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Patient-derived rhabdomyosarcoma cells
recapitulate the genetic and transcriptomic
landscapes of primary tumors

Yuxiang Hu,1,2,3,8 Ziqi He,1,2,3,8 Shuangai Liu,1,2,3 Wenwen Ying,4 Yifan Chen,4 Manli Zhao,5 Min He,1,2 XuanWu,1,2

Yinbing Tang,1,2 Weizhong Gu,5 Meidan Ying,1,4,7,* Jinhu Wang,1,2,6,7,* and Ting Tao1,2,6,7,9,*
SUMMARY

Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in childhood and adolescence. The
availability of appropriate and well-characterized preclinical models for RMS is limited, posing a challenge
for investigating the molecular mechanisms and evaluating new targeted compounds in preclinical set-
tings. Here, we collected 51 RMS specimens (referred to as ZJUCH-RMS cohort) and established 9 pa-
tient-derived cells (PDCs) and validated the identity of these cells by the expression of RMS-specific
markers. Whole-transcriptome analysis identified high-confidence mutations in ZJUCH-RMS cohort
including RAS, TP53, ARID1A, MYOD1, and MYCN. Further studies showed that RMS PDCs retained
the genetic alterations and the expression of RMS hallmark and dependency genes in matched primary
tumors and acted as valuable tools to assess drug responses and pharmacogenomic interactions. Our
study provides unique PDCs that are available for preclinical studies of RMS and further advances the
feasibility of RMS PDCs as valuable tools for developing personalized treatments for patients.

INTRODUCTION

Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in childhood and adolescence, which accounts for about 7% of solid tu-

mors and 50% of soft tissue sarcomas in children.1 The annual incidence of RMS in children under 20 years of age is�4.5 patients per million,

with a slight male predominance (male/female = 1.37:1).1,2 This malignancy represents a high-grade neoplasm composed of skeletal

myoblast-like cells, demonstrating notable local invasiveness and a robust tendency to metastasize.3,4 By combining morphologic features

andmolecular genetics, the 2020World HealthOrganization (WHO) classification divides RMS into four subtypes: embryonal (ERMS), alveolar

(ARMS), spindle/sclerosing cell (SRMS), and pleomorphic (PRMS).5 Despite advances in multimodal therapy, including surgery, chemo-

therapy, and radiation therapy, the prognosis for RMS remains guarded, particularly in cases of metastatic or recurrent disease.6 The five-

year overall survival rate is 70–90% for ERMS and 50–70% for ARMS.3,7 Understanding the molecular mechanisms underlying RMS pathogen-

esis and progression is crucial for developing targeted therapies and improving outcomes for affected patients. Further, preclinical models

serve as essential tools for evaluating the efficacy and safety of potential therapeutics. However, the availability of appropriate and well-char-

acterized preclinical models for RMS is limited, posing a challenge for investigating the molecular mechanisms and evaluating new targeted

compounds in preclinical settings.

Over the past few decades, cancer cell lines have played crucial roles in cancer research, serving as invaluable tools for studying various

aspects of cancer biology, including tumor initiation, progression, and drug response. Two large-scale dataset of cultured cancer cells and

their pharmacology have been described and provided valuable information for personalized therapeutic regimens.8,9 Cell lines also offer a

convenient platform for conducting mechanism studies and target verifications in biomedical studies, benefiting from the availability of

numerous tools. For RMS, 18 ERMS and 12 ARMS cell lines have been reported to be used in various studies from the literature.10 However,

the long-term culture of cell lines may produce potential pitfalls during cancer research. First, these cell lines may acquire additional muta-

tions, whichmake themno longer accurately replicate the characteristics of the original tumor. Second, theremay be nomenclature errors and
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Figure 1. Characterization of rhabdomyosarcoma patient samples in ZJUCH-RMS cohort

(A) Schematic diagram for the RMS samples processing and establishment of RMS PDCs. This figure is created with Figdraw.

(B and C) Pie charts showing the subtypes (B) and tumor locations (C) of RMS in ZJUCH-RMS cohort.

(D) Histological features of two main subtypes of RMS (ERMS and ARMS) were observed under hematoxylin and eosin (H&E) staining. Scale bars, 100 mm.

(E) Representative images of two main subtypes of RMS (ERMS and ARMS) by immunohistochemical staining for MYOD1 and MYOG. Scale bars, 100 mm.

ll
OPEN ACCESS

iScience
Article
cross-contamination between cell lines. The misidentification of cell lines currently is estimated to be between 15% and 35%, highlighting the

significant challenges in ensuring the accuracy of cellular research and data interpretation.10,11

In the ongoing process of research, a number of new cancer cell lines have been established and subjected to various characterizations and

applications. For example, Lee et al. established large-scale of patient-derived cells (PDCs) across 14 different tumor types and demonstrated

clinical consistency between drug sensitivity and clinical response based on these PDCs, emphasizing the prospect of personalized treatment

guided by drug screening.11 Qiu et al. generated 50 PDCs from hepatocellular carcinomapatients and established a pharmacogenomic land-

scape in liver cancers, providing a useful resource for drug discovery.12,13 Both studies demonstrated genetic and transcriptomic similarity

between PDCs and primary tumors, highlighting their potential as representative models for studying tumor biology and therapeutic

responses.

In this study, we collected 51 RMS specimens (referred to as ZJUCH-RMS cohort) and established 9 PDCs from these samples, and vali-

dated the identity of these cells by the expression of RMS-specific markers. RNA sequencing (RNA-seq) was performed to profile the genetic

alterations in ZJUCH-RMS cohort and to compare the transcriptome and genetic mutations between the PDCs andmatched primary tumors.

