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ABSTRACT: Appetite for reactions involving PH3 has grown in the past few years. This in part is due to the ability to generate PH3
cleanly and safely via digestion of cheap metal phosphides with acids, thus avoiding pressurized cylinders and specialized equipment.
In this perspective we highlight current trends in forming new P−C/P−OC bonds with PH3 and discuss the challenges involved
with selectivity and product separation encumbering these reactions. We highlight the reactivity of PH3 with main group reagents,
building on the early pioneering work with transition metal complexes and PH3. Additionally, we highlight the recent renewal of
interest in alkali metal sources of H2P− which are proving to be useful synthons for chemistry across the periodic table. Such MPH2
sources are being used to generate the desired products in a more controlled fashion and are allowing access to unexplored
phosphorus-containing species.

1. INTRODUCTION
There is an acute need to undertake drastic changes in the way
we consume the Earth’s vital and finite resources, with much of
this linked to changes needed to policies and practices of
governments.1,2 However, this should also bring into strong
focus our need to undertake sustainable synthesis.3,4 With this
comes the need to develop new methods with which to
undertake novel bond transformations; use reagents that avoid
the generation of exogenous waste which requires protracted
purification procedures; move away from harmful solvents; use
feedstocks that are less activated (or come directly from the
source, e.g., in the Earth’s crust); and use metals that are
abundant (e.g., rock-forming metals) both in heterogeneous/
homogeneous catalysis and in devices/materials.5

Rather than providing prescriptive coverage of all reports on
transformations involving PH3, including the pioneering
research into stoichiometric reactions with PH3,

6 this
perspective serves to highlight trends in the applications of
PH3, the “routine” P−C bond forming reactions that are base-
mediated (i.e., reductive coupling) or involve the hydro-
functionalization of unsaturated bonds. This perspective will
also cover more unusual transformations that form P−C bonds
via other means, along with modern main group bond
transformations and reactions with metals (Scheme 1).
The latter portion of this perspective goes beyond PH3 and

showcases the chemistry of the H2P− anion. Recently, the use
of alkali metal phosphides as a source of H2P− has been
receiving renewed interest. We will highlight some of the
remarkable implementations of such salts, both in organic
transformations and as promising reagents in the preparation
of notable main group, transition metal, and f-block metal
species.
We would be remiss not to briefly mention the numerous

reports, during a prolific period of PH3 research that took place
between the late 1960s through to the early 1990s, on the
reaction between PH3 and transition metal (TM) com-

plexes.7−15 Formation of TM complexes bearing the [TM]−
PH3 motif as well as formal oxidative addition/hydride
abstraction to form [TM]−PH2 and [TM]−(μ-PH2) motifs
have been identified, with analysis ranging from multinuclear
NMR and IR data only, through to those also reporting single
crystal X-ray diffraction data. For example, Jones and co-
workers reported the formation and isolation of a remarkably
air-stable trans-[RuCl2(PH3)4] complex.

16 However, further
study into reactivity with these complexes has rarely been
explored17 and will therefore not be the focus of this
perspective. However, this highlights the many seemingly

Published: September 7, 2022

Scheme 1. An Overview of the Key Discussion Points
Presented in This Perspective
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simple areas of PH3 research that are yet to be fully
investigated.

2. AN IMPORTANT NOTE ON SAFETY
It would be irresponsible not to emphasize the dangers
associated with handling PH3. PH3 is a highly toxic gas that is
spontaneously flammable in air. The American Conference of
Governmental Industrial Hygienists (ACGIH) places a time-
weighted average limit on exposure at 0.05 ppm (which is the
concentration of a substance to which most workers can be
exposed without adverse effects), with a short-term exposure
limit of 0.15 ppm (which means a 15 min time-weighted
average exposure should not be exceeded at any time during an
8 h workday).18 The National Institute for Occupational Safety
and Health (NIOSH) list 0.3 ppm as the time-weighted
average limit and 1 ppm as the short-term exposure limit (10 h,
15 min respectively). The US Environmental Protection
Agency lists that the 4 h LC50 for PH3 in rats is 11 ppm.

19

To put these numbers into context, the NIOSH time-weighted
average limit for CO is 35 ppm and the NIOSH short-term
exposure limit for HCN is 4.7 ppm,20 while the 1 h LC50 for
HCN in rats is 139−144 ppm.21,22 In short, handling of
pressurized cylinders of PH3 requires a robust risk assessment/
COSHH assessment and rigorous safety protocols, not least a
PH3 monitor to ensure the safety of not only the chemist
handling the substance but also other researchers in the lab.
The fume hood setup must include NaOCl scrubbers or a PH3
burner/H2O spray to quench unreacted PH3. Akin to our
responsibility to study and develop more sustainable
approaches to synthesis, safe use and quenching of this toxic
gas, avoiding exposure of researchers and the environment to
this species, is paramount.

