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Abstract

Purpose One key aim of Phase I cancer studies is to

identify the dose of a treatment to be further evaluated in

Phase II. We describe, in non-statistical language, three

classes of dose-escalation trial design and compare their

properties.

Methods We review three classes of dose-escalation

design suitable for Phase I cancer trials: algorithmic

approaches (including the popular 3 ? 3 design), Bayesian

model-based designs and Bayesian curve-free methods. We

describe an example from each class and summarize the

advantages and disadvantages of the design classes.

Results The main benefit of algorithmic approaches is the

simplicity with which they may be communicated: it may

be for this reason alone that they are still employed in the

vast majority of Phase I trials. Model-based and curve-free

Bayesian approaches are preferable to algorithmic methods

due to their superior ability to identify the dose with the

desired toxicity rate and their allocation of a greater pro-

portion of patients to doses at, or close to, that dose.

Conclusions For statistical and practical reasons, algo-

rithmic methods cannot be recommended. The choice

between a Bayesian model-based or curve-free approach

depends on the previous information available about the

compound under investigation. If this provides assurance

about a particular model form, the model-based approach

would be appropriate; if not, the curve-free method would

be preferable.

Keywords 3 ? 3 design � Bayesian method � Clinical

trial, Phase I � Continual reassessment method � CRM �
Curve free

Introduction

Ethical considerations [1] require the use of efficient trial

designs in order to optimize the balance of risk versus

benefit for participants. In Phase I cancer studies, this would

include minimizing the numbers of patients allocated to

ineffective or excessively toxic doses, while addressing the

principal aim of identifying the best dose of a treatment to

recommend for further evaluation in a Phase II trial. In this

article, we focus on the identification of the maximum

tolerated dose (MTD), which remains a key factor in this

decision. In practice, additional aspects such as the bio-

logical level of anti-cancer activity of a dose would also be

considered. The 3 ? 3 trial design [2, 3], which has been

widely implemented, has substantial limitations: we

describe two alternative classes of dose-escalation strategy,

Thomas Jaki, Sally Clive, Christopher J. Weir made equal

contributions to the development of this manuscript.

The views expressed in this publication are those of the authors and

not necessarily those of the UK National Health Service, the UK

National Institute for Health Research or the UK Department of

Health.

T. Jaki

Medical and Pharmaceutical Statistics Research Unit,

Lancaster University, Lancaster, UK

S. Clive

Edinburgh Cancer Centre, Western General Hospital,

Edinburgh, UK

C. J. Weir (&)

Medical Research Council Hub for Trials Methodology

Research, Centre for Population Health Sciences,

University of Edinburgh Medical School, Teviot Place,

Edinburgh EH8 9AG, UK

e-mail: Christopher.Weir@ed.ac.uk

123

Cancer Chemother Pharmacol (2013) 71:1107–1114

DOI 10.1007/s00280-012-2059-8



using specific examples [4–6] drawn from the many designs

available to illustrate their superiority to the 3 ? 3 design

on several relevant study design criteria.

Phase I studies play an extremely important role in the

development of a cancer treatment as the agent is often

given to humans for the first time. As a result, conservative

approaches that tend to start at doses much lower than the

anticipated highest safe dose and slowly approach the dose

of interest from below are usually employed. The popula-

tion studied is not necessarily the population to be treated

and the questions are many despite the subjects being few.

Consequently much uncertainty about dose, safety and

efficacy will remain afterward. These studies are, however,

critical to successful drug development as the decision on

whether to continue and the design of any subsequent trials

depend on the outcome of this first study.

Phase I dose-escalation studies in cancer traditionally

enroll late stage patients for whom other therapies have

failed. Due to the narrow therapeutic index of cytotoxic

drugs and the variable toxicities that may occur at the

therapeutic dose of newer targeted anti-cancer drugs, the

MTD has been considered a reasonable basis on which to

determine an appropriate dose for further clinical use.