The ZJUCH-RMS cohort exhibited mutations in various genes including RAS family genes, TP53, ARID1A,MYOD1, andMYCN. Further anal-

ysis showed that RMS PDCs retained the genetic alterations and the expression of RMS hallmark and dependency genes in matched primary

tumors and acted as valuable tools to assess drug responses and pharmacogenomic interactions. Our study provides unique PDCs that avail-

able for preclinical studies of RMS and further advances the feasibility of RMS PDCs as valuable tools for developing personalized treatments

for patients.

RESULTS
Generation and characterization of nine RMS PDCs from ZJUCH-RMS cohort

To generate and characterize RMS PDCs, we collected 51 RMS specimens (referred to as ZJUCH-RMS cohort) from Department of Surgical

Oncology, Children’s Hospital Zhejiang University School of Medicine and subjected to PDC culture (see STAR Methods for detail) and tran-

scriptome sequencing (Figure 1A). The demographic characteristics of these samples were summarized in Tables S1 and S2.Most of the cases

(n = 40, 78.43%) were diagnosed as ERMS, with 10 ARMSs (all PAX3-FOXO1 fusion-positive by fluorescence in situ hybridization) and 1 SRMS

(Figure 1B). They typical arose from immature skeletal myoblasts located at pelvis, genitourinary tract, and extremities (Figure 1C). ERMS pre-

sents as a mixed type of round and spindle-shaped cells, accompanied by myxoid stromal changes. The histology of ERMS resembles a com-

bination of striatedmuscle cells at different stages of embryonal development: from small, round, undifferentiated cells, to tadpole-like cells,

ribbon-shaped striated cells, and finally to fully differentiated rhabdomyoblasts (Figure 1D, top panel). The characteristics of ARMS include

large nuclei, with abundant acidophilic cytoplasm andmultinucleated tumor giant cells. Tumor cells aggregate at the edges of fibrous septa,

resulting in alveolus-like structures (Figure 1D, bottom panel). All the tested specimens were immunohistochemical-positive for MYOD1 and

MYOG (Figure 1E; Table S1), two skeletal muscle-specific nuclear regulatory proteins,5 verifying the reliability of these samples in this cohort.

Nine RMS PDCs were established at 2–3 weeks from the 51 RMS specimens, including 7 ERMSs, 1 ARMS, and 1 SRMS (Figures 2A and S1;

Table 1), with an overall success rate of 17.65%. Interestingly, the success rate was 17.5% for ERMS, and 10% for ARMS, though ARMS behaves

more aggressively than ERMS clinically. Two of the PDCswere established from a single individual, with one pre-chemotherapy (ZJUCH-RMS-

PDC-39BC) and the other post-chemotherapy (ZJUCH-RMS-PDC-39AC), providing ideal models to study the effects of chemotherapy on

tumor biology and therapeutic responses. Morphologically, these PDCs typically displayed elongated or spindle-shaped cells with variable

degrees of differentiation (Figure 2A). All the RMS PDCs could be cultured in vitro for more than 15 passages, with cell doubling time around

3–4 days (Figure 2B). Reverse transcription polymerase chain reaction (RT-PCR) of RMS hallmark genes showed that all the RMS PDCs ex-

pressed MYOD1 and DES, and majority of them expressed MYOG and MYF5 (Figure 2C). Interestingly, the post-chemotherapy PDC

ZJUCH-RMS-PDC-39AC showed lower expression ofMYOG andDES, as compared with the pre-chemotherapy one. These results indicated

a possible cell lineage shift toward muscle stem-like cells upon chemotherapy, as reported by previous studies with single-cell RNA-seq.14–16

Moreover, the ARMS PDC ZJUCH-RMS-PDC-15 maintained the PAX3–FOXO1 fusion as detected by RT-PCR (Figure 2D). Immunofluores-

cence staining showed that these PDCs were positive for MYOD1 and MYOG, confirming the origin of skeletal muscle lineage (Figure 2E).

RMS PDCs retain the expression of RMS hallmark and dependency genes in primary tumors

To characterize the RMS PDCs and primary tumors at the transcriptional level, we performed RNA sequencing (RNA-seq) analysis for all the

PDCs and primary tumors, as well as RMS cell lines PLA-802, RD and RH30. Six non-RMS, fibroblast-like PDCs derived from RMS tissues were

also subjected to the same analysis. These non-RMS PDCs were characterized by the negative expression ofMYOD1 andMYOG. PDCs with

less than 10 passages were used for the experiments. We also obtained the transcriptome data of 17 RMS cell lines and 3 fibroblast cell lines

(RMS stroma origin) from Cancer Cell Line Encyclopedia (CCLE).8 Pearson correlation based on the expression of RMS hallmark genes re-

vealed that our RMS PDCs were closely correlated with existing RMS cell lines, and our non-RMS PDCs were closely correlated with the
iScience 27, 110862, October 18, 2024 3
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Figure 2. Establishment and characterization of nine rhabdomyosarcoma patient-derived cells

(A) Morphologies of two representative RMS PDCs including ZJUCH-RMS-PDC-15 and ZJUCH-RMS-PDC-40. Scale bars, 100 mm.

(B) Relative cell growth of RMS PDCs. Values represent means G SEM of triplicate experiments. h, hours.