3. REACTING PH3 TO FORM P−C/P−OC BONDS
PH3 is the next downstream output from elemental
phosphorus, which comes directly from industrial large-scale
processing of phosphate rock.23 Numerous reviews on
functionalization of P4 exist, but the tetra-nuclear nature of
this feedstock means that controlled, direct, or catalytic
functionalization of P4 into, for example, 4PR3 is not well-
documented.24,25 Instead, conversion of P4 into PH3 or PCl3
and onward reaction to form organophosphines is the more
traditional pathway. Onward reactions of PCl3 with organic
substrates to prepare P−C(sp3) bonds are well documented,
but wasteful in terms of atom economy.
P−C bond forming reactions with PH3 range from

stoichiometric-in-base-mediated reactions with alkyl halides
through to hydrophosphination in the presence of a metal
catalyst, radical initiator, or a base. In many cases we invariably
access products of the form PR3, although there are examples
where HPR2 and H2PR are produced (vide inf ra). Even the
hydrophosphination literature has limitations: work on
catalytic hydrophosphination has routinely reported on the
formation of the tertiary phosphine product as the major
species, and only limited progress in diversifying the structure
of the products, or the reaction selectivity, has been made. The
reason that PR3 is formed preferentially can be linked to the
enhanced reactivity of the product compared to the starting
materials, i.e. PH3 < H2PR < HPR2, and accessing H2PR or
HPR2 tends to be achieved by limiting substrate stoichiometry
rather than any greater form of reaction control. Stoichio-
metric-in-base transformations are simple to undertake and are

well documented, but it could be argued that they serve to
demonstrate the limitations in the organic transformations
undertaken using PH3: the reaction of RCl + base + PH3 is
simply the inverse of the classical method of using RH + base
(or RCl + 2base) + PCl3.
PH3 is a reactive substrate, and the early work on the

formation of phosphonium salts from PH3 and formaldehyde
dates back to at least 1888,26 with applications from this
seminal study still very relevant today.27 Building upon work
from Stiles et al. using photochemical initiation,28 an early
report on catalytic functionalization of PH3 came from Rauhut
and co-workers29 where they disclosed the hydrophosphina-
tion of acrylonitrile using PH3 and aqueous KOH at room
temperature. The reaction is mild, but is somewhat lacking in
control, producing mixtures of primary, secondary, and tertiary
cyanoethyl phosphines. Excess acrylonitrile allowed the
formation of the tris-substituted product in 80% yield, and
the secondary product could be formed in 58−63% when an
excess of PH3 is employed, while the primary cyanoethyl
species is formed in 52% yield, but an autoclave operating at
high pressure of PH3 is needed (28−32 atm). The mono- and
bis-substituted products were further employed in radical-
mediated hydrophosphination reactions.30 Rauhut and co-
workers also employed azobis(isobutyronitrile) (AIBN) as a
radical initiator to hydrophosphinate with a range of alkenes in
the presence of PH3.

30 Interestingly, although the ratio of
primary/secondary/tertiary organophosphine product is often
in the region of 1:1:1, reactions with unactivated systems such
as 1-octene, 1-dodecene, cyclohexene, isobutylene, and butyl
vinyl ether are reported (Scheme 2). In fact, 1-octene (1 mol),

PH3 (0.33 mol), and AIBN (5 mol %) is an exothermic
reaction that generated a reaction temperature of 80−100 °C
and produced 83% tris(octyl)phosphine cleanly after 6 h; this
reaction is furthermore impressive as transformation of
unactivated reagents has largely eluded modern hydro-
phosphination catalysis.31

Similar to the earlier work of Rauhut and co-workers,
Trofimov and co-workers have recently reported base-
mediated hydrophosphination of 2 equiv. of styrene (or 4-
tBu-styrene) with PH3. The authors have published two
possible onward transformations. The first is oxidation, to
generate the anti-Markovnikov secondary phosphine oxide
product, which is then used as a nucleophile to react with an
aldehyde and finally, in the presence of FeCl3, hydroxide
abstraction to generate a carbocation in an SN1-type process.
This then allows cyclization to form a phosphinoline oxide
product (Scheme 3a).32 The second possible onward trans-
formation is P−O or P−N bond formation at the para-position
of azobenzenes, using a simple base to carry out the coupling

Scheme 2. Rauhut and Co-workers’ Early Study into Radical
Mediated Hydrophosphination of Activated and
Unactivated Alkenes
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reaction (Scheme 3b).33 The UV/vis-mediated isomerization
of the azo functionality was then investigated. Ragogna
employed AIBN to prepare tertiary fluorinated alkyl
phosphines which can then be transformed into phosphonium
salts to attenuate the properties of UV-curable resins.34

Ragogna has also employed the early methods to prepare
phosphinated lignin, which is effective as a metal scavenger.35

A hydrophosphination that, unsurprisingly, does not need
any activating agents or a catalyst is the reaction of PH3 with
the highly activated imine 1,1,1,3,3,3-hexafluoropropan-2-
imine, generating 4.75 g (96% yield) of the geminal substituted
NH2,PH2 product from a large-scale synthesis.36

In contrast, many hydrophosphination reactions involving
PH3 have employed transition metal catalysts; Pringle
undertook the seminal work in this field and used platinum
chloride salts, as well as tetrakis(phosphino) Pt, Pd, and Ni
complexes for the reaction of formaldehyde with PH3.

