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Abstract

In hemispheric ischemic stroke, the final size of the ischemic lesion is the most important correlate of clinical functional
outcome. Using a set of acute-phase MR images (Diffusion-weighted - DWI, T1-weighted – T1WI, T2-weighted-T2WI, and
proton density weighted - PDWI) for inputs, and the chronic T2WI at 3 months as an outcome measure, an Artificial Neural
Network (ANN) was trained to predict the 3-month outcome in the form of a voxel-by-voxel forecast of the chronic T2WI.
The ANN was trained and tested using 12 subjects (with 83 slices and 140218 voxels) using a leave-one-out cross-validation
method with calculation of the Area Under the Receiver Operator Characteristic Curve (AUROC) for training, testing and
optimization of the ANN. After training and optimization, the ANN produced maps of predicted outcome that were well
correlated (r = 0.80, p,0.0001) with the T2WI at 3 months for all 12 patients. This result implies that the trained ANN can
provide an estimate of 3-month ischemic lesion on T2WI in a stable and accurate manner (AUROC = 0.89).
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Introduction

In hemispheric ischemic stroke which is caused by blockage of a

blood vessel, the clinical outcome is strongly related to the final

size of the ischemic infarct [1,2,3]; generally speaking the more

extensive the damage to the brain parenchyma, the worse the

patient’s clinical outcome is likely to be, although this is of course

also dependent on location. As a measure of tissue recovery, and

strongly related to patient outcome, MRI T2-weighted imaging at

3 months post-ictus is generally accepted as the gold-standard [4].

Consequently, during the acute phase of ischemic stroke, a fast

and reliable identification of the ischemic lesion, its extent, and a

prediction as to its fate, might aid clinical decision-making and

help to maximize benefit and minimize side effects of a therapeutic

intervention [5,6]. Many studies, by correlating with follow-up

imaging or neurological status, have shown the potential for

diffusion weighted imaging (DWI), perfusion weighted imaging

(PWI), and/or T2-weighted (T2WI) magnetic resonance imaging

(MRI) used together for staging stroke outcome [3,7,8]. Most of

these analyses were performed using as an outcome metric the

volume of a region-of-interest (ROI) defined by the difference

between an acute data set and the outcome image [9,10,11]. For

instance, it has been shown that an unsupervised clustering

technique such as ISODATA (Iterative Self-Organizing Data

Analysis) can utilize combined MRI data sets from the acute phase

[2,12] and the subacute phase [5] post-stroke to predict final

infarct volume and thus produce a time-independent surrogate

MRI outcome predictor [13,14,15,16,17]. However ISODATA

has some significant drawbacks.

Maps produced in ISODATA are sharply delineated, and not

approximately continuous as in the outcome measure, the T2WI

[18]. Furthermore, to a large extent, ISODATA mapping and

standardization does not produce an easily visualized association

between the map and the outcome measure. Additional problems

in the ISODATA technique include: ISODATA’s instability in the

presence of image artifacts and noise, its sensitivity to initial

conditions, uncertainty as to the underlying variances of the

clusters, and its dependence on the assumption of normality for the

distribution of clustered data [19]. Thus, ISODATA and related

approaches, while useful, do not provide a voxel-by-voxel

judgment as to the potential for eventual infarction; finding a

continuous predictor for infarction remains an open problem

[20,21].

Statistical approaches such as Probability-of-Infarct Profile (PIP)

and Generalized Linear Model (GLM) algorithms constructed

based on ADC and CBF maps (in animal models of acute stroke),

or combining DWI and PWI MRI (in patients), have shown good

sensitivity and specificity in predicting the outcome in brain
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parenchyma after stroke [22,23]. The success of these methods

suggests that probabilistic voxel-based approaches may have a

significant predictive ability, and therefore may be useful in

predicting response to therapies administered in the immediate

aftermath of a catastrophic cerebral ischemic event.

Combining GLM and Spatial Auto Regressive (SAR) models

may help improve the predictive ability as to the fate of infracted

parenchyma [24,25]. However, this process is not fully automated,

since it requires the acute stroke area to be identified by a

neurologist. In terms of establishing its coefficients, the GLM-SAR

methods demand a large sample size to generate a reliable

estimate of model parameters.