(C) Validation of RMS PDCs by RT-PCR forMYOD1,MYOG,MYF5, andDES. RMS cell lines RD, RH30, and PLA-802 were used as positive controls, double distilled

water (ddWater) was used as negative control. GAPDH was used as a reference gene.

(D) Detection of PAX3-FOXO1 fusion in ZJUCH-RMS-PDC-15 by RT-PCR. RMS cell line RDwas used as negative control and RH30 as positive control. GAPDHwas

used as a reference gene.

(E) Immunofluorescence staining of a representative RMS PDC for MYOD1 and MYOG. Nuclei were stained with DAPI (blue). A staining without the primary

antibody was used as control. Scale bar, 25 mm.
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fibroblast cell lines (Figure 3A), demonstrating the robustness and fidelity of our PDCmodels in recapitulating themolecular characteristics of

their respective counterparts. RMS hallmark genes including MYOD1, MYOG, IGF2, FGFR4, ALK, DES, PAX3, PAX7, MYF5, MYF6, and

MYCN17–19 were highly expressed in RMS PDCs and cell lines, while showing lowly or absent expression in non-RMS, fibroblast-like PDCs

and fibroblast cells (Figure 3B).

To further explore the similarities and differences between RMS PDCs and matched primary tumors, we examined the expression of

386 RMS dependency genes (Table S3, based on cancer dependency map20). We found the expression of these dependency genes were

well maintained in RMS PDCs compared to the corresponding tumor tissues, as well as RMS cell lines (Figure 3C). Principal component anal-

ysis (PCA) using this gene set showed that RMS PDCs, but not cell lines, clustered well with tumor tissues they are derived from (Figure 3D).

Gene set enrichment analysis (GSEA) based on the whole transcriptome data revealed a main difference between RMS PDCs and tissues.

Specifically, PDCs exhibited a loss of expression in genes enriched in myeloid and lymphoid cell lineages (Figures S2A and S2B), reflecting

the absence of a tumor immune environment in the PDCs. Taken together, these data demonstrate RMS PDCs retain the major molecular

features of tumor cells, albeit with apparent alterations in the immune landscape compared to tissues.
Genetic alterations identified in RMS of the ZJUCH-RMS cohort

We next sought to investigate the RMS PDCs and primary tumors in terms of genetic mutations. By analyzing the RNA-seq data from 51 pri-

mary tumors, we first identified 120 high-confidence variants involving 93 genes in the ZJUCH-RMS cohort, with amedian of 3 high-confidence

mutations in each of the 51 RMS samples (Figure S3; Table S4). The most frequently mutated high-confidence genes included TP53 (n = 10,

19.61%), NRAS (n = 9, 17.65%), ARID1A (n = 7, 13.73%), and HRAS (n = 6, 11.76%) in this cohort (Figures 4A and S3). Mutations of RAS family

genes (NRAS, HRAS, and KRAS) was exclusively identified in PAX3-FOXO1 fusion-negative (PFN) ERMS cases (16 out of 40), resulting in a sig-

nificant higher mutational frequency of RAS in PFN ERMS than in PAX3-FOXO1 fusion-positive (PFP) ARMS (p< 0.05, two-tailed Fisher’s exact

test) (Figures 4A and 4B; Table S4). In addition, mutations of transcriptional factors TP53, MYOD1 (L122R), and MYCN (P44T), as well as an

epigenetic regulator ARID1A, were well identified in this cohort (Figure 4A; Table S4). TP53, a well-known tumor suppressor, was mutated

in 9 out of 40 PFN ERMS cases, while only in 1 out of 10 PFP ARMS cases. Most of the TP53 mutations occurred at DNA-binding domain,

indicating a potential loss of DNA-binding ability of TP53 and suggesting a compromised tumor-suppressive function in these cases. More-

over, 60% of the RMS cases with TP53 mutations exhibited anaplastic histology, which was significantly higher than that in TP53-wild-type

group (p < 0.001, two-tailed Fisher’s exact test) (Figure 4C).MYOD1 andMYCN are both basic-helix-loop-helix (bHLH) transcriptional factors

that play important roles in regulating cellular processes such as muscle differentiation, cell cycle progression, and oncogenesis. Previous

studies have shown thatMYCN is mutated at the same site (P44) in childhood neuroblastoma21 and Wilms tumors,22 suggesting a potential

role forMYCNmutations in tumorigenesis across multiple pediatric cancers. Mutations in the chromatin remodeler ARID1A offer a potential

therapeutic target for RMS, as ARID1B has been identified as a specific vulnerability in ARID1A-mutant cells in other tumors, including neu-

roblastoma and ovarian cancers.23,24
Table 1. The characteristics of RMS PDCs generated from ZJUCH-RMS cohort

PDC Gender Age of diagnosis in years Tumor location

Source (primary/

metastasis/relapse) Subtype

Time to

establish (weeks)

ZJUCH-RMS-PDC-15 Female 16.39 Extremities Primary ARMS 2–3

ZJUCH-RMS-PDC-21 Female 1.33 Genitourinary Primary ERMS 2–3

ZJUCH-RMS-PDC-22 Female 0.73 Genitourinary Primary ERMS 2–3

ZJUCH-RMS-PDC-39BC Male 4.30 Extremities Primary ERMS 2–3

ZJUCH-RMS-PDC-39AC Male 4.30 Extremities Primary ERMS 2–3

ZJUCH-RMS-PDC-40 Male 5.41 Head and neck Metastasis ERMS 2–3

ZJUCH-RMS-PDC-54 Female 0.95 Genitourinary Primary ERMS 2–3

ZJUCH-RMS-PDC-77 Male 11.45 Trunk Relapse SRMS 2–3

ZJUCH-RMS-PDC-78 Male 0.85 Extremities Primary ERMS 2–3

iScience 27, 110862, October 18, 2024 5
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Figure 3. RMS PDCs retain the expression of RMS hallmark and dependency genes in primary tumors

(A) A heatmap of Pearson’s correlation analysis based on log2 (TPM+1) of RMS hallmark genes from RNA-seq visualizing the correlation coefficients (r) between

samples.