37−39

Pringle also reported the use of [Pt(norbornene)3] as an
effective precatalyst for the reaction of PH3 with ethyl
acrylate.40 Finally, a series of tris(phosphino) Ni, Pd, Pt
catalysts as well as tris(phosphino) iridium chloride complexes
were reported as competent catalysts for the hydrophosphina-
tion of acrylonitrile.41,42 For all three unsaturated substrates
the tertiary PR3 product is formed as the sole product,
although a mixture of products is often observed in situ due to
the stepwise nature of the reactions. A generic catalytic cycle
involves coordination of PH3 with the unsaturated M(0)
center, oxidative addition (OA) to generate a mixed metal(II)
hydrido phosphide species, and then insertion of the
unsaturated bond into the M−H bond followed by a reductive
1,2-shift step to generate the M−PR3 product. An alternative
pathway for formaldehyde involves a nucleophilic attack on the
carbonyl moiety by M−PH2 forming a zwitterion, and then
hydride transfer generates the M−PR3 product (Scheme 4).
More recently Trifonov reported the use of 1,3-diisopropy-

limidazol-2-ylidene and 1,3-diisopropyl-4,5-dimethylimidazol-

2-ylidene as well as their complexes [(Me3Si)2N]2M(NHC)2]
(M = Ca, Yb, Sm) as precatalysts for hydrophosphination with
PH3. Remarkably, they report the generation of primary
phosphines based on the feedstock stoichiometry.43 A
particularly intriguing reaction from this publication is the
formation of tri(Z-styryl)phosphane; the acidic nature of both
the phenylacetylene and PH3 along with the selectivity for the
kinetic all-Z product is remarkable. Transformations of this
type warrant further investigation in terms of substrate scope
(and with this E/Z selectivity) and onward functionalization
with an eye toward applications.
Stoichiometric transformations are prevalent in the literature

and follow similar trends in terms of the products formed and
the makeup of the transformation. For example, Stelzer and
Sheldrick report a KOtBu route to prepare water-soluble
phosphindoles/phosphindole oxides from PH3.

44 Stelzer has
also reported on exploiting the inherent equilibrium between
PH3 + OH− ⇌ H2P− + H2O when aqueous DMSO/KOH
solution (or with the inclusion of phase transfer catalysts such
as (nBu)4NCl) is used, thus allowing generation of low
concentrations of the highly nucleophilic H2P− ion for the
selective reaction with organohalides forming (stoichiometry-
driven) primary or secondary alkyl phosphines, bis(alkyl)-
phosphines, and cyclic phosphines (Scheme 5a).45 Stelzer and
co-workers have also employed iodine to prepare structurally
exciting PH2−BINAP (1,1′-binaphthyl) and PH−BINAP
systems (Scheme 5b).46

Borangazieva and co-workers have reported an I2/pyridine
system for the formation of trialkyl phosphates from PH3 and
methanol/ethanol/butanol/amyl alcohol/octanol.47 This
methodology was further extended to the preparation of
primary aminoalkyl phosphines.48 A change to stoichiometric
CuCl2 in CCl4 gives selective formation of the dialkyl
phosphite (HP(O)(OiPr)2) when isopropanol is employed
(Scheme 6).49 Further study into the reaction, and inclusion of
quinone as a reductant, has also been reported.50

However, in general, secondary and primary species are
observed as side products in many reactions. Given the
challenges associated with purification of reactive phosphines,
particularly those that are the product of hydrophosphination
reactions (where the product is invariably an alkyl phosphine
and thus more prone to oxidation), selective synthesis of a
primary or secondary or tertiary phosphine is desirable.
Moreover, when we look at commercial organophosphines,
very few tertiary monophosphines are symmetrically sub-
stituted; there are key organophosphines such as PPh3, PCy3,
and PtBu3, but organophosphines routinely used in, for
example, cross-coupling reactions include SPhos (2-
dicyclohexylphosphino-2′,6′-dimethoxybiphenyl) and XPhos
(2-dicyclohexylphosphino-2′,4′,6′-triisopropylbiphenyl), and

Scheme 3. Trofimov Has Employed Methods Similar to
Those of Rauhut and Co-workers, But Has Extended This
To Prepare (a) Phosphacycles and (b) Functionalized Diazo
Compounds

Scheme 4. Pringle’s Postulated Mechanism for the
Hydrophosphination of Formaldehyde
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bis(phosphines) such as dppf (1,1′-ferrocenediyl-bis(diphenyl-
phosphine), XantPhos (4,5-bis(diphenylphosphino)-9,9-dime-
thylxanthene), and dppe (1,2-bis(diphenylphosphino)ethane)
to name but a few. Here we raise another issue of a pure atom-
economy-driven approach to PH3 functionalization: that being
that the preparation of P−Ar bonds is limited to work from
Dorfman and Levina, and more recently Wolf (vide inf ra).

4. PH3 REACTING WITH COMPOUNDS OF THE
p-BLOCK

In the 1990s, Cowley and Jones undertook investigations into
the reactivity of PH3 with an alkyl gallium compound with a
view to preparing precursors for OMCVD processes (organo-
metallic chemical vapor deposition). The authors present a

highly sensitive μ-PH2 cluster which undergoes slow
decomposition at 200 °C (Scheme 7).51

Further reports on reactions of PH3, which we may consider
being in the realm of main group bond transformations, are
those involving NHCs and their heavier group 14 congeners.
Grützmacher and Pringle reported the in situ generation of the
SIPr (1,3-bis(2,6-diisopropylphenyl)imidazolidine-2-ylidene)
NHC (1, Scheme 8) from the chloride salt, which forms the
PH2-imidazolidine product (2) from reaction with PH3 and
base (or the tert-butoxide adduct of NaPH2). This product can
then undergo hydrogen abstraction, driven by the aromatiza-
tion of ortho-quinone, which allows the formation of the formal
phosphinidine-carbene adduct (3).52 This latter species was
shown to undergo complexation with HgCl2.
Ragogna and Power have shown that PH3 can oxidatively

add to tetrylenes. The authors note a divergence in reactivity
when comparing the chemistry of NH3

