, as shown in Figure 7, the contour information of
the image predicted by BM3D is prominent, and thus, the
detail texture is nearly completely lost. +ese results will
affect the diagnosis effect of PET images.

4.1.2. Radiologist Rating. With regard to the image quality
scores provided by doctors, the distribution of the image
quality scores for LQPET, HQPET, and estimated images
from CycleAGAN, CycleGAN, Pix2Pix, BM3D, and NLM
methods is shown in Figure 8. Figures 8(a)–8(c) show the
scores of bed1, bed2, and bed3 respectively. Most of LQPET

images scored 1 or 2, and only 7 cases in bed1 scored 3 or 4.+e
scores of HQPET images are mostly 4 or 5. Among 95 cases,
only 3 and 4 of bed2 and bed3 are considered as low-quality
images, respectively. +e average scores of our proposed
CycleAGAN are (4.11± 0.98, 4.10±0.96, and 4.09± 0.94), re-
spectively, and the score distribution is the closest to the
ground-truth HQPET, far outperforming CycleGAN (average
scores 3.72± 1.23, 3.68± 1.12, 3.70± 1.09), Pix2Pix (average
scores 3.23± 1.02, 3.25± 1.03, 3.20± 1.05), NLM (average
scores 1.82± 0.70, 1.81± 0.68, 1.78± 0.68), and BM3D (average
scores 2.49± 0.87, 2.51± 0.92, 2.50± 0.95).

4.2. Result of Generalization Experiments. In this section, we
test the generalization ability of the model in five additional
cases. +e uEXPLORER is used to collect the raw data of five
additional cases and reconstruct them into three discon-
tinuous LQPET–HQPET image pairs. +e FOV of each bed
position is 250mm, and the bed positions correspond to the
head (bed1), lung (bed2), and abdomen (bed3). +e recon-
struction parameters are the same as those of the 320mm
scanner.+e corresponding slices of each bed position are 179
in the head, 125 in the lung, and 125 in the abdomen.+e data
of the five cases are input into the trained model as a vali-
dation set to test the generalization performance of the model.

Qualitative and quantitative analysis results are shown in
Figure 9 and Table 3, respectively. Each row in Figure 9
shows the enhancement effect of each bed in different
methods. In the comparison between Figures 7 and 9, the
overall image quality in Figure 9 is not as good as that in
Figure 7. In the first two columns of Figure 9, the LQPET
image collected in fiveminutes with the 250mmFOV scanner
is far from the visual effect of clinical diagnosis, whereas the
HQPET image scanned by uEXPLORER shows clear texture
details. +e red box in Figure 9 shows the texture detail
recovery ability of each method. +e result of CycleAGAN is
the closest to that of HQPET, and other methods cannot
restore the most valuable texture information in the LQPET
image with a substantial amount of noise.

A considerable amount of noise is found in the LQPET
image collected with the 250mm scanner, and the quantitative
analysis results in Tables 2 and 3 show that all the values in
Table 3 are slightly lower than those in Table 2. All the methods
can effectively enhance LQPET image quality. +e proposed
CycleAGAN achieves the best results in terms of the NRMSE
and SSIM values of each bed and the maximum PSNR value of
bed1. In this experiment, although CycleGAN achieves the
maximum PSNR values of bed2 and bed3, the image quality is
second only to that of CycleAGAN. According to the results in
Tables 2 and 3, the proposed method is less affected by the
accuracy of the scanner in a certain range and can achieve good
results. +erefore, the proposed image quality improvement
method CycleAGAN has great generalization ability.

5. Discussion

+e purpose of most existing image quality enhancement
algorithm [24, 27, 28, 43] is to reduce the radiation of a
radioactive tracer in the human body and ensure image

Table 2: Quantitative comparison on LQPET images from the
scanner with 320mm FOV.

Data Methods NRMSE PSNR (dB) SSIM

bed1

LQPET 0.248± 0.20 31.595± 4.67 0.915± 0.08
CycleAGAN 0.219± 0.09 34.003± 2.11 0.950± 0.03
CycleGAN 0.340± 0.19 31.263± 3.70 0.900± 0.07
Pix2Pix 0.292± 0.16 33.171± 4.49 0.931± 0.05
NLM 0.303± 0.24 34.309± 3.85 0.883± 0.06
BM3D 0.244± 0.13 34.525± 3.67 0.883± 0.06

bed2

LQPET 0.258± 0.14 30.293± 5.28 0.910± 0.05
CycleAGAN 0.222± 0.06 30.228± 2.79 0.927± 0.02
CycleGAN 0.241± 0.09 31.284± 5.05 0.921± 0.03
Pix2Pix 0.241± 0.11 30.685± 3.63 0.918± 0.03
NLM 0.258± 0.14 31.454± 4.92 0.898± 0.03
BM3D 0.241± 0.10 31.972± 5.35 0.912± 0.05

bed3

LQPET 0.263± 0.14 34.973± 8.13 0.948± 0.05
CycleAGAN 0.257± 0.07 36.065± 6.87 0.958± 0.02
CycleGAN 0.271± 0.14 36.286± 6.91 0.952± 0.03
Pix2Pix 0.273± 0.12 35.526± 8.30 0.949± 0.04
NLM 0.276± 0.14 35.319± 5.24 0.937± 0.04
BM3D 0.300± 0.17 36.315± 7.27 0.934± 0.04