In a recent study [26], the final infarct volume in patients

treated with IV rt-PA (recombinant Tissue Plasminogen Activator)

was predicted by an artificial neural network (ANN) model that

combined both clinical and imaging variables [National Institutes

of Health Stroke Scale (NIHSS) and DWI images]. Although this

study demonstrated that an ANN was capable of predicting tissue

fate using acute information, there was no voxel-by-voxel

prediction of outcome; rather this study focused on prediction of

chronic lesion size regardless of its pattern, location and

distribution.

This paper presents an ANN model that incorporates an easily

obtained data set, and one that is not strongly technique-

dependent, to predict the stroke outcome with a power of

prediction that approaches the methods discussed above. While

the paper does not explicitly address the matter of the minimal

MRI data set required for prediction of tissue outcome, it is

notable that a reasonably strong predictive power was achieved in

a data set that did not include an acute PWI set. The ANN

technique thus provides a very fast (essentially real-time),

approximately continuous, and intuitive mapping of the predicted

outcome, while preserving the time-independent and multi-

parametric strengths of clustering approaches.

Materials and Methods

Ethics Statement
This research has been approved by the Henry Ford Health

System Institutional Review Board. We obtained written informed

consent from all participants in the study.

Hypothesis
We hypothesized that, given a T2WI at the chronic stage of

stroke (3 months post-stroke), an ANN might be trained to directly

predict the size and pattern of the tissue recovery from the

information available in acute phase MR images.

Patients and MRI studies
Twelve patients (with a total of 83 slices) with acute neurological

deficit consistent with ischemic stroke, and MRI studies within

24 hours of onset (defined as the last time the patient was known to

be without neurological deficit), were selected. The severity of

neurological deficit was assessed at the time of the MRI study

using the NIHSS score. MRI studies were performed at the acute

time point (,24 h post-ictus), and at outcome (3 months post-

ictus). Patients with cerebral hemorrhage, a history of prior stroke

or other neurological disorders hampering interpretation of the

neurological outcome were excluded. The study was approved by

the Institutional Review Board.

An acute-phase MR image set consisting of a T1-weighted

(T1WI), T2WI, DWI and proton density (PDWI) was selected as

the input set to the ANN. The co-registered three month T2WI,

considered to be the gold standard for final infarct size (and

estimation of the tissue recovery), was employed as the training set.

MRI studies were acquired on a 1.5-Tesla GE Signa MR

scanner with echo-planar capability (GE, Milwaukee, WI). Each

MRI study consisted of axial multispin echo T2WI, and DWI with

slice thickness 6 mm. The field of view (FOV) was 2406240 mm.

For T1WI and T2WI, the matrix was 2566192 and for DWI

1286128. Additional parameters for each study were: (a) T1WI:

TR/TE = 600/14 ms; (b) T2WI: TR/TE = 2,800/30, 60, 90,

120 ms; (c) axial DWI was performed using an echo-planar

sequence, TR/TE = 10,000/101 ms, b-values = 1,000, 600, 300,

0 s/mm2, sequential application of three separate diffusion-

sensitizing gradients in perpendicular directions, 1 NEX.

For each patient, four image sets (T1WI, T2WI, DWI and

PDWI) at the acute time point were selected to provide input

features to the ANN. All acute- and chronic phase images were

registered to the acute T2WI using Eigentool software [27]. To

reduce mis-registration effects, images were smoothed using a

unity filter with a 363 window, and the smoothed images were

then normalized to their mean value, thus creating a feature set

insensitive to the MR system gain.

ROIs were defined by thresholding the 3-month T2WI to

outline the region of infarction. This region was reflected around

the midline and adjusted so that the resultant region selected a

visually normal contralateral area of tissue, so as to approximately

balance normal and infarcted tissue. Prevalence which refers to the

ratio of number of samples from the lesion area divided by the

total number of samples from the lesion and normal areas was

about 57%. The selected infarcted and normal regions were used

together as inputs to the ANN.