53−56 and PH3; the

Scheme 5. Stelzer and Co-workers Have Prepared a Wealth
of Different Phosphorus Compounds (a) Using a Base and/
or Phase-Transfer Conditions and (b) Employing These
Methods To Prepare 1,1′-BINAP-Derivatives from PH3

Scheme 6. Borangazieva and Co-workers Have Showed That
Reagent Stoichiometry Can Be Used to Influence the
Product Distribution When Preparing P−OR Bonds

Scheme 7. Ga(tBu)3 Reacts with PH3 To Form Gallium
Phosphide Ring Structuresa

aThe POV-Ray image of the single crystal X-ray structure (CCDC
1197532) shows a distorted 6-membered ring, but this is completely
planar with no puckering. All H atoms removed for clarity.
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former gives the OA product with Ge and the arene
elimination dimeric product with the Sn congener (Scheme
9). However, when PH3 is employed a mixture of the OA and

arene elimination dimer is formed with both Ge and Sn (the
OA product is the major species in both cases).57 Similar to
the work of Ragogna and Power, where there is a discrepancy
between the reactivity of the lighter and heavier pnictogens,
Driess has demonstrated a difference in reactivity of PH3
compared to AsH3 when undertaking OA to silylene
compounds.58 PH3 generates the OA product, whereas with
AsH3, although OA takes place, there is an equilibrium
between the arsenide product and the isomerized arsinidine
species, making use of the ligand system to invoke this process.
Mitzel has employed both hydride sponge (4) and proton

sponge (5, Scheme 10) as a frustrated Lewis pair (FLP) system
to activate a range of small molecules, including PH3.

59 5
undertakes proton abstraction while 4 forms the phosphide
adduct, and the authors note that QTAIM (quantum theory of
atoms in molecules) analysis indicated that the B−P bond
interaction is the most covalent B−E bond interaction when
compared to the N, As, O, S, and Se analogues in the study.
Interestingly, when the hydride sponge is modified, although
PH3 undergoes the same activation event, AsH3 undergoes a
further transformation with the MeCN solvent. If we consider
the wealth of transformations that can be undertaken both
stoichiometrically and catalytically using FLPs,60−63 in
particular reactions that use H2 that has been activated,

64,65

this hints that this could be a rich vein of research. Indeed,
modification of the FLP structure could enable enantioselec-
tive transfer of the H2P− and H+ fragments to an organic
substrate.

5. FUTURE TARGETS
At this stage it is useful to consider several aspects as we look
toward future synthetic development targets with PH3 or
MPH2. In an atom-economic, chemoselective manner, with
wide-ranging functional group tolerance, key targets should
include the following:
1. Controlled synthesis of primary or secondary or tertiary
organophosphines. Reactions need to avoid the for-
mation of mixtures that require complicated cleanup
procedures or additional reduction steps to access the
P(III) species from the P(V) phosphine oxide;

2. The synthesis of unsymmetrically substituted phos-
phines from PH3 or MPH2 and ultimately C- or P-
stereogenic phosphines;

3. The preparation of P−Ar phosphines from PH3 or
MPH2, e.g. PAr3 through to P*Ar1Ar2Ar3 selectively;

4. Unique methods not only to activate PH3 but also
undertake onward functionalization, e.g. chemistry
beyond hydrofunctionalization.

However, to make such advances PH3 and MPH2 needs to
become more accessible to a wider range of researchers.
Indeed, we envisage that many advances will be possible simply
through PH3 (or analogues of PH3) being used more widely in
research.

6. ALTERNATIVE SOURCES OF PH3

The industrial standard for the production of PH3 is the base-
mediated disproportionation of white phosphorus, in the so-
called Hoesch process.66 P4 is treated with sodium or
potassium hydroxide at slightly elevated temperatures (50
°C). With very careful conditions the gas can be collected in
∼95% purity, though this procedure is not particularly practical
for a research laboratory. The lab-scale synthesis of PH3 has
been achieved in a number of ways: by the treatment of PCl3
with Na metal (followed by hydrolysis),67 the high-temper-
ature treatment of black phosphorus in liquid hydrogen,68 and
the pyrolysis of either hypophosphorous acid, phosphorous
acid, or a salt of one of these acids.69 In 1967, the pyrolysis of
phosphorous acid was described as the “most convenient”
method for the generation of PH3;

69 however, in a modern

Scheme 8. Grützmacher’s Reported Oxidative Addition of
PH3 by an NHC Which Can Then Form the Phosphinidene,
3, Driven by the Aromatization of 1,2-Benzoquinone

Scheme 9. Ragogna and Power Have Demonstrated the
Divergent Reactivity of NH3 and PH3 That Is Observed in
the Presence of Group 14 Tetrylenes

Scheme 10. (a) Proton and Hydride Sponge Have Been
Used To Activate PH3 and AsH3; (b) with 1,2-
Bis(dimethylboranyl)benzene, the Reactivity of PH3 Is
Unchanged (Not Shown), but AsH3 Reacts with
Concomitant MeCN Functionalization