(B) Hierarchical clustering of the RMS hallmark genes based on log2 (TPM+1). Scale bar represents range of the relative expression levels.

(C) Log2 (TPM+1) expression of RMS dependency genes (n = 386) in RMS PDCs andmatched primary tumors. RMS cell lines were used as positive controls. Boxes

indicate the median (horizontal line), 25th percentile and 75th percentile; Whiskers, 2.5–97.5th percentiles.

(D) PCA analysis of RMS cell lines, PDCs and matched primary tumors based on the expression of RMS dependency genes. A 95% confidence ellipse was shown

for each group.
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We then grouped theses high-confidence genes by their biological processes, and the top five most frequently mutated pathways were

the MAPK signaling (n = 17, 33.33%), genome integrity (n = 13, 25.49%), chromatin SWI/SNF complex (n = 7, 13.73%), transcription factor

(n=6, 11.76%), and receptor tyrosine kinase (RTK) signaling (n=4, 7.84%), all of whichplay crucial roles in regulating tumorigenesis (Figure 4D).

Notably, the RAS-MAPK signaling pathway was most commonly altered in RMS, along with the activating mutations in RAS family members,

including NRAS (G12S, G13D, and Q61 H/K/R), HRAS (G13 R/V and Q61 K/L), and KRAS (G12A), leading to constitutive activation of down-

stream signaling cascades. The pairwise associations of these high-confidence mutations were investigated, identifying a total of 20 pairs of

significantly co-occurring genes (p < 0.05, two-tailed Fisher’s exact test) (Figure 4E). Through this analysis, we detected several notable muta-

tional associations in RMS. For instance, mutations in MYCN, RAS, TP53, and MYOD1 frequently co-occur with other mutations. Significant

interactions (p < 0.05, two-tailed Fisher’s exact test) includedMYCNwith ATM, CHEK2, or FRMPD1;NRASwithNCF1 or COL2A1; HRAS with

AIP; KRAS with PLCG1; TP53 with MUTYH, CIC, or AIP; and MYOD1 with NRAS or COL2A1.

RMS PDCs retain the genetic alterations in matched primary tumors

To investigate whether the RMS PDCs retained the genetic mutations of their corresponding tumor tissues, we performed RNA-seq for all the

nine RMS PDCs and compared the data with matched primary tumors. The majority of the high-confidence mutations were well preserved in

PDCs as in matched tissues, includingMYOD1, NRAS, HRAS, ARID1A, and TP53 (Figure 5A; Table S5). The variant allele frequency (VAF) for

each variant was comparable between each pair of samples (Figure 5B). Among these variants,MYOD1 L122R, which harbors mutation in the

bHLHdomain, is themost prevalent one (Figure 5C). It has been reported thatMYOD1with L122Rmutation imparts a new c-MYC-site binding

capability, possibly leading to a shift from cell differentiation to proliferation.25,26 Further studies were needed to clarify the function of this

variant in pathogenesis of RMS. Some RMS PDCs also gained a few additional mutations that were absent in the matched primary tumors,

including mutations in JMJD1C, NUP214, RUNX1, RELN, TRRAP, and CENPF, with an average of less than 1 variant per sample (Figure 5A).

Gene ontology (GO) analysis of these genes did not reveal any significantly enriched biological process or molecular function pathway, indi-

cating the randomness of these mutations. Thus, RMS PDCs highly resemble the genetic features of their match primary tumors, demon-

strating the fidelity and reliability of the PDC models in preclinical studies.

Effects of chemotherapeutic agents on RMS PDCs

To test the feasibility of RMS PDCs as valuable tools for evaluating drug responses, we performed drug screening using a library of 278 com-

pounds, including targeted anti-cancer drugs and chemotherapeutic agents (Figure S4A; Table S6). The efficacy of these compounds varied

among different RMS PDCs, with a cluster of several chemotherapeutic agents and targeted anti-cancer drugs involved in DNA damage and

repair, epigenetics, and protein tyrosine kinase inhibition showing broad efficacy across all PDCs (Figure S4B). The relationship between gene

mutation and drug sensitivity was predicted by oncoPredict, for example, mutations in RUNX1 conferred resistance to compounds rubitecan

and CB-5083, while enhancing sensitivity to other compounds (Figure S4C; Table S7).