Input and Training Set for the ANN
Using the normalized data from the selected ROIs (83 slices,

and 140218 voxels, representing total number of the training

samples for all subjects) drawn by the study neurologist (PDM), a

feature set was generated from the four selected acute-phase

images and presented to a feed-forward multilayer perceptron

(MLP) with back propagation training algorithm as an input

vector. In this type of ANN, as shown in Figure 1, the nodes are

organized in the input layer, hidden layers, and the output layer.

Nodes are interconnected by weights in such a way that

information propagates from one layer to the next through a

sigmoid (bipolar) activation function. Learning rate and momen-

tum factors control the internode weight adjustment during the

training. A back propagation learning strategy [28,29,30] was

employed for training the ANN in a supervised mode. In this

strategy, a trial set of weights (the weight vectors, one vector for

each layer of the ANN) is proposed. The input vectors (a set of 4

voxels extracted from 4 normalized modalities such as DWI,

T1WI, T2WI and PDWI) are presented to the ANN, and the

output result compared to the class identifier (in our case, this was

the co-registered T2WI image at three month study). The weight

vectors are then adjusted to minimize some measure of error, i.e.,

the Mean Square Error (MSE) between the output of the ANN

and the normalized T2WI at three months (training set). This

procedure is performed iteratively across the entire data set.

Batch processing was used to improve the convergence rate and

the stability of training. The weight changes obtained from each

training case were accumulated, and the weights updated after the

entire set of training cases was evaluated. Batch processing

improves stability, but with a tradeoff in the convergence rate

[30,31]. A leave-one-out cross-validation method was employed

for training, testing, and network optimization [31,32] where the
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one in the leave-one-out was all data, i.e., all multiple voxel image

sets in an entire patient study.

The leave-one-out validation method is a member of the set of

cross validation methods, where all data are used for fitting (but

not at the same time, of course). Its prediction is based on a large

data set, which leads to small prediction errors, and is superior for

small data sets, compared to data split-sample validation [33].

ANN Optimization and Calculation of the ANN
Generalization Error

To generalize the ANN, i.e., to allow its application to a wide

range of inputs, we needed to avoid both under-fitting of the

training data (which generates a high variance in the output

estimate) and over-fitting of the training data (which produces

biased outputs). There are a number of strategies for assuring

generalization:

1. Optimize the number of free parameters (independent

connection weights) in the model (e.g., the number of neurons

in each layer and the number of layers).

2. Stop the gradient descent training at an appropriate point.

3. Add noise to the training patterns to smooth out the data

points.

Strategy number 3 is employed in cases where local minima

‘‘trap’’ the ANN optimization process. Since no trapping was

observed, strategy number 3 was not employed in this study. To

employ strategies number 1 and 2, we must estimate from our

training data what the generalization error is likely be. A leave-

one-out method was employed for training, testing, and network

optimization [30,31,32,34]. To characterize the generalization

error, we trained and validated the ANN by the leave-one-out

method, which is a special case of the K-Fold Cross Validation

(KFCV) method, using the area under the receiver operating curve

(AUROC) as a cost function [31,32,35,36].

In this study, each fold consisted of one full case (patient), thus

the K folding cross-validation (KFCV) method was that of leave-

one-out. The leave-one-out method is one of the most powerful

versions of the KFCV method; it has been shown that the Correct

Classification Fraction (CCF) of the leave-one-out method is an

important statistical estimator of the performance of a learning

algorithm [37]. The performance of the leave-one-out method is

frequently used for estimation of the generalization error [38,39].

In KFCV, the training data are divided into K distinct subsets

(K = 12, one case in each fold); the network is then trained using K-

1 subsets, and tested on the remaining subset (the left out case).

The process of training and testing is then repeated for each of the

K possible choices of the subset omitted from the training. The

average Correct Classification Fraction (CCF) versus different

epochs (epoch refers to each trial and error for decreasing the

MSE of the ANN in the batch processing mode) for the K omitted

subsets was plotted and the epoch corresponding to 10% of its

plateau was taken to be the stopping epoch. The MSE of the ANN

for all K subsets at different stopping epochs was calculated and its

average value was taken as the ‘stopping error’ for the optimal

ANN.