Journal of the American Chemical Society pubs.acs.org/JACS Perspective

https://doi.org/10.1021/jacs.2c07688
J. Am. Chem. Soc. 2022, 144, 16684−16697

16688

https://pubs.acs.org/doi/10.1021/jacs.2c07688?fig=sch8&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.2c07688?fig=sch8&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.2c07688?fig=sch9&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.2c07688?fig=sch9&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.2c07688?fig=sch10&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.2c07688?fig=sch10&ref=pdf
pubs.acs.org/JACS?ref=pdf
https://doi.org/10.1021/jacs.2c07688?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


research laboratory the idea of isolating PH3 as a liquid by
consecutive condensation and distillation is perhaps a barrier
to implementation for many researchers. Additionally,
Trofimov reported the generation of PH3 from red phosphorus
by treatment with aqueous KOH at 65−75 °C; however, this
reaction is concomitant with the generation of dihydrogen and
as such is limited to reactants that are inert toward dihydrogen
and moisture.70,71

6.1. Metal Phosphides for PH3 Release. Handling
pressurized gases, irrespective of toxicity, requires a level of
rigor that is not necessarily required when handling solids.
Recent reports on the use of metal phosphides, e.g. Zn3P2, AlP,
and Mg3P2, for the in situ release of PH3 by digestion using an
acid, e.g. HCl, provide a route to PH3 research that was
previously inaccessible to many. However, PH3 is still released
from the metal phosphide; indeed these phosphides are
routinely used as pesticides because of their ability to release
PH3 on ingestion, which is fatal. Therefore, although easy to
obtain, inexpensive (approximately $74 per kg72), and easy to
handle, the same level of care and safety assessment should be
taken when handling these simple salts as handling PH3 gas
cylinders.
One of the earliest reports on the in situ generation of PH3

from a metal phosphide (Zn3P2) for the preparation of high-
value P−C bonds was reported by Dorfman and Levina in
1992.73 The authors employ stoichiometric CuCl2 or Cu-
(OAc)2, which, in the presence of pyridine in the coordination
sphere, is proposed to acidify the P−H bond in PH3, forming a
putative Cu-phosphide intermediate along with HCl/HOAc. It
is postulated that the resonance structure of pyridine is such
that it renders the ortho- and para- positions δ+, and this,
coupled with the proximity of the ortho-position to the copper
center, renders this position prone to attack by H2P−,
generating the tris(pyridin-2-yl)phosphane product selectively
(Scheme 11).

PH3 generated by decomposition of Zn3P2 has been detailed
more recently by Ball74 and Wolf.75 Ball has elegantly
demonstrated the application of in situ generated PH3 for the
synthesis of tert-alkyl phosphonium triflates, where the
byproduct of the reaction is TMSOAc. Due to the high levels
of substitution these products cannot be formed using a
hydrophosphination route, while the conventional route to
secondary alkyl phosphines, R2PH, would employ PCl3 and
organomagnesium or organolithium reagent, followed by
reduction of the remaining P−Cl bond with a hydride reagent.
Ball has shown that these phosphonium salts can then be
converted into the secondary phosphine chloride on reaction
with 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) and CCl4,

transformed into their BH3 protected phosphine congener
(using DBU/BH3·SMe2), benzylated (BnBr then protected
using BH3·SMe2) or oxidized to the phosphine oxide (using
K2CO3 then H2O2), Scheme 12.

Using a similar reaction setup to Ball, where Zn3P2 is
digested using HCl in an H-tube and the in situ generated PH3
can then react with substrate in the second chamber, Wolf
employed iridium photocatalyst (6) NEt3, PhI, and blue LEDs
to prepare Ph4P+I− in a 35% yield after 48 h (Scheme 13).

However, use of NaPH2 as an alternative to PH3 was more
successful, generating the product in 77% yield after 24 h.
Extending the substrate scope beyond PhI, but continuing to
use NaPH2, the authors show selective triarylation using
sterically encumbered 2-methyliodobenzene (63% Ar3P with
no other arylation products observed) and 2-methoxyiodo-
benzene (42% Ar4P+ observed only). While 4-methyliodo-
benzene gives 64% Ar4P+/<5% Ar3P, 3-methyliodobenzene
gives 61%/6% as Ar4P+/Ar3P and 3-methoxyiodobenzene gives
53%/<5% as Ar4P+/Ar3P. The remaining ArI substrates give
less attractive ratios of Ar4P+/Ar3P and/or conversions below
50%. A change to an organophotocatalyst (7) can lead to
modest adjustments in the ratio/conversion to product(s). The
reaction mechanism is postulated to proceed via sequential

Scheme 11. Dorfman Provides a Rare Example of P−Arene
Bond Formation Using PH3

Scheme 12. Ball Has Demonstrated That in Situ Formation
of PH3 from Zn3P2 Can Be Used to Excellent Effect,
Furnishing Otherwise Challenging To Access tert-Alkyl
Phosphines via the Phosphonium Salt

Scheme 13. Photocatalysis Has Been Used by Wolf and Co-
workers To Prepare Arylphosphines from PH3
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arylation steps, where a photogenerated Ar• reacts with [P]•.
Reaction profiling shows a rapid buildup of Ph2PH as a major
species, along with PhPH2, which after 5 h are depleted as the
onward reaction of these intermediates takes place, with Ar4P+
eventually being the dominant product. The reaction requires
2 mol % 6, 11 equiv of ArI, and 15 equiv of NEt3 (or 10 mol %
7, 13 equiv of ArI, 16 equiv of NEt3); clearly elegant but,
excitingly, with room for modification and diversification.