We next focused on the efficacy of common chemotherapeutic agents on RMS PDCs. All the PDCs showed a higher sensitivity to actino-

mycin D (IC50: 1.50–7.89 nM), doxorubicin (IC50: 76.68–1392.00 nM), epirubicin (IC50: 63.97–1661.00 nM), pirarubicin (IC50: 25.2–1637.00 nM),

and topotecan (IC50: 33.85–1004.00 nM), while a lower sensitivity to etoposide (IC50: 8511.00–91092954.00 nM) (Figures 6A and S5). We further

found that three PDCs (refer to as AL-VCR-VDS-res group) showed more chemoresistance than the other six (refer to as AL-VCR-VDS-sen

group) for anlotinib, vincristine, and vindesine (Figure 6B). By integrated analysis with the gene mutations data, we were intriguingly to

find that all the PDCs in the AL-VCR-VDS-res group harbored RAS-activating mutations, while no such mutations were found in the PDCs

of the AL-VCR-VDS-sen group (p < 0.05, two-tailed Fisher’s exact test) (Figure 6C). Analysis of the transcriptome data between these two

groups showed that RAS signaling pathway was activated in the AL-VCR-VDS-res group (Figure 6D), which is consistent with the activating

mutations of RAS family genes. The activation of RAS pathway may cf. chemoresistance of RMS PDCs for anlotinib, vincristine, and vindesine,

as previous studies in osteosarcoma and B cell precursor acute lymphoblastic leukemia showed similar results.27,28 Anlotinib is a small mole-

cule inhibitor targeting multiple RTKs, thereby affecting the RTK-RAS-MAPK signaling cascade within cells,29 activation of RAS may lead to

anlotinib resistance by circumventing the inhibitory effects of the drug on RTK signaling. Moreover, GSEA analysis showed significantly en-

riched pathways involved in spindle organization and assembly in the AL-VCR-VDS-res group (Figure 6E). As vincristine and vindesine work by

interfering with microtubule formation and disrupting the mitotic spindle apparatus during cell division, the upregulation of these pathways

suggests potential mechanisms of resistance to vincristine and vindesine in this group. Taken together, our results demonstrated the viability

of RMS PDCs as valuable tools to assess drug responses, as well as the gene-drug associations, which will provide insights into clinical prac-

tices and potentially guide personalized treatment strategies.
iScience 27, 110862, October 18, 2024 7
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Figure 4. Genetic alterations of RMS identified in the ZJUCH-RMS cohort

(A) An oncoplot displaying top 30 genes with high-confidence mutations identified from RNA-seq analysis in 51 RMS samples. Genes are ordered by their

mutation frequencies, with the tumor mutation burden (TMB) for each sample shown at the top of the panel, the number and percentage of samples for

each gene shown at the right of the panel, and RMS patients information at the bottom of the panel.

(B) Frequencies of mutations in RAS family genes (NRAS,HRAS, and KRAS) in ARMS and ERMS were compared using the two-tailed Fisher’s exact test. *p < 0.05.

(C) Percentages of RMS cases with anaplastic histology in TP53-wildtype (WT) and mutant (Mut) groups were compared using the two-tailed Fisher’s exact test.

***p < 0.001.

(D) Top 15 biological pathways ordered by their mutation frequencies. The number and percentage of samples for each pathway are shown at the right of the

panel.

(E) A heatmap displaying pairwise co-occurrence (in blue) and mutual exclusivity (in yellow) correlations between high-confidence genes. The statistical analysis

was performed by two-tailed Fisher’s exact test.
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DISCUSSION

Preclinical models are invaluable tools in biomedical research, providing insights into disease mechanisms, facilitating drug discovery and

development, and paving theway for personalizedmedicine approaches. However, the availability of appropriate andwell-characterized pre-

clinical models for RMS is limited. Here, we established 9 RMS PDCs from primary tumors, and showed that RMS PDCs retained the genetic

alterations and the expression of RMS hallmark and dependency genes in matched primary tumors. RMS PDCs act as valuable tools to study

RMS biology, drug responses, and pharmacogenomic interactions, which advances the feasibility of these PDCs for developing personalized

treatments for patients. Although cell lines offer a consistent and reproducible experimental system for biological studies, they may accumu-

late genetic alterations over time in culture, diverging from the original tumors.10 In contrast, PDCs maintain genetic stability closer to the

original tumor, offering a more reliable model for evaluating drug responses. Previous studies have established patient-derived xenograft

(PDX) and organoid models for RMS, providing an essential support for basic and translational research for this disease.30–33 These models

can be typically identified in 4–8 weeks, with feasibility of personalized drug screening. On the other hand, PDCs take much shorter time to

establish, and exhibit a relatively higher successful rate, as compared to PDXs.11 Drug screeningwith PDCs can be conducted on a large scale,

in a patient-specific manner, and within a short time frame, which may benefit patients with personalized therapies.

Previous studies have shown that RAS pathway is mutationally activated in approximately 45% of PFN RMS cases,34,35 which are similar to

our results. The RAS-MAPK signaling pathway plays a critical role in the pathogenesis of RMS.36 Dysregulation of this pathway is commonly

observed in RMS, leading to uncontrolled cell proliferation, survival, and differentiation. Activating mutations in RAS family members are

frequently detected in RMS. Additionally, aberrant activation of RTKs, such as FGFR4 and IGF1R, can drive RAS-MAPK pathway activation

in RMS.29 It has been reported that mutations or activation of RAS pathway can lead to resistance to multiple drugs. For examples, anlotinib

resistance in osteosarcoma is mediated by the VEGFR/RAS/CDK2 pathway,27 and RAS pathway-mutated cells aremore resistant to vincristine

in pediatric B cell precursor acute lymphoblastic leukemia.28 Our data showed that three RMS PDCs with RAS-activating mutations exhibited

increased resistance for anlotinib, vincristine, and vindesine than the other six, demonstrating the potential roles of RAS pathway dysregula-

tion in chemotherapy resistance in rhabdomyosarcoma. Targeted inhibition of the RAS-MAPK pathway components represents a promising

therapeutic strategy for RMS, aiming to impede tumor growth and improve patient outcomes.