This procedure has the advantage that it allows us to use a high

proportion of the available training data, a fraction (1–1/K), for

training, while making use of all the data points in estimating the

generalization error or agreement. The cost is that the process can

be lengthy, since we need to train and evaluate the network K times.

Typically, K<10 is considered reasonable [32,36]. In this study, K

was set to 12 for 12 patients (one case in each fold) and the ANN had

a single output, to predict a T2WI at the chronic time point.

To measure how accurately this ANN matched the whole input

dataset (each set of MR modalities for all voxels) with the entire

Figure 1. ANN diagram for phase of training and prediction. As shown in this figure, 4 MR image modalities are input to the ANN to predict
T2WI at three month. Note that the MR modalities are normalized to their brain mean values before feeding to the ANN.
doi:10.1371/journal.pone.0022626.g001
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outcome set (each voxel in all 3-month T2WI studies), as shown in

Figure 2-A, the ANN’s CCF which is the ratio of the accumulated

number of voxels successfully classified by the ANN, divided by the

number of all voxels shown to the ANN at specific epoch was

generated at different levels of epochs during the leave-one-out

validation procedure.

True-Positive-Fraction (TPF), sensitivity, is the fraction of voxels

that actually are lesion and are correctly predicted as lesion. True-

Negative-Fraction (TNF), specificity, is the fraction of voxels that

actually are normal and are correctly predicted as normal. False-

Positive-Fraction (FPF) is equal to (1-specificity) and is considered

as the confidence level (CL). Thus at each confidence level (1-

specificity), the AUROC is proportional to the TPF which is

proportional to the Correct Classification Fraction Each [36,40].

The Area Under the Correct Classification Fraction (AUCCF),

which is proportional to the AUROC (Az) value, was used as an

index to compare the ANN’s performance, to determine the

optimal architecture of the ANN, and to find the ANN

termination error [36,40]. True-Positive-Fraction (TPF), sensitiv-

ity, is the fraction of voxels that actually are lesion and are

correctly predicted as lesion. KFCV (leave-one-out) set was trained

until its error was below a defined termination error (i.e., the point

at which the training procedure was stopped). The termination

error was set by determining the error at the 10% point of the

CCF’s plateau.

The number of hidden layer nodes may affect the performance

of the ANN classifier [32,35]. Since the ANN could not be trained

by less than 3 neurons in its first hidden layer, layer and node

optimization were done by maximizing the AUCCF value for its

second hidden layer as a function of the number of nodes.

Internally, in the ANN, the activation function of the ANN

neurons is a sigmoid function that is most easily programmed to

work in a polar mode between 21 and 1; the output of the single

output neuron is a continuous function with a mean of 1 (range 0–

3), since the training set T2WIs were normalized to their mean

value (mean value of the brain). To test, optimize and validate the

ANN using the CCF, the minimum acceptable interval for the

T2WI signal intensity change was calculated and then the values

of the ANN output and the gold standard maps of training (T2WI)

both were broken down into discrete fragments using a small

window (0.05). In order to present an easily understood

comparison, the response of the trained ANN was compared to

the chronic T2WI (gold standard) by calculating a correlation

coefficient using all of the voxel comparisons (with 0.05 windows)

available and ROC curve of the optimal ANN.

To study the early prediction of ANN MRI at acute phase to the

chronic ischemic infarction at 3 months after stroke, the linear

regression model was used based on voxel data (n = 140218),

adjusted for cluster (patient, N = 12) using PROC SURVEYREG

in SAS [41]. The analysis tested significant correlation of the acute

ANN MRI to 3-month infraction; followed by calculation of the

correlation coefficient, r for predictive ability.

Results

The demographic and clinical characteristics of the patients

included in the study are summarized in table 1. The mean age

was 56.25611.56 years. The ischemic stroke subtype was:

cardioembolsim (n = 2), large vessel atherosclerosis (n = 3), small

vessel disease (n = 3), cryptogenic (n = 4). The time interval from

symptom onset to acute-phase MRI study was 11.3264.36 hours,

and from symptom onset to outcome MRI study was 95.75622.54

days.