6.2. In Situ PH3 Generation from P(OR)3. Liptrot and co-
workers recently presented a Cu-catalyzed route to generate
PH3 in 30 min from P(OPh)3, using HBpin as a reducing
agent. PH3 was generated in 89% conversion on a 0.1 mmol
scale. The in situ generated PH3 was then directly implemented
in the quantitative catalytic hydrophosphination of phenyl
isocyanate in a two-pot procedure.76

7. THE PH2 ANION
7.1. Reactions of MPH2 with p-Block Compounds.

Alkali metal sources of H2P−, e.g. LiPH2, NaPH2, KPH2, have
been largely ignored in the literature until very recently, but
given that they are prepared from PH3 and clearly have the
potential to act as an alternative source of PH3 (c.f., Wolf), they
are an intriguing reagent that deserves further investigation.
Their limited use until now may be linked to the routes of
synthesis and the instability of these MPH2 species. Joannis
reported the first synthesis of Na and K dihydrogenphosphide
in 1894;77,78 these compounds were further studied alongside
the synthesis of LiPH2.

79−84 Later still, the rubidium85 and
cesium analogues were reported and the series of alkali metal
dihydrogenphosphides were further characterized.86 These
species were prepared by condensing PH3 in NH3(l) and
reacting with the metal or metal amide. Handling the Li and
Na adduct is not trivial; LiPH2 decomposes at room
temperature while NaPH2 is noted to decompose above 393
K. The KPH2 and RbPH2 species are noted to decompose
above 476 K, making them a robust reagent, and it is thus
surprising that KPH2 has not been used more widely in the
literature. The poor solubility of KPH2 can be improved by the
addition of 18-crown-6 (catalytic quantities can be used) and/
or the preparation of phthalimide anion adducts.87 It is worth
noting that other routes to H2P− anion adducts (e.g., phthalate,
alkoxide complexes) are known.88,89 Several rudimentary
transformations of MPH2 have been reported, where the
products are often species that we could envisage as being
useful building blocks ready for further reaction or
functionalization. For example, Ha ̈nssgen reported the
preparation of the planar 4-membered heterocycle
[(tBu2SnPH)2] from tBu2SnCl2 and NaPH2 (Scheme 14a).

90

Driess has used a dehydrocoupling-type reaction to prepare a
dihydrophosphido-aluminium compound [(iBu2AlPH2)3]
which also operates as an effective H2P− transfer agent,
forming tris(phosphane) or tetrakis(phosphaneyl)silane/ger-
mane products from the trichlorosilane or tetrachlorosilane/
germane precursor (Scheme 14b).91 Scheer has undertaken
salt metathesis reactions of NaPH2 with IPrGaHCl2 (8) and
the Al analogue (8′) to generate the corresponding bis-
(dihydrophosphide) complexes (9/9′, Scheme 14c).92 Hassler
undertook a study into hypersilyl substituted phosphanes and,
as part of this investigation, employed PH3 or NaPH2 to
prepare tris(trimethylsilyl)silyldihydrophosphide (10). This
species can undergo deprotonation with KOtBu, forming
(Me3Si)3SiPHK (11), which is remarkably stable at room
temperature, and can undergo reductive coupling to generate a

Scheme 14. Various Main Group Bond Transformations
Have Been Undertaken Using Metal Dihydrophosphides
Including (a) the Formation of Sn−P Bonds; (b) Sn−PH2
and Ge−PH2 Compounds; (c) Al− and Ga−NHC
Complexes Functionalized with PH2;

a (d) the Formation of
Hypersilyl Substituted Phosphanes, Which Can Undergo
Reductive Coupling, Forming 12

aThe Ga complex is depicted as the POV-Ray image (CCDC
2035403), with all H atoms, except the Ga−H fragment, removed for
clarity.
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mixture of the meso- and rac-isomers (12, Scheme 14d). This
reductive coupling step involves reaction with tBu2Hg or 1,2-
dibromoethane; the latter indicates that the phosphide is not
particularly nucleophilic in that a P−C bond is not formed
between (Me3Si)3SiPHK and Br2(CH2)2.

93 Again, this latter
point is intriguing and could be further investigated.
In 1982 Issleib reported on the use of KPH2 to form [3.3.1]-

bicycle 14 by reaction with diallyl(chloromethyl)(methyl)-
silane (13) (Scheme 15a), and this type of protocol has since

been used to access other phosphabicycles.94,95 A similar
approach was taken to prepare a mixture of the cis- and trans-
[4.4.0]-bicycle (15, Scheme 15b). These compounds were also
complexed to Ni(CO)4, and the resulting LcisNi(CO)3 and
LtransNi(CO)3 have similar Tolman Electronic Parameters
(2063 and 2062 cm−1 respectively), which are very close to the
σ-donor-only properties of PMe3 (2064 cm−1).96 Both reports
indicate that interesting, unique phosphorus architectures can
be prepared in a controlled way using PH3 derivatives.
Baulder employed KPH2 in the degradation of red

phosphorus to access the P5 anion, pentaphosphacyclopenta-
dienide (the all-P analogue of the cyclopentadienyl anion) (16,
Scheme 16a). With purification only requiring filtration and
removal of PH3 gas, this offers an attractive alternative to the
fractional crystallization previously reported for the synthesis
from P4.