Hence, in addition to investigating the pharmacokinetics,

toxicities and biological activity of a drug, Phase I cancer

studies aim to find the MTD, the highest dose that can safely

be administered. More precisely, one seeks the dose that has

an acceptable risk of dose-limiting toxicity (DLT). In this

context, a DLT is a serious adverse event that impairs usual

activities and requires therapeutic intervention [7–9]. Late

toxicities or lower graded, cumulative or additive toxicities

that do not individually meet the DLT criteria also contain

information on the safety and activity of a drug; however,

the designs used to date do not take account of such events

[10]. Advances in this area would clearly have potential to

enhance decision making at the end of Phase I.

Commonly the dose at which the probability of a DLT is

p (for 0 \p\ 1) is called the TD100p. For example, the

TD25 would refer to the dose associated with a 25 %

toxicity risk. The rationale for seeking the TD100p is to

ensure a safe dose is identified for further study and is

based on the common assumption, specifically for cyto-

toxic compounds, that efficacy increases with toxicity. The

latter implies that finding the highest tolerable dose will

ensure that the most efficacious dose is investigated sub-

sequently. First, cycle toxicity is a critical and immediate

measure that can guide the decision on whether the dose

may be escalated safely, and the use of this rather than later

efficacy outcomes ensures minimal trial duration.

A key ingredient of any dose-escalation study is the set

of doses to be explored. Figure 1 illustrates four different

dose schedules for a given, hypothetical, dose–toxicity

relationship. Each graph depicts dose versus toxicity risk

and assumes an increasing relationship between them. The

arrows indicate the doses available and it is assumed that a

toxicity risk of 25 % is acceptable. Figure 1a has very low

risk of toxicity for the lower two doses while the upper two

doses have a toxicity risk close to 100 %. Such a dose

schedule therefore only allows the conclusion that the

TD25 lies somewhere between the middle two doses;

neither of the doses available is, however, close to the

desired toxicity risk. In Fig. 1b, all the doses lie above the

desired toxicity level. In this situation, not only does none

of the doses have an acceptable toxicity risk, but we cannot

even be sure that any dose of the compound is safe. Sim-

ilarly, if all doses were below the desired TD25, we would

not know if any dose corresponded to the TD25 and hence

whether a biologically active dose had been attained.

Figure 1c shows the advantage of allowing many differ-

ent doses. It is clear that such a dose schedule allows much

more accurate TD25 estimation as the interval between doses

is much smaller. While adding doses to allow for more

accurate estimation is appealing, doing so requires a differ-

ent dose-escalation strategy to the commonly employed

methods in order to limit the sample size and avoid many

patients receiving doses well below those expected to have

either toxicity or efficacy. Figure 1d represents an ideal sit-

uation where many doses are available, but excessively toxic

or ineffective doses represented by lighter shaded arrows are

explored less often or possibly even skipped altogether.

Traditionally, dose escalation starts at a low dose

defined preclinically and slowly escalates dose in

decreasing increments according to a predetermined strat-

egy (the modified Fibonacci sequence, in which the dose

increments for succeeding dose levels are 100, 67, 50,

40 % then 33 % for all subsequent levels [11]). Alternative

escalation strategies [12] include accelerated titration

designs [3], pharmacokinetically guided dose escalation

[13] and continual reassessment or Bayesian methods [4,

14–16] which have been successfully incorporated into

Phase I trial design [17, 18].

From here on, we assume that a sensible selection of

doses is available but stress that inclusion of more potential

doses within the range of interest may allow more accurate

estimation of the highest tolerable dose. To avoid ‘‘wast-

ing’’ patients at doses that are no longer of interest based on

the data gathered so far in the trial, skipping doses [6] or

the use of single patients at early dose levels [3] could be

considered.

There exists a vast literature on dose-escalation methods

for Phase I trials in cancer, yet very few of them have been

used in practice. By far the most popular approach to dose

escalation is the 3 ? 3 design [2] which, according to Le

Tourneau et al. [12], was used in 96.7 % of Phase I trials

published in 2007 and 2008. A similar finding was made by

Rogatko et al. [19] when they investigated the use of
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Bayesian designs in Phase I cancer trials. Only 20 (1.6 %)

of 1,235 trials followed a Bayesian design despite the

existence of around 100 publications demonstrating the

statistical properties of such designs.

There are three general approaches to dose finding

studies in cancer. We will introduce their main features and

compare their advantages and disadvantages. In particular,

we will show that the most popular design in practice has

severe shortcomings when it comes to identifying the dose

of interest.

