OPEN 8 ACCESS Freely available online

@'PLOS ‘ ONE

Analysis of the Protein Phosphotome of Entamoeba
histolytica Reveals an Intricate Phosphorylation Network

Tamanna Anwar, Samudrala Gourinath*

School of Life Sciences, Jawaharlal Nehru University, New Delhi, India

Abstract

them potent candidates for drug target.

ONE 8(11): e78714. doi:10.1371/journal.pone.0078714
Editor: Rajagopal Subramanyam, University of Hyderabad, India

* E-mail: sgourinath@mail jnu.ac.in

Phosphorylation is the most common mechanism for the propagation of intracellular signals. Protein phosphatases and
protein kinases play a dynamic antagonistic role in protein phosphorylation. Protein phosphatases make up a significant
fraction of eukaryotic proteome. In this article, we report the identification and analysis of protein phosphatases in the
intracellular parasite Entamoeba histolytica. Based on an in silico analysis, we classified 250 non-redundant protein
phosphatases in E. histolytica. The phosphotome of E. histolytica is 3.1% of its proteome and 1.3 times of the human
phosphotome. In this extensive study, we identified 42 new putative phosphatases (39 hypothetical proteins and 3
pseudophosphatases). The presence of pseudophosphatases may have an important role in virulence of E. histolytica. A
comprehensive phosphotome analysis of E. histolytica shows spectacular low similarity to human phosphatases, making

Citation: Anwar T, Gourinath S (2013) Analysis of the Protein Phosphotome of Entamoeba histolytica Reveals an Intricate Phosphorylation Network. PLoS

Received August 20, 2013; Accepted September 22, 2013; Published November 13, 2013

Copyright: © 2013 Anwar, Gourinath. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The authors are thankful to University Grants Commission (Government of India) for providing the funds for this project under Dr. D. S. Kothari
postdoctoral fellowship scheme. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

Introduction

The eukaryotic protozoan parasite Entamoeba histolytica is the
causative agent of amoebiasis, a global health threat responsible
for an estimated 40-50 million cases of invasive colitis or liver
abscess and up to 100,000 deaths per year [1,2]. Although the
parasite has a worldwide distribution, it predominantly affects
individuals of lower socioeconomic status, who live in developing
countries [2]. Protein phosphorylation is a key post-translational
modification that is regulated by the competing activities of
protein kinases (PK) and protein phosphatases (PP) [3]. The net
phosphorylation state relies on a delicate balance between PKs,
which catalyse phosphate addition, and PPs, catalysing phosphate
removal. Thus it is not surprising that disease conditions often
correlate with alteration of the cell phosphorylation profile as a
consequence of a perturbation of kinase and/or phosphatase
activities [4-6].

PKs are currently the pharmaceutical industry’s second
largest drug targets, which are extensively studied [7]. In
contrast, the role of phosphatases in disease has only recently
come to research forefront. The extent of phosphorylation at a
particular site can be regulated by changing the activity of the
cognate PK or PP or both. [8]. About 30% of all proteins can
be regulated by phosphorylation [8,9]. Many cellular signalling
events are regulated by phosphorylation and de-phosphorylation
mediated by the opposing actions of protein kinases and
phosphatases. Similar to kinases, protein phosphatases are
emerging as drug targets, but poor cell permeability of
inhibitors has limited the development of drugs targeting these
enzymes. Recent advances in the understanding of the role of
phosphatases in the pathogenesis of E. fustolytica have opened up
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an exciting avenue for drug development, where protein
phosphatases can act as drug targets.

Anamika et al., 2007 identified 307 PKs in E. fistolytica [10]
which is less than half the size of the human kinome consisting of
507 putative PKs, differing in numerous ways from kinases in the
mammalian host [3]. E. hustolytica is reported to have greater than
100 PPs, which dephosphorylate proteins [11]. Since the phos-
phorylation status of any protein is controlled by both kinases and
phosphatases, the latter can be exploited as therapeutic targets as
well [4,12-13].