97 Further to this example, use of NaPH2 (or Lewis
base adduct analogues) is mostly limited to main group bond
transformations. For example, Grützmacher reacted
[Na5(OtBu)4PH2] with 1,2-bis(chloro(phenyl)methylene)-
hydrazine to prepare a 1,2,4-diazaphospholide (17, Scheme
16b);89 the group also prepared the heavy isocyanate
Na(OCP), sodium phosphaethynolate, from reaction of
NaPH2 with CO (Scheme 16c).98 The onward reactivity of
Na(OCP) (and Lewis base/solvent adducts) has been studied
by Grüztmacher in terms of probing nucleophility in the
presence of group 14 compounds,99 while Stephan has
employed Gütztmacher’s germanium compound, Ph3GePCO,
to prepare the phosphorus-containing analogue of N,N-
dimethylformamide (18), which can undergo coordination
chemistry with ruthenium forming 19 (Scheme 16d).100

7.2. Reactions of MPH2 with Carbonyl-Containing
Compounds. An early report on potential applications in
organic synthesis was provided by Liotta.101 Reaction of aryl or
alkyl benzoates with KPH2 in the presence of a catalytic
amount of 18-crown-6 (10 mol %) generates potassium
benzoyl phosphide (20, Scheme 17). This can undergo
protonation with acid (trifluoroacetic acid, TFA) or methyl-
ation with MeI, but in both cases the products are unstable and
decompose to generate dibenzoylphosphines (21). As we
might expect, based simply on atomic size, the authors note no

Scheme 15. Issleib Has Used KPH2 To Install C−PH2
Bonds, Which Can Then Undergo Hydrophosphination To
Generate Highly Unusual Bicycles

Scheme 16. (a) An Improved Synthesis of
Pentaphosphacyclopentadienide Was Achieved Using KPH2
in the Presence of Red Phosphorus; (b) Grützmacher and
Co-workers Use Na5(OtBu)4PH2 as a H2P− Source to
Prepare Elaborate Heterocycles; (c) Grützmacher’s Seminal
Report on the Preparation of the Dme Adduct of NaOCP,
Which Has Been Used to Great Effect in Main Group
Synthesis (vide infra); (d) Stephan and Co-workers Prepare
the Heavy Element Analogue of DMF and Demonstrate
Elegant Coordination Chemistry of This Species

Scheme 17. One of the Earliest Examples of Reactions of
Carbonyl Compounds with KPH2 Was Presented by Liotta
and Co-workers
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partial double character due to P atom lone pair/carbonyl π-
orbital overlap (as we normally see with amides); if
decomposition pathways can be controlled it may be possible
to develop useful chemistry that diverges from that of amides.
Goicoechea has reported the synthesis of Na(OCP) from

the reaction of NaPH2 with isocyanate Dipp-NCO (though
notably the syntheses of Na(OCP) have been reported from
NaPH2 directly and PH3 as a feedstock).

102 Na(OCP) goes on
to react with isocyanates, generating structurally interesting
main group compounds such as 22 (Scheme 18a).103

Interestingly, use of the potassium analogue, [K(18-crown-
6)(OCP)], gives a different product distribution compared to
that obtained using Na(OCP) (Scheme 18b), while the
products obtained using Na(OCP) vary based on the
substituents on the isocyanate (compare Scheme 18a and
18b, bottom),104 hinting at the diversity of synthesis that could
be achieved if these reagents were more widely studied.
Analogous to the work of Liotta on esters,101 reaction of

NaPH2 with CO2 gives a phosphine carboxylate, which can
then undergo onward reaction with silyl chlorides to form
phosphine carboxylate silylesters (Scheme 19).105 Goicoechea

has also shown that NaPH2 can react with dimethyl
cyanocarbonimidate in one step to form the heteroallene
anion species 23, or in a stepwise fashion via the
(carboximidate)phosphide 24 (Scheme 20). 24 can undergo
reaction with Ph3GeCl to form a dimeric species product.106

Many of the reactions discussed thus far are rooted in
fundamental research, and therefore for many of the reactions
that could be termed transformations of main group species, it
may be difficult to envisage the relevance of these compounds
to the organophosphorus, organic chemistry or applied

chemistry communities. While these main group compounds
are often challenging to prepare and handle, organic trans-
formations of carboxylic acids and allenes are well-known: we
have yet to discover if the aforementioned phosphorus-
containing species undergo the same transformations, e.g.
allenes undergoing a rich array of addition and cyclization
reactions.107

Gudat prepared a series of diazaboroles, including the PH2
species (26) from KPH2 and the bromodiazaborole precursor
(25, Scheme 21a). The computational component of this study
notes the covalent nature of the P−B σ-bond, along with the
potential for these main group compounds to act as P-donor
ligands.108 This ligand system has been incorporated into a
scandium β-diketiminate complex,109 which can act as a
phosphinidene transfer agent (Scheme 21b) similar to those

Scheme 18. Reagent and Substrate-Dependent Activity Is
Observed When Reacting Na(OCP) or [K(18-crown-
6)](OCP) with Different Isocyanates

Scheme 19. Goicoechea and Co-workers Prepare Silylesters
from NaPH2 and CO

Scheme 20. Goicoechea and Co-workers Demonstrate a
Versatile Range of Main Group Transformations Using
NaPH2

a

a[Na(18-crown-6)]+ omitted for clarity.