Design alternatives

Algorithmic approaches

Rule-based dose-escalation methods include the Storer up-

and-down design [3] and the frequently applied 3 ? 3

design (Fig. 2). Although several variants of this long-

established approach have been published, the earliest

source is a book chapter arising from the proceedings of a

clinical pharmacology course held in Brussels in May 1972

[2]. The main principle of algorithmic designs is that a

small group of patients is treated at a given dose and,

dependent on the observed number of toxicities, a decision

is made on to whether to study a further group of patients at

the next dose up the scale, to study more patients at the

same dose or to stop the trial.

The 3 ? 3 design, for example, enters three patients into

the trial one at a time at intervals of seven days or more and

treats them at the chosen starting dose. The core features of

this design, as outlined by Storer [3], are:

(a) If no dose-limiting toxicity (DLT) occurs in the first

cycle of any of the initial group of 3 patients treated at

a dose, the dose should be escalated for the next group

of patients.

(b) If two or more of the 3 patients treated at a given dose

experience a DLT, the trial should stop.

(c) If one patient of the 3 treated at a given dose level

experiences a DLT, a further 3 patients are treated at
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Fig. 1 Schematic illustration of different problems in finding the

TD25, the dose at which the underlying risk of dose-limiting toxicity

is 25 %. a Four doses, none of which matches the target toxicity rate;

(b) six doses, all lying above the desired toxicity level; (c) many

doses, allowing accurate estimation of the TD25; (d) many doses,

with increased efficiency through less frequent use of excessively

toxic or ineffective doses
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the same dose level. If a DLT has occurred in exactly

one of these 6 patients, escalation may continue as in

(a); otherwise, the trial should stop.

A frequent variation allows the dose to be reduced if

more than one DLT is observed within the first three

patients studied at a particular dose.

Following completion of the trial according to this

design, the MTD is defined as either the actual dose at

which the trial was stopped or the next lower dose, possibly

depending on the frequency and severity of toxicity

observed in the patients evaluated in the final group [3]. A

number of adaptations of this design attempt to reduce the

number of patients treated at the lowest dose levels [20].

Such accelerated titration designs [18, 21] include single-

patient dose levels and more rapid dose escalation (e.g.,

dose doubling) until the first DLT is observed, after which

the dose-escalation scheme would then revert to the mod-

ified Fibonacci sequence.

Model-based Bayesian methods

Bayesian modeling combines prior knowledge of the drug

with the observed data from the current trial to provide

updated information about the distribution of the trial

outcome of interest. Bayesian methods have been incor-

porated into a number of early phase clinical trial designs,

the best known being the continual reassessment method

(CRM) [4, 5]. In contrast to the algorithmic approach of the

3 ? 3 design, the continual reassessment method aims to

identify the dose at which the proportion of patients

experiencing a DLT reaches a specific target level (e.g.,

25 %). Furthermore, the investigator performs repeated

analyses on all of the data gathered to date—hence the term

continual reassessment—rather than simply observing the

data recorded at the current dose, as is the case for the

3 ? 3 design.

The CRM uses a one-parameter Bayesian model which

assumes that the probability of toxic response increases

with dose: as we move from one dose up to the next

higher dose, the toxicity risk at the higher dose is greater

than or equal to that at the previous dose. Before the trial

has commenced, Bayesian modeling requires a prior dis-

tribution for the dose–toxicity curve parameters to be

specified [22], representing the expected shape of the

dose–toxicity relationship. In the original version of the

CRM, a simple one-parameter prior distribution is rec-

ommended; subsequent developments allow the prior to

be informed by data (such as information from pre-clin-

ical studies) or expert opinion (see for example [23] for

alternatives). The model may be updated as soon as new

data become available on previously included patients.

Following this the next patient, or group of patients, is

treated at the dose, based on the evidence to date, that has

an estimated probability of toxicity closest to the target

level.