Here we present detailed analysis of PPs in E. fustolytica.
Through i silico analysis of protein sequences and structural
domains we identified 250 PPs in E. Histolytica, which are more
than PPs identified in human genome. Phosphoprotein phospha-
tases (PPP) form the largest family of PPs. Many unusual
phosphatases involved in protein phosphorylation make FE.
histolytica different from other eukaryotic organisms. Structural
analysis reveals that E. fistolytica PPs show low similarity to human
PPs, making it good for drug targeting.

Materials and Methods

The complete set of predicted protein sequences from the ORFs
of the E. fustolytica genome has been obtained from NCBI (version
2010) [14]. We have surveyed the genome, for PPs using sensitive
sequence analysis methods as described below: Domain assign-
ments have been made for PP catalytic domain containing gene
products using: (1) HMMer by querying each of the phosphatase
domain containing proteins against all the protein family HMMs
available in the Pfam database release Pfam 26.0 (November 2011,
13672 families) [15] and (2) InterProScanb by querying each of the
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Figure 1. Bar diagram-representing comparison of PPs in the genomes of parasitic protozoa and human. The percentage of protein
phosphatases genes in the proteome complement is provided against every bar. Species abbreviations used in the diagram are as follows: GI, Giardia
lamblia; Lm, Leishmania major; Tb, Trypanosoma brucei; Tc, Trypanosoma cruzi; Tp, Theileria parva; Bb, Babesia bovis; Tg, Toxoplasma gondii; Cp,
Cryptosporidium parvum; Pf, Plasmodium falciparum; Eh, Entamoeba histolytica; Hs, Homo sapiens.

doi:10.1371/journal.pone.0078714.g001

phosphatase domain containing proteins against the 16409 protein
families and 6850 domains available in the InterPro database
(InterPro 41.0 13th February 2013) [16]. InterPro, provides a
powerful tool for protein sequence classification and function
prediction. InterPro integrates all the protein signature databases
into one, list of InterPro domains related to PPs is given in Table
S1 in file SI. It has been used in many genome annotation projects,
as well as by UniProt curators for individual protein sequence
annotation [17]. We have chosen protein sequences with
phosphatase domain having e-value score of 107 °. InterPro
picked all the sequences predicted by Pfam as it integrates Pfam in
its search. CD-HIT program [18] was used to eliminate redundant
sequences which are indicated by 100% sequence identity.
CELLO v.2.5 was used for subcellular localization prediction.
Structural domain analysis was carried out using Phyre2
(Protein Homology/AnalogY Recognition Engine) that is a web-
based service for protein structure prediction [19]. Multiple
alignments were constructed using ClustalW [20]. Evolutionary

Table 1. Classification of protein phosphatases into families.

relationships were studied using phylogenetic analysis package
Mega4.0 [21]. List of all the tools used in the analysis of PPs is
cited in Table S2 in file SI.

Results and Discussion

Protein phosphatases, like many other signaling molecules, can
be inhibited or activated by small molecules that occur naturally in
the cell [22]. Total number of functional PPs encoded in the
genomes of some of the protozoan parasites [23-24] is shown in
Figure 1. The genome of E. fustolytica encodes 250 putative PPs
which is around ten times the number of PPs encoded in the
genome of the malaria parasite Plasmodium falciparum [25] and 1.3
times the number of phosphatases encoded in the human genome
[26]. It was observed that E. kistolytica phosphatases differs greatly
from human phosphatases, none of the E. hustolytica PPs has shown
>40% similarity to the human PPs.

Phosphatase families

Examples of members

Protein serine/threonine phosphatases
PPP family

PPM family PP2C
FCP family

Protein tyrosine phosphatases
Class | Cys-based PTPs

Class Il Cys-based PTPs

Class Il Cys-based PTPs LMPTP
Histidine Phosphatases

Exonuclease-Endonuclease-Phosphatase

Pyrophosphatases

Classical PTPs, DSPs
CDC25A, CDC25B, CDC25C

PP1, PP2A, calcineurin, PP5

FCP, HAD family (Asp-based)

Histidine-dependent acid phosphatases
Endonucleases, Inositol polyphosphate 5-phosphatases (INPP5), Synaptojenin proteins