Training and validation objectives of the ANN were accom-

plished in the KFCV (leave-one-out) method. As in Figure 1, a set

of 4 feature vectors extracted from DWI, T1WI, T2WI and PDWI

were presented to the ANN and the performance of the ANN with

respect to its number of second hidden layer nodes was examined

by considering the AUCCF value at a Leave-One-Out termina-

tion error (MSE) of (MSE = 0.06,35 epochs).

Figure 2. A Correct Classification Fraction versus epochs for the optimal ANN (4:3:3:1) using 83 slices of twelve patients with 12
folds. Note the termination epoch is around 35, which is corresponding to 10% of CCF curve plateau. 2-B: Area Under Correct Classification Fraction
(AUCCF) curve versus number of neurons in the second hidden layer. As shown in this figure, AUCCF is maximum for three neurons in the second
hidden layer.
doi:10.1371/journal.pone.0022626.g002
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The ANN was trained and tested for a set of normal and lesion

ROIs. For a statistically reliable comparison, and to increase the

ANN’s accuracy for lesion detection, map sampling was done at a

prevalence of about 57% by choosing regions of interest (ROIs)

from normal tissue with about the same area of the lesion. The

optimal ANN ([4+1 bias] : [3+1 bias] : [3+1 bias], [1]) was found

by maximization of the AUCCF value for one hidden layer. In

Figure 2-A, a plot of the CCF curve (for the optimal ANN; 4:3:3:1)

and in Figure 2-B the AUCCF vs. the number of neurons in the

hidden layer for a stopping error of 0.06, learning rate of 0.01 and

momentum of 0, are shown. As Figure 2-B demonstrates, the

maximum value of the AUCCF (,0.80) gives the optimal number

of neurons (three neurons plus one bias) in the second hidden

layer.

Using all 12 patients (83 slices, and 140218 voxels), the trained

and optimal ANN ([4+1 bias] : [3+1 bias] : [3+1 bias],[1])

generated maps that were well correlated (r = 0.80, p,0.0001)

with the chronic T2WI. Figure 3 contains twelve exemplary (from

9 different patients) whole-brain voxel-wise results, generated by

the trained ANN, showing the acute DWI study (left-hand

column), the chronic T2WI (middle column), and the ANN

outcome predicted by the acute image set (right-hand column).

As Figure 3 demonstrates, the whole-brain voxel-wise predic-

tions generated in seconds by the trained and optimal ANN, are

visually similar to their corresponding chronic T2WI; the pattern

of the lesion predicted by the ANN are well matched with their

three-month lesion in both training and test examples. Note that

the continuity of the ANN output provides a more graded

prediction regarding the outcome tissue viability compared to

other statistical techniques such as ISODATA. Although the ANN

predictions in most of the cases shown in Figure 3 are highly

correlated with their corresponding T2WI, the ANN predictions

in the last two cases of both columns are not strongly in agreement

with their corresponding T2WI. The possible sources of these

errors are discussed below.

Figure 4 presents scatter plots of the ANN response versus

T2WI image at three months for lesion and control areas for all 12

patients. Note that in the normal scatter plot, there is a cluster

which is formed below 1.0 with a less scattered pattern. However,

in the lesion scatter plot, a cluster is formed above 1.0 with more

scattering and less density compared to the normal area.

More scattering pattern in the lesion plot represents the

capability of the ANN for estimating different levels of lesion with

different classes or intensity. The small values observed in the

lesion scatter plot are associated with the mis-registration errors

and the large values are associated with CSF area since the ANN is

forced to classify the CSF and lesion at the same time.

As noted, the ANN prediction for all 12 patients was highly

correlated (r = 0.80, p,0.0001) with the T2WI outcome measure

at three month. To estimate the overall performance of the trained

ANN, the ROC curve of the trained ANN (4:3:3:1) was generated

for all training samples and the Area Under ROC

(AUROC = 0.89, Average error = 0.11) was considered as the

performance of the trained ANN (see Figure 5). As shown in

Figure 5, the optimal sensitivity and specificity of the ANN were

calculated at the half angle and ROC curve intercept point

(SpecificityOptimal = 0.84, SensitivityOptimal = 0.85) which indicates

that the ANN can predict lesions with a sensitivity of 85% at a

specificity of 84%.