TP53 germline mutations are reported to be associated with nonalveolar, anaplastic histology in 11 RMS cases.37 Here, we showed that

TP53mutations were enriched in PFN ERMS cases and were associated with anaplastic histology, further supporting this conclusion.MYOD1

is a skeletal muscle-specific transcription factor, which plays a key role inmuscle development and differentiation. Kohsaka et al. reported that

a recurrent somatic point mutation L122R inMYOD1 is presented in a distinctive subset of ERMS with poor outcomes.25 However, Rekhi et al.

found thatMYOD1 L122R mutation occurred exclusively in SRMS, and were associated with a relatively aggressive clinical course.38 Our data

showed that MYOD1 variant with L122R mutation occurred in 3 ERMS cases and 1 SRMS case, indicating a broader spectrum of tumor sub-

types affected by this mutation and suggesting potential implications for clinical management and prognosis. ARID1A is the most frequently

mutated subunit of SWI/SNF chromatin remodeling complexes across a variety of human cancers, and it functions as a tumor suppressor.39

ARID1A loss impairs enhancer-mediated gene expression and drives cancers including neuroblastoma, colon cancer, and ovarian can-

cer.23,24,40 ARID1B is synthetic lethal with ARID1A and knockdown of ARID1B in ARID1A-deficient backgrounds impairs cell proliferation in

neuroblastoma and ovarian cancer cells.23,24 Thus, mutations of ARID1A in RMS offer a potential therapeutic target for RMS.

In summary, we identified genetic mutations in 51 RMS specimens from the ZJUCH-RMS cohort and also established 9 PDCs from

these samples. The RMS PDCs maintained the genetic mutations and the expression of RMS hallmark and dependency genes in

matched primary tumors, serving as valuable tools for evaluating drug responses, and identifying gene-drug associations. With the

increased number of validated RMS PDCs and the maturation of PDC-based platforms, we anticipate the provision of a robust and

individualized preclinical model for the precise treatment of RMS. This advancement promises to enhance our understanding of

RMS pathobiology and therapeutic responses, allowing for the identification of personalized treatment strategies tailored to the unique

characteristics of each patient.

Limitations of the study

With the relatively lower success rate in establishing ARMS PDCs compared to ERMS, coupled with the limited availability of ARMS clinical

samples, there is a need to expand the number of ARMS PDCs. Enhancements in methodologies are essential to improve the success rate for

the establishment of ARMS PDCs, ultimately advancing our understanding of this aggressive subtype of RMS.
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Figure 5. RMS PDCs recapitulate the genetic alterations in matched primary tumors

(A) Oncoplots comparing genes with high-confidence mutations between RMS PDCs and matched primary tumors. TMB, tumor mutation burden.

(B) Variant allele frequency (VAF) of high-confidence variants identified from RMS PDCs andmatched primary tumors. Boxes indicate themedian (horizontal line),

25th percentile and 75th percentile; Whiskers, minimum or maximum value. Each dot represents the value for a single variant.

(C) A lollipop plot showing MYOD1 variant with L122R mutation in the basic-helix-loop-helix (bHLH) domain. The protein domains of MYOD1 are shown.
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Figure 6. The effect of chemotherapeutic agents on RMS PDCs

(A) A clustered heatmap showing drug response profile based on log10 (IC50) of common chemotherapeutic agents for nine RMS PDCs. Mutation status of RAS

family genes was indicated.

(B) IC50 (mM) of anlotinib, vincristine, and vindesine for RMS PDCs in AL-VCR-VDS-sen and AL-VCR-VDS-res groups. Values are meansG SD. Each dot represents

the value for a single RMS PDC. Mean values were compared by the two-tailed unpaired t test. *p < 0.05; ****p < 0.0001.
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Figure 6. Continued

(C) Frequencies of mutations in RAS family genes (NRAS,HRAS, and KRAS) in AL-VCR-VDS-sen and AL-VCR-VDS-res groups were compared using the two-tailed

Fisher’s exact test. *p < 0.05.

(D and E) GSEA of gene expression profiles of RMS PDCs in AL-VCR-VDS-sen group versus AL-VCR-VDS-res group. Representative significantly enriched gene

signatures indicative of RAS signaling (D) and spindle organization and assembly (E) are shown. Genes are ranked by score and plotted along the x axis as vertical

black bars. NES, normalized enrichment score.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-MYOD1 antibody Cell Signaling Technology Cat# 13812; RRID: AB_2798320