Scheme 21. (a) Gudat and Co-workers Prepared and
Studied the Electronic Properties of Phosphino-
Diazaboroles, While (b) Chen, Maron and Co-workers
Employed the System in Coordination Chemistrya

aDibenzo-18-crown-6 abbreviated for clarity (dibenzo-18-c-6). The
Sc complex is depicted as the POV-Ray image (CCDC 2048477),
with all iso-propyl groups and H atoms removed for clarity.
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already reported using a bulky 2,4,6-tBu-phenyl phosphinidene
Zr110 or Th111 complex, which operate in a stoichiometric
fashion (akin to that possible with Tebbe’s reagent112).

7.3. Reactions of MPH2 with Compounds of the d-
and f-Block. Using a triamidoamine ligand, but one that is
less bulky than that used to activate N2,

113 Schrock was able to
demonstrate the reactivity of a homologous series of Mo and
W amido, phosphide, and arsenido complexes, employing
LiPH2 or LiEPhH (E = P, As) or trimethylsilylazide (TMSN3)
to install the M�E bond (Scheme 22a).114 Their onward

reaction with MeOTf to form the imido, phosphinidene, and
arsinidene complexes (27) was studied, and the authors note
that the Mo-phosphinidine complex decomposes in solution at
room temperature whereas the W analogue does not. Similarly,
the Mo arsinidine triflate was very unstable and could not
undergo elemental analysis. The amido complex undergoes
reduction in the presence of LiC8H8 to generate the Mo(V)
product (28, Scheme 22b). This chemistry is important,
because of not only the analogies we can draw between
phosphorus and carbon but also the wealth of chemistry
undertaken on the activation and functionalization of metal
nitrido complexes, in particular their conversion to
amines.115−118

If we consider the importance of metal−carbon double
bonds in catalysis, e.g. in catalytic metathesis reactions, and the
allegory between P and C, then it is vital that fundamental
studies into bonding and reactivity of metal−P multiply
bonded species are undertaken. In this regard, NaPH2 has been
used by Liddle to generate uranium and thorium phosphanide
(29/31) and phosphinidene (30/32) complexes (Scheme 23a

and 23b).119,120 Liddle also presented a follow-up paper on the
analogous Zr complex (33), which reacts in a similar way to
the uranium and thorium analogues (forming the respective
phosphanide and phosphinidene compounds, 34 and 35,
Scheme 23c).121 We can draw links to possible onward organic

Scheme 22. Schrock and Co-workers Have Undertaken a
Systematic Study on the Coordination Chemistry of
Molybdenum and Tungsten Amides, Phosphides, and
Arsenides

Scheme 23. (a, b) Liddle’s Studies on the Phosphanide and
Phosphinidene Chemistry of the Actinides;a (c) Studies on
the Analogous Zr Complex

aNa(12c4)2 cations omitted for clarity, and 12-crown-4 (12c4) and
benzo-15-crown-5 abbreviated for clarity (b15c5).
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transformations by looking at the insertion chemistry reported
by Stephan,110 Walter,111 and Walensky, where benzophenone
was shown to insert into the Th−P bond of a bulkier mesityl
analogue,122 and from the work of Mindiola on Ti-
phosphinidene complexes and their hydrophosphination
reactivity, although these species do require kinetic stabiliza-
tion by use of a bulky organophosphine reagent.123

Driess has further elaborated the silylene chemistry of PH3
58

by taking a nickel-silylene species and demonstrating the
coordination chemistry of PH2 (derived from Li(dme)PH2 or
Li(tmeda)PH2), generating 36 (Scheme 24) and subsequent
isomerization chemistry of the η2-species to generate 37/38.124

Finally, Scheer has also employed NaPH2 to generate a Mo
dimer with a mixed P/As bridge (39, Scheme 25).125 A
fundamental study, but one where we can envisage links to
higher order main group polymer chains126 with unique
properties.

8. CONCLUSIONS AND OUTLOOK
The utilization of PH3 in synthesis is undoubtedly an untapped
well, and this is understandable owing to the significant
challenges in manipulating pressurized cylinders of such a
hazardous gas. However, the recent reports of in situ PH3
generation offer a much safer alternative to its traditional
manipulation. These new operationally simple methods have
the potential to revolutionize phosphorus research (which is
itself prevalent across a wide range of disciplines). More readily
accessible PH3 sources will also provide easier access to MPH2
species (where M is an alkali metal), which are already
experiencing a renaissance and are proving vital to access novel
phosphorus-containing species (vide supra).

Considerable efforts have gone into the functionalization of
P4 and PCl3, and adding PH3 to the list of readily accessible
phosphorus starting materials will grant access to a rich vein of
research. The prospect of catalytically activating PH3 to access
useful phosphorus reagents is exciting, and with reports of
M�PH and M−PH2 species, this endeavor feels more
attainable than ever. The question remains: how to take
M�PH, M−PH2 and undertake transformations of these
species that go beyond hydrophosphination chemistry reported
in the 1980s and 1990s?
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(81) Albers, H.; Schuler, W. Über die Darstellung von Mono-
natriumphosphid und Mononatriumarsid mit Hilfe alkaliorganischer
Verbindungen. Ber. Dtsch. Chem. Ges. 1943, 76, 23−26.
(82) Evers, E. C.; Street, E. H.; Jung, S. L. The Alkali Metal
Phosphides. II. Certain Chemical Properties of Tetrasodium
Diphosphide. J. Am. Chem. Soc. 1951, 73, 5088−5091.
(83) Knoll, F.; Bergerhoff, G. Kaliumdihydrogenphosphid, Eigen-
schaften und Reaktions-verhalten gegenüber Sauerstoff und Phosphor.
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