Figure 6 compares the results of the ISODATA technique with

those of the ANN. As shown in this figure the lesion areas in the

ISODATA maps are clustered to different signatures (1–12).

Signatures range between one (corresponding to normal tissue) to

twelve (corresponding to CSF or cavitated tissue). While the ANN

demonstrates a continuous map for the status of the tissue at risk in

the lesion area, the ISODATA shows just a few indices related to

tissue recovery after three months. Both techniques are in

agreement in the CSF area or dead tissue.

Discussion

Using a relatively small set of acute-phase MR images, an ANN

was trained and tested to directly predict the size and pattern of

the eventual tissue damage, as judged by T2WI at the chronic

stage of stroke (3 months after stroke onset). Since the predictor

produced by the ANN provides a visual estimate of the outcome,

such modeling may play an important role in the assessment of

therapeutic interventions applied within extended therapeutic

windows, currently of great interest in the treatment of stroke.

It must be noted that the training set was small (12 cases) in the

number of patients; that is why the leave-one-out method was used

for training and evaluation. However, even this small pilot study

demonstrates a robust and sensitive predictor of infarct outcome,

Table 1. Demographic table.

Pt Age/Gender Stroke Location Ischemic Stroke Subtype
Onset-Acute MRI
(hours)

Onset-Outcome MRI
(days)

1 42/M Left frontal Large vessel atherosclerosis 11.8 90

2 68/M Left basal ganglia-internal capsule Small vessel disease 9.3 95

3 42/M Left corona radiata - internal capsule Small vessel disease 10.6 103

4 59/M Left corona radiata-thalamus Cryptogenic 13.4 93

5 45/M Right frontal-parietal-temporal Cardioembolism 8.2 93

6 59/F Left internal capsule-thalamus Small vessel disease 8.2 104

7 68/M Right frontal-parietal Large vessel atherosclerosis 10.9 82

8 45/M Right parietal Cryptogenic 10.1 102

9 64/F Left frontal-parietal Cryptogenic 18.4 130

10 71/F Right frontal-parietal Large vessel atherosclerosis 5.4 39

11 67/F Right frontal-parietal Cardioembolism 20.7 124

12 45/M Right occipital-temporal Cryptogenic 8.9 94

doi:10.1371/journal.pone.0022626.t001
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and because it can be produced almost as quickly as the image sets

emerge from the MRI scanner, this approach shows great

potential as a tool that may eventually influence clinical practice.

Although the ANN in this study was trained and validated with a

small sample size, the values of the AUROC (0.89), the optimal

specificity and sensitivity (0.84 and 0.85), and the average error

(0.11) achieved with the leave-one-out technique supports the

hypothesis that the ANN can reasonably predict lesions if it is

applied to a new dataset.

Since the ANN uses acute-phase information, any processing

errors due to mis-registration, image deformation due to edema

created by the lesion between different time points, image quality,

partial volume effects, image artifacts, and image uniformity are

potential sources of errors that can affect ANN results.

The results of the ANN implies that the trained ANN is a robust

discriminator between CSF and lesion areas since the intensities of

the CSF (dark) and lesion (bright) areas appear oppositely in DW

images but the same in the maps predicted by the ANN. However,

this might be a problem for the closely located lesions to the CSF

areas which can be easily confused in the interpretation phase by

means of a non-expert user (not the ANN).

The GLM-SAR study [24][25]showed that, compared to

algorithms using DWI or PWI separately, algorithms combining

acute DWI and PWI were superior in predicting the extent of final

tissue infarction. GLM models have the drawback of assuming

class boundaries to be hyperplanes in feature space. This

fundamentally linear model of response may not suffice to account

for the complex dependency of infarct risk upon the combined

metabolic and structural derangement reflected in the MR

perfusion and diffusion indices in ischemic tissue.