DeoxyutpPyrophosphatase (dUTPase), Inorganic Pyrophosphatase

This classification was compiled from Ref. 22, 31, 40.
doi:10.1371/journal.pone.0078714.t001
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Figure 2. Flow scheme for the assignment of E. histolytica PPs obtained at different steps of the analysis.

doi:10.1371/journal.pone.0078714.g002

Sequence and Structure Domain Analysis

To confirm the presence of phosphatase family domain the
250 PPs retrieved through InterPro were searched for structural
phosphatase domains. Phyre2.0 server analysis showed that
phosphatase structural domains were present in all the putative
PPs (Table S3 in file SI) except for three proteins EAL49728.2,
EAL48868.1 and EAL49020.1, but through InterPro it was found
that EAL49728.2 had dual specificity phosphatase (DSP) domain,
EAL48868.1 had protein tyrosine phosphatase (PTP) -like domain
and EAL49020.1 had PPP (PP2A) family domain.

Distribution of PPs in E. histolytica

The E. histolytica phosphotome, differs in numerous ways from
phosphatases in the mammalian host. The numbers of PPs
obtained at different steps of the analysis are shown in Figure 2.
The distribution of PPs into various families is summarized in

Table 1 along with subfamily assignments and other domains that
are tethered to phosphatase catalytic domains. Among the 250
putative PPs in the dataset, 145 are likely to be Protein Ser/Thr
phosphatases (STPs), 79 PTPs, 18 endonuclease/exonuclease/
phosphatase (EEP) and 8 pyrophosphatases (Table 2). PPs are
classified based on characteristics such as sequence, structure and
phosphoamino-acid specificity. According to Szoor, 2010 protein
phosphatases are classified into four major groups based on
catalytic signature motifs and substrate preferences: phospho-
protein phosphatase (PPP), metallo-dependent protein phospha-
tase (PPM), aspartate-based phosphatases (FCP) (the members of
these three groups are ser/thr specific phosphatases) and the
distinct group of (PTP). Haloacid dehalogenase (HAD) is
considered as a member of FCP family [27] and protein histidine
phosphatases (PHP) are a sub-group of PTP superfamily [28].

Table 2. Distribution and sub-cellular localization of PPs in E. histolytica.

Phosphatases Sub-cellular Localization Class No. Total No.
Serine/Threonine Phosphatases Nuclear, Plasma Membrane, PPP 64 145
Cytoplasmic, Extracellular,
Mitochondrial
PPM 42
FCP (HAD Family) 39
PTPs Nuclear, Plasma Membrane, PTPc 22 79
Cytoplasmic, Chloroplast
DSPc 22
CcDC25 14
LMWPTPASE 2
Histidine Phosphatase 19
Pyrophosphatase Nuclear, Cytoplasmic, Deoxyutp Pyrophosphatase Family 7 8
Chloroplast
Inorganic Pyrophosphatase Family 1
Endonuclease/Exonuclease/Phosphatase Cytoplasmic 18 18
Total 250

doi:10.1371/journal.pone.0078714.t002
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Members of the EEP superfamily belong to different families of
enzymes, like endonucleases, inositol 5-phosphatases (INPP5) are
Mg®" dependent and Inositol 4-phosphatases belongs to PTP
family [29-31], while pyrophosphatases it has not been included in
any of the classifications available (Table 1).

Protein Ser/Thr Phosphatases (STPs)

Protein STPs are encoded by three unrelated gene families,
PPP, PPM and FCP [32]. We predicted a total of 145 STPs in E.
histolytica. PPP family include protein phosphatasel (PP1), PP2A,
PP2B, PP4, PP5, PP6, and PP7. Out of 145 putative STPs in E.
histolytica, 64 PPs belong to PPP family. Protein phosphatases of
the PPM (represented by PP2C) family are present in both
eukaryotes and prokaryotes. The PPM family includes PPs
dependent on manganese/magnesium ions (Mn**/Mg®"). In
contrast to PPP, members of the PPM family do not have
regulatory subunits but contain instead additional domains and
conserved sequence motifs that may help determine substrate
specificity. In E. fhistolytica, 42 PPM family members were
identified. The FCP family which dephosphyralates the carboxy
terminal of RNA Polymerase II was most recently recognised,
these are widely distributed among eukaryotes [33]. In our analysis
we found 39 PPs belonging to FCP (HAD-like) family (Table 2),
following the recent classification of Szoor, 2010 we have placed

Table 3. Putative phosphatases with multiple domains in E.
histolytica.