Best results and methods are highlighted.
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quality while reducing the dose. +e common problem of
these algorithms [24, 27, 28, 43] is that they ignore the
impact of hardware device on image quality [44], and they
cannot be integrated with conventional short-axis PET
scanner. In this paper, our method improves the image

quality collected by different FOVs and effectively improves
the structural consistency of the synthesized images with
HQPET. Another challenge of PET image generation is the
construction of texture details. Given that a large amount of
noises mix with texture features in low-quality images, the
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Figure 8: Image quality score given by two radiologists. (a–c)+e scores of bed1, bed2, and bed3, respectively. At the top of each bar are the
mean scores and standard deviations.
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method of Zhao and Zhou [27, 28] inevitably treats some
fine textures as noise despite resulting in good image quality;
nevertheless, these fine textures can provide useful clinical
information for the diagnosis, although they present a huge
challenge to PET image reconstruction. We have incorpo-
rated the attentionmechanism into the CycleGAN generator
network to generate HQPET images with low noise and clear
texture. In addition, owing to the insufficient amount of
data, current methods randomly divide image patches and
generate complete image outputs by overlapping patch
blocks. Although these methods expand the amount of data
and save computing resources, the global features of the
images cannot be collected, and the collected neighborhood
information is insufficient. +e sample size of the dataset
used in our work can well meet the number of samples
required for deep learning, and inputting the entire image
into the network during training can extract more global and
texture features.

Although the model proposed in this paper achieves
convincing results, some limitations remain. Our method
can improve the quality of LQPET collected with different
FOV, but it still cannot completely overcome the differences
between different scanners. Compared with other GAN and
CNN-based methods, CycleAGAN needs a longer training
time and more computing resources. Future work should
consider a more efficient network architecture. In addition,
data sets are greatly limited, and the pairing of HQPET and
LQPET in space is required. Although the same patient
undergoes two consecutive examinations, differences in
space and radiation attenuation are still found. Moreover,
although the brain, lungs, and abdomen are trained sepa-
rately and achieved considerable results, the discontinuity
between each bed is found, which may lead to some bad
results in practical application. Nevertheless, these proposed
problems provide directions for future work.

6. Conclusion and Future Work

In summary, a deep learning CycleAGAN method with the
attention mechanism and supervised loss was proposed to
improve the image quality of the short-axis PETscanner.+e
effectiveness of the model is verified using the data of 386
cases collected with a total-body PETscanner. +e proposed
method aims to (1) obtain a high-quality reconstruction
image with low noise and clear texture with the CycleAGAN
method, (2) use the attentionmechanism to shift the focus to
the representative features of space and channel in the re-
construction of fine texture information, (3) use paired data
corresponding to spatial position for training, add super-
vised loss, and reduce the influence of deformation on
generated images. +e experimental results show that the
method not only can improve the image quality of a PET
scanner with 320mm FOV but also achieves good results on
a scanner with 250mm FOV. Patients and radiologists can
benefit from the CAD system [45] integrated with the
CycleAGANmethod, which plays a significant role in image
diagnosis.

In future work, the proposed method may be applied to
scanners with different FOV and all parts of the body to

LQPET HQPET CycleAGAN CycleGAN Pix2Pix NLM BM3D

Figure 9: Simple images of LQPET (250mm), HQPET (1940mm), and estimated PET images from CycleAGAN, CycleGAN, Pix2Pix,
NLM, and BM3D methods. Row 1 presents brain PET images. Row 2 displays lung PET images. Row 3 shows abdomen PET images.

Table 3: Quantitative comparison of LQPET images from the
scanner with 250mm FOV.

Data Methods NRMSE PSNR (dB) SSIM

bed1

LQPET 0.257± 0.23 30.444± 4.22 0.886± 0.09
CycleAGAN 0.225± 0.12 31.975± 2.76 0.927± 0.04
CycleGAN 0.332± 0.21 28.726± 2.78 0.885± 0.05
Pix2Pix 0.349± 0.29 29.387± 2.82 0.892± 0.04
NLM 0.305± 0.29 31.063± 2.88 0.837± 0.06
BM3D 0.242± 0.13 31.160± 3.07 0.862± 0.04

bed2

LQPET 0.268± 0.20 29.602± 4.27 0.874± 0.05
CycleAGAN 0.205± 0.09 29.920± 2.87 0.919± 0.03
CycleGAN 0.218± 0.10 30.919± 3.09 0.908± 0.03
Pix2Pix 0.207± 0.08 30.119± 2.81 0.906± 0.03
NLM 0.273± 0.21 29.708± 4.11 0.861± 0.04
BM3D 0.211± 0.10 30.106± 4.36 0.875± 0.05

bed3

LQPET 0.278± 0.13 33.240± 5.40 0.899± 0.06
CycleAGAN 0.258± 0.10 33.892± 4.67 0.933± 0.03
CycleGAN 0.265± 0.10 34.365± 5.41 0.924± 0.03
Pix2Pix 0.276± 0.10 32.422± 6.19 0.920± 0.04
NLM 0.271± 0.14 33.872± 4.86 0.896± 0.04
BM3D 0.256± 0.11 34.154± 4.63 0.910± 0.03

Best results and methods are highlighted.
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prove the wide adaptability of this method. We will expand
the scope of its application by using it to improve the quality
of images obtained with other medical image scanners.
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