Clinical neurological recovery, as measured by the change in

NIHSS, can also be used as additional information for training the

ANN in acute to chronic time point [26]. The model presented by

Luby et al., was generated by a generalized regression neural

Figure 3. Examples of ANN-produced images in 12 exemplary MRI slices from 9 patients. Left column: DWI in acute study. Middle:
outcome T2WI. Right: ANN predicted outcome from acute image set. The last slices in both columns present the least reliable prediction of the ANN.
doi:10.1371/journal.pone.0022626.g003
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network (GRNN) trained using such baseline information as sex,

age, NIHSS, stroke onset time to MRI scan time, and

corresponding values for follow-up: modified Rankin Score

(mRS), follow-up NIHSS, baseline lesion volume on diffusion

weighted MRI, baseline hypoperfusion volume (on MTT map),

follow-up reperfusion (reduction of MTT volume by at least 30%),

and final infarct volume on FLAIR MRI. The GRNN approach

offers the possibility that our study, focused as it was on the

estimation of the lesion volume regardless of its pattern and

location in the brain, could further benefit from additional clinical

and imaging information; it may be possible to form a more

clinically relevant prediction of outcome by including the NIHSS

score as an input to the ANN, in addition to the feature set

currently in use.

Most of multi-parametric analysis techniques such as ISO-

DATA, Fuzzy clustering, and Kohonen’s Multi-Parametric Self-

Organizing Map (KMP-SOM), employ the theory of information

extraction for predicting tissue fate at three months using MR

acute information, regardless of chronic information. The chronic

information is used just for validation and assessment of these

techniques. To date the only method that we know of that has

used chronic information for segmentation prediction is the GLM-

SAR [24]. As we have noted, there is still a remaining question as

to whether a linear model is inherently the correct model for stroke

outcome prediction. Unlike the GLM-SAR, the ANN combines

acute information with no prior assumption about the linearity of

information in its combination.

A fast, robust, and time-independent predictor of stroke

outcome raises the possibility of real-time evaluation of evolving

stroke in the acute and subacute phase. We will assess the

possibility that the ANN predictor of outcome T2WI is essentially

time-independent, because the acute/subacute T2WI image, with

its increasing contrast with time post-ictus, can independently

provide a measure of the post-stroke duration.

This study used untreated patients to train an adaptive ANN for

predicting the tissue fate in absence of any drug or treatment. Its

performance in treated patient populations remains to be assessed.

We speculate that if, the trained ANN uses the MR information of

treated patients before and after the course of treatment,

differences between the predicted outcome lesions (prior to, and

after, treatment) might be a measure of treatment efficacy. Thus,

given effective treatments, a real-time predictor of outcome can

produce a paradigm shift in the treatment of stroke in all its early

Figure 4. Scatter plots of the optimized ANN (4:3:3:1) for predicting lesion and normal areas of 83 slices in 12 patients compare to
their T2WI at chronic (gold standard). As shown in these figures, the ANN prediction is highly correlated (Total voxels: 140218, r = 0.80, p
,0.0001) with the T2WI at three month.
doi:10.1371/journal.pone.0022626.g004

Figure 5. ROC curve (AUROC = 0.89) for the trained ANN
(4:3:3:1). As shown in this Figure, the optimal sensitivity and specificity
of the ANN are calculated at the half angle and ROC curve intercept
point (Point Opt.; Specificity Optimal = 0.84, Sensitivity Optimal = 0.85)
which implies that the ANN can predict lesion and tissue with a
sensitivity of 85% and a specificity of the 84%.
doi:10.1371/journal.pone.0022626.g005
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stages, and may ameliorate or avoid many of the profoundly

destructive sequelae of cerebral infarction.

In the sense that all patients had in common MRI images with

both normal and ischemic regions of brain, and it is to be expected

that normal brain and ischemic brain have similar MRI

presentations across patients, the sample size can be considered

to be large (83 slices and 140218 voxels). However, we have to

acknowledge that ischemic stroke patients may show a range of

MRI presentations, and that the sample of patients chosen, while

of manageable size for a proof-of-principle study, needs to be

enlarged for further evaluation of the stability of the predictor.
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