Acc. No. Kinase Phosphatase LRR
EAL46608.2 Yes Yes Yes
EAL47388.1 Yes Yes Yes
EAL49131.2 Yes Yes No

doi:10.1371/journal.pone.0078714.t003
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HADs as member of FCP family. The HAD family, includes
phosphoesterases, ATPases, phosphonatases, dehalogenases, and
sugar phosphomutases acting on a remarkably diverse set of
substrates [34,35]. Kutuzov e. al., 2008 have reported 114 STPs
in E. histolytica [23], while in the present analysis a total of
145 STPs were identified. PPPs form the largest family among
STPs superfamily.

Protein Tyrosine Phosphatases (PTPs)

PTPs are the key regulatory components in signal transduction
pathways, cell cycle control and are important in the control of cell
growth, proliferation, differentiation and transformation. PTPs
belong to three evolutionarily unrelated classes: Class I, Class II
and Class III cys-based PTPs. Class I cys-based PTPs consist of
classical PTPs and DSPs. Among the 79 PTPs identified in E.
histolytica 22 are putative classical PTPs and 22 belonged to DSPs.
Classical PTPs are strictly tyr-specific sharing a common cysteine-
based mechanism of catalysis [9,36]. DSPs dephosphorylate
different combinations of tyr and ser/thr, as well as non-protein
substrates. These enzymes have low sequence similarity beyond
the cysteine-containing motif and smaller catalytic domains than
the classical PTPs. The class II cys-based PTPs comprise a small
group of cell cycle regulators (CDC25) phosphatases, . histolytica
has 14 such PPs. Their catalytic machinery is very similar to that
of class I enzymes, they are structurally unrelated [37]. The class
IIT cys-based protein phosphatases include low molecular weight
PTPs (LMPTP), the parasite has 2 such phosphatases. LMPTPs
are highly conserved throughout evolution from yeasts to man and
highly homologous genes are even seen in prokaryotes. [38]. The
protein histidine phosphatases (PHP) is a large functionally diverse
group of proteins. Among the 79 PTPs identified 19 were PHPs.
In contrast to cysteine-dependent PTPs, PHPs utilize histidine,
rather than cysteine, for substrate dephosphorylation [39].
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Figure 4. Phylogenetic tree representing relationship among STPs. Branches with diamond shapes represents hypothetical proteins.

doi:10.1371/journal.pone.0078714.g004

Exonuclease-Endonuclease-Phosphatases (EEPs)

EEP family is a structural domain found in the large family of
proteins. EEPs include magnesium dependent endonucleases and
many phosphatases involved in intracellular signalling [40,41].
This large superfamily includes a diverse set of proteins (Table 1).
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In E. lustolytica 18 PPs belonging to EEP family were predicted, 8
phosphatases from classical EEPs and 10 belonging to inositol
polyphosphate sub-group.

Inositol phosphatases belong to different families of enzymes;
PTEN (phosphotase and tensin homolog) and myotubularin
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Figure 5. Phylogenetic tree representing relationship among PTPs. Branches with diamond shapes represents hypothetical proteins.

doi:10.1371/journal.pone.0078714.g005

inositol 3-phosphatases belong to PTP superfamily. Inositol 4-
phosphatases share with PTPs the conserved active site signature
CX-5-R (P-loop motif). INPP5 are Mg**-dependent enzymes
related to endonucleases [29-31], showing distinct sequence and
biochemical characteristics to classic eukaryotic lipid phosphatases
having no homologues in humans [29]. In E. histolytica we
identified 6 INPP5 family members with sequence ids
EALA44576.2,  EAL45154.1, EAL44267.1, EAL44027.1,
EAL50984.1 and EAL45706.2.