Anti-MYOD1 antibody GeneTech Cat# GT218802

Anti-MYOG antibody Abcam Cat# ab219998

Anti-MYOG antibody GeneTech Cat# GM355929

Goat anti-Rabbit IgG (H+L) Highly Cross-Adsorbed

Secondary Antibody, Alexa Fluor� 488

Thermo Fisher Scientific Cat# A-11034; RRID: AB_2576217

Biological samples

Human Rhabdomyosarcoma This paper N/A

Chemicals, peptides, and recombinant proteins

Compound for screening, see Table S6 Selleck, MCE see Table S6

Critical commercial assays

HiScript III All-in-one RT SuperMix Perfect for qPCR Vazyme Cat# R333

MycoBlue Mycoplasma Detector Vazyme Cat# D101

CellTiter-Glo Luminescent Cell Viability Assay Promega Cat# G7573

Cell Counting Kit-8 TargetMol Cat# C0005

Deposited data

RNA-seq data This paper CNCB: HRA007320, HRA007324

Experimental models: Cell lines

PLA-802 Laboratory stock N/A

RH30 American Type Culture Collection Cat# CRL-2061

RD National Collection of Authenticated

Cell Cultures

Cat# TCHu 45

Other

ZJUCH-RMS-PDC-15 This paper N/A

ZJUCH-RMS-PDC-21 This paper N/A

ZJUCH-RMS-PDC-22 This paper N/A

ZJUCH-RMS-PDC-39BC This paper N/A

ZJUCH-RMS-PDC-39AC This paper N/A

ZJUCH-RMS-PDC-40 This paper N/A

ZJUCH-RMS-PDC-54 This paper N/A

ZJUCH-RMS-PDC-77 This paper N/A

ZJUCH-RMS-PDC-78 This paper N/A

Oligonucleotides

Primers for RT-PCR, see Table S8 This paper N/A

Software and algorithms

GraphPad Prism 9 GraphPad software www.graphpad.com

STAR Dobin et al., 201343 https://github.com/alexdobin/STAR

CTAT-Mutations Github https://github.com/NCIP/ctat-mutations
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REAGENT or RESOURCE SOURCE IDENTIFIER

ANNOVAR Wang et al., 201044 https://annovar.openbioinformatics.

org/en/latest

PeCanPIE Edmonson et al., 201945 https://pecan.stjude.cloud/pie

DESeq2 package Anders and Huber, 201046 https://bioconductor.org/packages//

2.12/bioc/html/DESeq2.html

maftools Mayakonda et al., 201847 https://bioconductor.riken.jp/packages/

3.4/bioc/html/maftools.html

Gene Set Enrichment Analysis (GSEA) Subramanian et al., 200548 https://www.gsea-msigdb.org/gsea/index.jsp
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Patient samples and characteristics

Rhabdomyosarcoma samples were obtained from Department of Surgical Oncology, Children’s Hospital Zhejiang University School of Med-

icine, and these samples were referred to as ZJUCH-RMS cohort. The demographic characteristics of patient samples are presented as

Tables S1 and S2. This study was approved by the Ethics Committee of Children’s Hospital, Zhejiang University School of Medicine

(2020-IRB-049). All data were acquired with informed consent frompatients, their parents or guardians. All results were reportedwith arbitrary

sample ID numbers without linked identifiers. Histopathological features of these tumors were evaluated by department of pathology,

Children’s Hospital Zhejiang University School of Medicine. Briefly, the tissue specimen was fixed in 10% neutral buffered formalin, routinely

processed, and embedded in paraffin. Paraffin blocks were used to generate haematoxylin and eosin (H&E)-stained sections. Immunohisto-

chemistry for MYOD1 (clone EP212, diluted 1:200; GeneTech) and MYOG (clone EP162, diluted 1:200; GeneTech) was performed on 4-mm-

thick tissue sections using the BenchMark ULTRA automated immunostainer (Ventana Medical Systems, Tucson, USA).

Patient-derived cell (PDC)

RMS tissues were obtained from post-surgical resection and rinsed with PBS. Both necrotic tissues and blood vessels were removed, and the

remaining tissues were delicately dissected into small fragments or cubes (1 to 2mm in diameter) with scissors and scalpels. The resuspended

cancer fragments were washed with DMEM/F-12 (1:1) medium (VivaCell) in a 70 mm cell strainer, and transferred into a tissue culture dishes

containing pre-warmed DMEM/F-12 (1:1) medium (VivaCell) supplemented with 15% fetal bovine serum (ExCell) and 1X penicillin-strepto-

mycin-amphotericin B (Solarbio). The culture dishes were incubated in a CO2 incubator set to 37�C with 5% CO2, and the growth of

the adherent cells was closely monitored. The absence of mycoplasma contamination was confirmed by MycoBlue Mycoplasma Detector

(Vazyme #D101). RMS PDCs were validated by the expression of RMS hallmark genes including MYOD1, MYOG, MYF5 and DES.

RMS cell lines

RMS cell line RH30 was purchased from American Type Culture Collection (ATCC), RD from National Collection of Authenticated Cell Cul-

tures (NCACC, Shanghai, China), and PLA-802 as a laboratory stock. They were maintained in DMEMmedium (VivaCell) supplemented with

10% fetal bovine serum (ExCell) and 1X penicillin-streptomycin-amphotericin B (Solarbio). The absence of mycoplasma contamination was

confirmed by MycoBlue Mycoplasma Detector (Vazyme #D101).

METHOD DETAILS

RNA extraction and reverse transcription polymerase chain reaction (RT-PCR)

Total RNA from RMS PDCs was extracted by the TRIzol reagent (Thermo Fisher Scientific #15596018CN). For RT-PCR, genomic DNA was

removed and first-strand cDNA was synthesized using the HiScript III All-in-one RT SuperMix Perfect for qPCR (Vazyme #R333), and RT-

PCR was performed on ProFlex PCR System (Thermo Fisher Scientific) according to the manufacturer’s instructions. Primer pairs for amplifi-

cation are listed in Table S8.