New cohort at new dose 
level: Enrol 3 patients 

Go to next higher dose 
level or same dose 
level if already at 
highest dose level 

Enrol 3 additional 
patients at the same 

dose level 

Go to next lower dose 
level or declare MTD at 
next lower dose level if 6 

patients already tested 
there

Go to next higher dose 
level or declare MTD 

otherwise 

Go to next lower dose 
level or declare MTD 

at next lower dose 
level if 6 patients 

already tested there 

DLT=1/3 DLT>1/3DLT=0/3

DLT=1/6 DLT>1/6

Fig. 2 Schematic display of

one version of the 3 ? 3 design
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Once all patients have been treated and followed up, the

MTD is taken to be the dose at which the estimated toxicity

probability is closest to the target level. Although the

originally proposed CRM method allows for the initial

dose to be above the lowest available dose level, in prac-

tice, a modified version that enforces dose escalation to

start from the lowest dose [24] is usually employed.

Stopping rules have been developed for the CRM [25] to

allow early discontinuation of the trial in the situation

where all doses are found to be excessively toxic.

Alternative Bayesian model-based approaches include

escalation with overdose control (EWOC) designs [16] and

the TITE-CRM extension of the CRM which allows the

trial to be completed more quickly by incorporating time to

toxicity event data [26].

Curve-free Bayesian approaches

This class of escalation strategies includes work by

Gasparini and Eisele [27] and Whitehead et al. [6] and aims

to minimize the number of assumptions within the dose–

toxicity modeling. No assumption is made about the form

of the relationship between dose and toxicity except that, as

in the CRM, the probability of toxic response increases

with dose. The risk of toxicity is modeled directly, result-

ing in an easy to interpret table of probabilities for each

risk level.

The possible levels of toxicity risk at a dose are described

qualitatively as very safe, safe, ideal, risky or toxic. The

numerical probability value that corresponds to each of

these descriptors depends on the target toxicity level. The

‘‘ideal’’ risk category has exactly the target toxicity prob-

ability, while the ‘‘safe’’ and ‘‘very safe’’ categories have

progressively lower risks of toxicity and the ‘‘risky’’ and

‘‘toxic’’ categories have progressively higher risks. For

example, in a study aiming to identify the dose which has

toxicity rate 25 %, the descriptors very safe, safe, ideal,

risky and toxic might be assigned the probability values

0.05, 0.15, 0.25, 0.4 and 0.65, respectively.

The prior distribution summarizing previous knowl-

edge of the expected risk at each dose level, required

under the Bayesian framework, is informed by investi-

gator opinion. As data accumulate during the trial, the

updated probabilities of each risk level being associated

with each dose are calculated. The dose to be allocated to

the next patient enrolled in the trial is selected to avoid

doses that have anything other than a small chance of

being ‘‘toxic’’ and to target the dose that has the greatest

chance of being ‘‘ideal’’. Table 1 illustrates the proba-

bilities of each level of toxicity during a hypothetical

trial. Here, 25 % is the target toxicity rate, and dose level

7 is the one with the highest probability of having that

toxicity rate.

At the end of the trial, one of three approaches may be

used to determine which dose to take forward for further

study. The first method bases the decision on the final table

of updated risk level probabilities. If the dose with a tox-

icity risk of 25 % was being sought, then the dose with the

highest probability of having a toxicity risk of 25 % would

be recommended. In the second, perhaps more realistic,

strategy, the table of updated risk level probabilities would

form just part of the information being considered by

investigators when deciding what dose to recommend. The

complete study data set will contain far more information

than DLT occurrences: pharmacokinetic and clinical data

and the expert opinion of investigators could also inform

the recommendation. The third approach would be to take

the data set and apply any appropriate method of statistical

analysis, independently of the dose allocation method used

in the trial.

Discussion

The merits and shortcomings of the three classes of dose-

escalation procedures introduced above will now be dis-

cussed. A broad range of important criteria, including

statistical and practical aspects, to consider when evaluat-

ing a dose-escalation procedure will be considered under

five headings. The weighting for each of the criteria will

depend on the specific trial and consequently it is unlikely

that each point will carry equal weight across all trials. We

have summarized this in Table 2 where we have graded the

performance of the dose-escalation procedure for each item

under the five headings qualitatively as poor, intermediate,

good or not applicable.