PLOS ONE | www.plosone.org

Pyrophosphatases

In parasites, a proper ion balance is essential for them to be able
to invade and live in other organisms. Membrane-bound
pyrophosphatases cannot be found in humans but they are crucial
for the survival of protozoan parasites. Membrane proteins in
general are important targets for drugs [42]. In E. hustolytica we
observed 7 pyrophosphatases from Deoxyutp Pyrophosphatase
(dUTP) family and 1 from Inorganic Pyrophosphatase family
(Table S3 in file SI). dUTPases helps in preventing the
concentration of dUTP rising above a base level in the cell.
Inorganic pyrophosphate has been shown to be necessary for the
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Figure 6. Phylogenetic tree representing relationship among EEPs. Branches with diamond shapes represent hypothetical proteins.

doi:10.1371/journal.pone.0078714.9g006

growth of Escherichia coli and for yeast mitochondrial function
[43,44]. Understanding the structure and function of pyrophos-
phatases will help us in designing specific drugs to disturb its
function.

Unusual Domain Combinations

The presence of varying numbers of leucine-rich repeat (LRR)
domain is an unusual feature of some of the phosphatases, which
may be involved in protein—protein interactions. A list of various
PPs with LRRs identified in E. fistolytica genome is presented in
Figure 3. It consists of five phosphatases having PTP family
domain (four DSPs and one classical PTP) and 9 STPs belonging

4i1169799361|gblEDS88652.1| deoxyurid
4il169800846]gbIEDS89114.1 deoxyurid

4i[169800969|gb|EAL43495.2| deoxyurid
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4 gi[169799777|gb|EDS88738.1| hypotheti

0i[56465887|gb|EAL44058.1] inorganic ... Jinorganic
Figure 7. Phylogenetic tree representing relationship among
Pyrophosphatases. Branches with diamond shapes represent hypo-

thetical proteins.
doi:10.1371/journal.pone.0078714.g007

PLOS ONE | www.plosone.org

to PPM family. The LRRs may be associated in interaction with
host cell and pathogenesis of the parasite. Unexpectedly, LRRs
have been shown to be associated with microbial virulence factors
helping in the interaction with host cells and infection establish-
ment [45].

Pseudophosphatases

We have observed several proteins with non-functional phos-
phatase domain, these proteins were named as pseudopho-
sphatases. Several members of the PTP superfamily possess
conserved domains with core features of a PTP, but which lack
residues that are critical for catalysis [46]. Pseudophosphatases are
most prevalent among the Myotubularins (sub-family from PTP
superfamily). Three such proteins were predicted in F. histolytica
genome, out of which two were having a PK domain, a PP domain
(PTPs Family) and LRRs, the other one had a PK domain, a PP
domain but no LLRs (Table 3). In other protozoans such as Giardia
lamblia, Tetralymena thermophila, and Dictyostelium discoideum also
similar domain architecture (kinase+phosphatase) is seen, indicat-
ing evolutionary conservation of these proteins [47]. Recently, it
has been demonstrated that inactive myotubularins form com-
plexes with the active enzymes. These interactions regulate both
the enzymatic activity and the subcellular location of the active
phosphatase [6]. LRR-DSPs and kinatases (a DSP domain with
two pseudokinase domains and LRRs) in bacteria show similarity
to LRR proteins, suggesting that these are involved in virulence in
this parasitic protozoan also [47]. It appears that the presence of
such PPs may have an important role in virulence.
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Unidentified Proteins

There are several hypothetical proteins, which are not studied at
all so far but we have identified phosphatase domains in these
proteins and we named it as unidentified PPs. Our analysis has
added to the list of PPs whose functions are not yet well
understood. We have identified at least 39 gene products with a
clear similarity to PPs, but to the best of our knowledge these genes
are unexplored by experimental analysis. A list of these
phosphatases with their domain assignments is shown in Table
S4 in file SI. The catalytic domains in most of these hypothetical
proteins could be associated to known families of PPs because of a
high similarity of the catalytic regions.