RNA sequencing (RNA-seq) and data analysis

Total RNA from RMSPDCs and primary tumors was extracted by the TRIzol reagent (Thermo Fisher Scientific #15596018CN), and subjected to

library preparation for Illumina NovaSeq 6000 S4 sequencing with a 150 bp paired-end sequencing strategy at Zhejiang Biosan Biochemical

Technologies Co., Ltd. RNA-seq data were aligned to the GRCh38 reference genome with STAR (2-passing mapping),43 followed by dupli-

cates marking with Picard (https://broadinstitute.github.io/picard/), and reads mapped to each gene were counted by featureCounts.49

Differentially expressed genes were called by the R Bioconductor package DESeq2,46 and normalized expression values for individual sam-

ples were obtained from DESeq2 using the variance-stabilizing transformation of the raw counts. The variance-stabilizing transformed data

were used for gene set enrichment analysis (GSEA).
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For mutational analysis, RNA-seq data were processed through CTAT-Mutations, a machine learning based RNA-seq variant calling pipe-

line (https://github.com/NCIP/ctat-mutations). Through CTAT-Mutations, RNA-seq data were processed with GATK best practices along

with downstream annotation and filtration of variants. The results were further annotated with ANNOVAR,44 and potential tumor-associated

mutations were identified through the following steps. First, variants were excluded if they met any of the following criteria: 1) variants not

located in exonic or splicing regions, or are synonymous SNVs located in exonic region, or located in repetitive regions of the genome; 2)

variants with allele reads less than 3, or sequencing depth less than 8; 3) VAF < 0.1 or allele frequency greater than 0.01 in ExAC or 1000 Ge-

nomes database. The candidate variants were selected from the retained variants if they met any of the following criteria: 1) variants were

annotated as "pathogenic, "likely pathogenic", "affects", "confers_sensitivity", "association", "drug response" or "risk factor" in ClinVar

or InterVar databases,50,51 or annotated as "oncogenic" or "likely oncogenic" in OncoKB,52 or presented in the COSMIC cancer gene census

v97 database53; 2) variants not predicted to be unharmful by all of the following programmes: SIFT, Polyphen2_HVAR, Polyphen2_HDIV, LRT,

MutationTaster,MutationAssessor, FATHMMandClinPred. The candidate variants were further annotatedwith PeCanPIE,45 and only variants

classified with a medal were considered as high-confidence mutations. Variants were visualized using R package maftools.47 The GO analysis

was performed using the PANTHER Overrepresentation Test (Released 20240226) (https://www.pantherdb.org/).
Gene set enrichment analysis (GSEA)

Genes from whole transcriptomic data were ranked based on the stat from DESeq2. The pre-ranked option of GSEA48 was run with 1000 per-

mutations for statistical evaluation. GSEA was performed with signatures from version 7.4 of the molecular signature database (MolSigDB)

(http://www.broadinstitute.org/gsea/msigdb/index.jsp).
Fluorescence in situ hybridization (FISH)

The interruption of PAX3 or FOXO1 gene was assessed by FISH. Tissue sections at 4-mm-thick were prepared from formalin-fixed, paraffin-

embedded (FFPE) tissue blocks. The sections, along with PAX3 or FOXO1 break-apart probes (Anbiping Medicine Science and Technology

#F.01227-01, #F.01018-01), were co-denatured at 90�C for 5 minutes, then incubated at 37�C for 18 hours using the ThermoBrite Elite dena-

turation-hybridization system (Leica Biosystems). A minimum of 200 tumor cell nuclei were analyzed. Gene rearrangement was identified by a

split signal, defined as the separation of signals by more than two signal widths. A positive result was defined as more than 20% of the as-

sessed nuclei displaying split signals.
Immunofluorescence of RMS PDCs

For immunofluorescence staining of RMS PDCs, cells on coverslips were washed twice in PBS, fixed in 3% paraformaldehyde at 4�C for 30 mi-

nutes. After incubating 3 times with 50mMNH4Cl in PBS and permeabilizing with PBS/0.2% Triton X-100 at room temperature for 15 min, the

cells were incubated with an anti-MYOD1 rabbit monoclonal (D8G3) antibody (Cell Signaling Technology #13812) or an anti-MYOG rabbit

polyclonal antibody (Abcam #ab219998) for 2 hours, washed by PBS/0.2% Triton X-100, and then incubated with a secondary antibody con-

jugated with Alexa Flour 488 ((Thermo Fisher Scientific #A-11034) for 1 hour. DAPI (SouthernBiotech #0100-20) was used for nuclear staining.
Cell growth assay

RMS PDCs were seeded into a 96-well plate at a density of 2000 cells per well. Relative cell growth at days 1, 2, 3, 4 and 5 was evaluated by

CellTiter-Glo Luminescent Cell Viability Assay (Promega #G7573).
The half-maximal inhibitory concentration (IC50) assay

For the large-scale screening of the targeted anti-cancer drugs and chemotherapeutic agents, RMSPDCswere seeded into a 384-well plate at

a density of 500 cells per well one day before treatment. For the test of common chemotherapeutic agents, RMS PDCs were seeded into a

96-well plate at a density of 5000 cells per well one day before treatment. After 3 days treatment with vehicle (DMSO) or compounds at various

concentrations, relative cell growth was evaluated by CellTiter-Glo Luminescent Cell Viability Assay (Promega #G7571) or Cell Counting Kit-8

(CCK-8) (TargetMol #C0005) as a percentage of the vehicle (DMSO) control. The IC50 value was determined with GraphPad Prism 9. The rela-

tionship between gene mutation and drug sensitivity was predicted by an R package oncoPredict.54
QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses were performed using two-tailed Fisher’s exact test or two-tailed unpaired t-test, as indicated in each of the figure legend.

p < 0.05 was considered as statistically significant.
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