Statistical properties

We expect a good statistical procedure to estimate a spe-

cific measure of toxicity and that the precision of this

estimate can be gauged. Moreover, we want additional

information (i.e., additional patients) to increase the pre-

cision in the estimate. Both the model-based and curve-free

approach aim to estimate a clear cut measure of toxicity:

the dose at which a certain proportion of patients is

expected to experience a toxic event. Both methods also

quantify the precision of the estimated dose and this pre-

cision increases as the sample size increases: they have

good statistical properties. Furthermore, were complete

information to be available on toxicity of every dose for

each patient, the CRM model-based design has perfor-

mance very close to that of the best design that could exist

theoretically [28].

The algorithmic approach, in contrast, tries to find the

MTD which is difficult to quantify. As a consequence of

Cancer Chemother Pharmacol (2013) 71:1107–1114 1111
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this loose definition, it is also impossible to obtain a

measure of precision for the MTD. Furthermore, the

algorithmic nature of the method means that additional data

do not feature in the estimated MTD and the decision about

whether a dose is the MTD only depends on what has been

observed at this dose level: no learning from the doses

above or below is possible. Consequently, algorithmic

approaches have very poor statistical properties: the 3 ? 3

design correctly identifies the dose with toxicity rate

closest to the target level less frequently than model-based

designs [29] and over the course of the trial exposes many

additional patients to doses above or below that optimal

dose. Only 35 % of patients are treated at the optimal dose

with the 3 ? 3 design compared to 55 % for Bayesian

adaptive designs [19].

We gain insight into this poor performance of the

algorithmic design by quantifying the evidence when one

out of a group of three patients has experienced a DLT: the

95 % confidence interval (CI) around the best estimate of

33 % for the toxicity rate ranges from 0.8 to 90.6 %,

illustrating that little has been learned about the true rate.

There is not substantially more evidence even when two of

six patients studied at a dose experience a DLT: the cor-

responding 95 % CI for the toxicity rate is (4.3, 77.7 %).

Simplicity

The ideal method would be easy to describe to clinicians

and be straightforward statistically. The latter criterion

does not apply to the algorithmic approach as it is not a

statistically derived method. It is, however, the simplest to

explain to non-statisticians and may be used without the

involvement of a statistician. The Bayesian model-based

approach is of moderate statistical complexity, but is easily

implemented in practice, in part due to software being

readily available (e.g., the R package CRM [30]). A par-

ticular challenge that does remain is specifying the prior

distributions, which we believe is best done in consultation

Table 1 Example of risk level

probabilities generated by the

Bayesian curve-free approach

Bold value indicates the dose

level with the highest

probability of having the

‘‘ideal’’ toxicity rate

Dose level Risk of toxicity

5 % ‘‘very safe’’ 15 % ‘‘safe’’ 25 % ‘‘ideal’’ 40 % ‘‘risky’’ 65 % ‘‘toxic’’

1 0.48 0.44 0.08 0.00 0.00

2 0.40 0.48 0.12 0.00 0.00

3 0.33 0.52 0.15 0.00 0.00

4 0.25 0.55 0.19 0.01 0.00

5 0.17 0.54 0.28 0.01 0.00

6 0.08 0.49 0.40 0.03 0.00

7 0.01 0.28 0.61 0.10 0.00

8 0.01 0.14 0.40 0.33 0.12

9 0.01 0.05 0.19 0.40 0.35

Table 2 Characteristics of dose-escalation strategies

Issues to consider Algorithmic Model based Curve free

1. Statistical properties

1a Does method provide estimate of a relevant parameter and allow

the precision of the estimate to be quantified?

Poor Good Good

1b Does precision increase with sample size? Poor Good Good

1c Reliably arrives at correct decision on dose with target toxicity risk Poor Good Good

2. Simplicity

2a Non-technical explanation of method Good Poor Intermediate

2b Statistical complexity Not applicable Intermediate Poor

3. Intuitive dose recommendations Good Intermediate Good

4. Flexibility

4a Target toxicity rate Poor Good Good

4b Accommodating underlying shape of dose–response Poor Good Good

4c Dose skipping Poor Good Good

5. Impact of number of doses in schedule Poor Good Good
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with a statistician. Finally, the curve-free Bayesian method

is relatively simple to explain to non-statisticians (though

much more complex than the 3 ? 3 design) as it directly

estimates the risk of each dose rather than using a specific

model. The price for this conceptual simplicity is a much

more involved statistical process.