Phylogenetic Classification

Based on the amino acid sequence, two hundred fifty E.
histolytica PPs could be placed in one of the known families. From
the phylogenetic analysis of STP family it was observed that it
consists of two branches with one branch consisting strictly of PPPs
except for one PPM family member. The other branch composed
of sub-branches from all the three families of STP family (Figure 4).
PTP family tree shows that PHPs are closely related to PTP-I
family than to PTP-II and PTP-III family (Figure 5). Phylogenetic
relationship among EEPs shows that inositol polyphosphates are
close relatives of classical EEPs, while synaptojenin and FIG family
members are distantly related to EEPs and INPPs (Figure 6).
Pyrophosphatases form two distantly related families consisting of
one branch only of dUTPases and other inorganic phosphatases
(Figure 7). The phylogenetic classification also confirms that
hypothetical proteins are showing close relationship to the
members of the assigned families.

Conclusions

The dephosphorylation of proteins is catalyzed by PPs, acting
antagonistically to PKs. PPs are apparently less attractive drug
targets, because they typically act on a broader range of proteins
than kinases do. In many parasitic diseases, a gain of specific
phosphatase function may contribute to the pathology. In parasites
like £. histolytica PPs play essential role in signalling mechanism. In

References

1. Lotter H, Tannich E (2006) The current status of an amebiasis vaccine. Arch
Med Res 37: 291-295.

2. Stauffer W, Ravdin JI (2003) Entamoeba histolytica: an update. Curr Opin Infect
Dis 16: 479-85.

3. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) The
protein kinase complement of the human genome. Science 298: 1912-1934.

4. Easty D, Gallagher W, Bennett DC (2006) Protein tyrosine phosphatases, new
targets for cancer therapy. Curr Cancer Drug Targets 6: 519-532.

5. Gee CE, Mansuy IM (2005) Protein phosphatases and their potential
implications in neuroprotective processes. Cell Mol Life Sci 62: 1120-30.

6. Tonks NK (2006) Protein tyrosine phosphatases: from genes, to function, to
disease. Nat Rev Mol Cell Biol 7: 833-846.

7. Cohen P (2002) Protein kinases-the major drug targets of the twenty-first
century? Nat Rev Drug Discov 14: 309-315.

8. Hunter T (1995) Protein kinases and phosphatases: the yin and yang of protein
phosphorylation and signaling. Cell 80: 225-236.

9. Denu JM, Dixon JE (1998) Protein tyrosine phosphatases: mechanisms of
catalysis and regulation. Curr Opin Chem Biol 2: 633-641.

10. Anamika K, Bhattacharya A, Srinivasan N (2008) Analysis of the protein kinome
of Entamoeba histolytica. Proteins 71: 995-1006.

11. Loftus B, Anderson I, Davies R, Alsmark UC, Samuelson J, et al. (2005) The
genome of the protist parasite Entamoeba histolytica. Nature 433: 865-868.

12. Barr AJ, Knapp S (2006) MAPK-specific tyrosine phosphatases: new targets for
drug discovery? Trends Pharmacol Sci 27: 525-530.

13. Tautz L, Pellecchia M, Mustelin T (2006) Targeting the PTPome in human
disease. Expert Opin Ther Targets 10: 157-177.

14. NCBI website. Available: http://www.ncbi.nlm.nih.gov/genome/27. Accessed
2012 October 10.

PLOS ONE | www.plosone.org

Protein Phosphotome of Entamoeba histolytica
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than most of other eukaryotes. A large number of PPs manifests
protein phosphorylation as the key mechanism of signal transduc-
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groups STP and PTP, in which STP has highest members with
145 proteins, indicating STPs as the key players in the regulation
of the parasite. Several members were seen from the new family of
phosphatases (INPP5 family) that do not have homologs in
humans. Proteins from the pyrophosphatase family which are
crucial for the survival of the parasite were also identified. This
indicates that members of the INPP5 and pyrophosphatase family
can act as good drug targets. Several phosphatases in combination
with LRRs were also seen, the involvement of LRRs in microbial
pathogenesis and their capability to bind to a vast array of
structurally unrelated ligands make them a potential target for
vaccines and new drugs. Few pseudophosphatases were also
identified, these are suggested to be involved in virulence of the
parasite [47]. In particular, protein phosphorylation is a major
currency of signal transduction pathways. Exploring the conditions
under which the cells employ two different kinetic mechanisms for
dephosphorylation will help us to understand more about the
evolutionary adaptation of organisms.
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