The contrast between the model-based and the curve-

free approaches is that the former requires the dose–tox-

icity model to be specified in advance of the study through

discussion between the clinicians and a statistician. Nev-

ertheless, it can still consistently identify the dose that has

the desired toxicity rate, even when the model has been

misspecified [4, 31]. The curve-free approach only assumes

non-decreasing risk of toxicity as dose increases. Although

this assumption is often reasonable, the curve-free

approach depends on it while a model-based approach

could allow for decreases in toxicity risk provided that this

was specified in the model.

Intuitive dose recommendations

The optimal dose-escalation method would recommend

doses for subsequent patients or for Phase II trials with

which an experienced investigator would be comfortable.

In general, all three approaches perform well although it

does depend on the exact implementation: the originally

proposed CRM [4] does sometimes give a counterintuitive

dose recommendation [23] but subsequent modifications

have been developed [24] to overcome this.

Flexibility

In particular, we are interested whether any target toxicity

rate can be used, how robust the method is to variations in

the true dose–toxicity relationship and whether the method

can skip doses. The algorithmic approach fairs poorly on

all three counts. In its design, the MTD rather than a certain

toxicity rate is sought, while dose skipping is prohibited.

The dose recommendation only depends on the current

dose and hence the underlying dose–toxicity relationship is

not exploited. The model-based approach on the other hand

caters for any toxicity level and, depending on the exact

implementation, can allow dose skipping. In addition, any

model can be used although it is clear that specifying the

correct model before starting the study will sometimes be

difficult. As an alternative to modeling the dose–toxicity

relationship, the model-based approach may also be used in

a continual reassessment of pharmacokinetic data [13, 18],

pharmacodynamic data [32, 33] or toxicity and efficacy

data in combination [34]. The Bayesian curve-free

approach may also be applied to combined toxicity and

efficacy data [35] (and indeed pharmacodynamic data) if

these are binary. As well as allowing any target toxicity

rate and dose skipping, the biggest advantage of the curve-

free approach is that it is suitable for any underlying dose–

toxicity relationship provided toxicity increases with dose.

This implies that, unlike the model-based approach, the

form of the relationship does not have to be specified in

advance. Both the model-based and Bayesian curve-free

approaches permit single-patient dose cohorts, which can

dramatically improve the trial design efficiency.

Impact of number of doses in schedule

As illustrated in Fig. 1c, a large number of doses allow

more precise estimation of the dose of interest although it

potentially comes at a price of many patients being treated

at sub-optimal doses. With the algorithmic approach, the

decision about a dose only depends on what has been

observed at this dose level: it does not make use of the

information from any of the previous dose levels. In con-

sequence, a large number of doses increase the chance of

selecting too safe a dose as even a very safe dose may

result in two out of six patients having a DLT [as noted

above, the toxicity rate confidence interval in that scenario

would be (4.3, 77.7)]. The situation is exacerbated by

disallowing skipping of doses and thereby enforcing

assessment of every dose incrementally. In contrast, both

the model-based and curve-free methods allow dose skip-

ping and use data from all patients in estimating risk of

toxicity at each dose level, and so perform well when many

doses are available.

Conclusion

Overall the main benefit of the algorithmic approach is the

simplicity of communicating the method and incorporating

it into trial protocols and it may be for this reason alone

that it is still employed in the vast majority of Phase I trial

designs. On the grounds of statistical and other practical

considerations, however, it cannot be recommended. The

model-based and curve-free approaches have similar merits

and are preferable to algorithmic methods due to their

superior ability to identify the dose with the desired tox-

icity rate. Although it is desirable to involve a statistician in

the planning of a Phase I oncology trial, Bayesian model-

based methods can readily be implemented by a numerate

scientist or clinician. The decision whether a model-based

approach is to be used will largely depend on the previous

information available about the compound under investi-

gation. Substantial evidence from preclinical studies or

studies in different indications regarding the shape of the

dose–response curve would motivate use of the model-

based approach over the curve-free method. If there is

sufficient evidence of high enough quality from previous
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studies, the model-based approach will be slightly superior

to the curve-free one, but if not, resulting in the wrong

model, it will perform less well.
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