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ABSTRACT Gram-negative bacteria include a number of pathogens that cause dis-
ease in humans and animals. Although antibiotics are still effective in treating a con-
siderable range of infections caused by Gram-negative bacteria, the alarming
increase of antimicrobial resistance (AMR) induced by excessive use of antibiotics
has raised global concerns. Therefore, alternative strategies must be developed to
prevent and treat bacterial infections and prevent the advent of a postantibiotic era.
Vaccines, one of the greatest achievements in the history of medical science, hold
extraordinary potential to prevent bacterial infections and thereby reduce the need
for antibiotics. Novel bacterial vaccines are urgently needed, however, and outer
membrane vesicles (OMVs), naturally produced by Gram-negative bacteria, represent
a promising and versatile tool that can be employed as adjuvants, antigens, and
delivery platforms in the development of vaccines against Gram-negative bacteria.
Here, we provide an overview of the many roles OMVs can play in vaccine develop-
ment and the mechanisms behind these applications. Methods to improve OMV
yields and a comparison of different strategies for OMV isolation aiming at cost-
effective production of OMV-based vaccines are also reviewed.
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Antimicrobial resistance. Human beings have greatly benefited from the discovery
and application of antibiotics to fight bacterial infections and significantly improve
health and life span as well as enable efficient animal husbandry and food production
(1, 2). For decades, however, antibiotics have been used in an unrestrained manner,
resulting in the global emergence of antimicrobial resistance (AMR). The World Health
Organization (WHO) has warned that the world is at the brink of a postantibiotic era
(3), where a reduced effectiveness of existing antibiotics and lack of novel antibiotics
will represent major threats to the health of humans and animals. The problem is par-
ticularly pressing in cases of infections caused by Gram-negative bacteria, since no
new antibiotic classes active against Gram-negative bacteria have been approved in
the past 20 years (4, 5). This alarming situation has been largely attributed to the
imprudent and excessive use of antibiotics in humans and animals (6). Of particular
concern is antimicrobial use in the livestock industry, which is a major contributor to
the rapidly increasing antimicrobial consumption due to a large global expansion of
livestock production reliant on routine antibiotic use to maintain animal health and
productivity (2). The global antimicrobial consumption in food animals is expected to
rise by 67% from 2010 to 2030, owing to the rising protein demand, especially in mid-
dle-income countries (7, 8). Particularly concerning is the overlap in the spectra of anti-
microbials used in humans and animals, exemplifying how the misuse and overuse of
antimicrobials in food animals can accelerate the emergence of antimicrobial-resistant
bacteria, threatening the health of both humans and animals (9). The public crisis eli-
cited by AMR pinpoints the interdependent health relationship between human and
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animals and calls for global attention to address the problem from a One Health per-
spective (10, 11). This has led to the adoption of numerous measures worldwide to
limit the use of antimicrobials in food animals, including, for example, bans on antimi-
crobial growth promoters and restrictions on the use of therapeutic antimicrobials crit-
ically important in human medicine. Unfortunately, these measures have been only
partly effective in reducing antimicrobial use, and the surge of AMR in medically rele-
vant bacterial species remains a serious health threat (12).

Vaccines and other alternatives to antimicrobials. To prevent selection of antimi-
crobial-resistant bacterial strains, strategies that aim at reducing antimicrobial use
through a One Health approach, targeting both humans and animals, are needed (13).
Several interventions may contribute to mitigate the development of AMR, including
improved hygiene and sanitation, better management and husbandry practices, vacci-
nation, and novel technologies, like phage therapy and monoclonal antibody therapy
(14, 15). Among these alternatives, vaccination is arguably one of the most effective in
reducing the need for antimicrobial treatment. This is exemplified by the vaccines
developed against Streptococcus pneumoniae and Haemophilus influenzae type b,
which dramatically reduced antibiotic use in humans (16, 17), and the development
and application of vaccines that, together with proper management, significantly lim-
ited the use of antibiotics in aquaculture in Northern Europe and North America (18).
Vaccines have been regarded as optimal tools in the fight against bacterial infections
thanks to their ability to elicit specific immunity in vaccinated individuals (19), conse-
quently reducing antibiotic use directly. In addition, even vaccines against nonbacterial
pathogens, such as viruses, can indirectly limit antibiotic use by preventing secondary
bacterial infections frequently occurring as a result of viral infections (20). In light of
the proven potential of vaccines in combating AMR, focus on research, including devel-
opment of effective adjuvants, identification of novel vaccine candidates, and vaccine
delivery systems, is warranted.

Antigenic variation in bacteria. A major challenge associated with bacterial vac-
cine design is the vast antigenic diversity displayed by the great majority of bacteria
(21). Bacteria are able to alter their antigenic profiles as part of a host immune evasion
strategy, challenging development of broadly protective vaccines (22). Even within the
same species, antigenic specificity can vary significantly between different strains. This
is exemplified by Neisseria meningitidis, in which 13 serogroups have been proposed
based on the capsular polysaccharides, six of which are responsible for the great ma-
jority of clinical cases (23). Development of a multivalent and universal vaccine against
N. meningitidis has been hampered by the antigenic diversity present between differ-
ent serogroups. However, the problems posed by antigenic diversity are not limited to
a cross-protective vaccine, as exemplified by the monovalent vaccine against N. menin-
gitidis serogroup B (MenB), for which the effectiveness has been limited by the anti-
genic variation of outer membrane proteins used as protective antigens in the vaccine
formulation employed (24, 25). Therefore, a good, rational vaccine design requires
identification of sufficiently conserved antigens with excellent protective capacity.
Bacterial outer membrane vesicles (OMVs) largely encompass these requirements,
which we will address in detail in the following sections.

OMVS AND INTERACTIONSWITH IMMUNE SYSTEM
OMVs. Outer membrane vesicles (OMVs) are spherical particles secreted by all

Gram-negative bacteria investigated to date (26). Although the existence of OMVs has
been known to scientists for decades, the mechanisms involved in OMV formation
remains elusive at present (27). In principle, the formation of OMVs starts from the
breakage of links between the bacterial outer membrane and underlying peptidogly-
can (PG) layer. Affected regions of the outer membrane then protrude to form vesicular
buds, which continuously bulge outwards until detaching from the remaining outer
membrane, and give rise to OMVs (Fig. 1A) (28). As protrusions of the parental cell’s
outer membrane, OMVs inherit a composition similar to that of the outer membrane,
consisting of lipopolysaccaride (LPS), outer membrane proteins (OMPs), and PG. This
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essentially makes them small, non-live antigenic representations of the parent cell,
including the surface complexity, in a way that vaccines made from recombinant pro-
teins cannot. Additionally, OMVs have been found to contain periplasmic components
selected by an unclear sorting mechanism (Fig. 1A) (29). These molecules are preserved
in native conformation, further highlighting OMVs’ potential for vaccine development.
The structure of OMVs and enclosed molecules make them accessible and immunosti-
mulatory to immune cells, endowing OMVs with inherent adjuvanticity and immuno-
genicity (see “Interactions between OMVs and the immune system,” below).
Meanwhile, ease of manipulation makes OMVs suitable antigen delivery platforms (30).
Multifaceted functions of OMVs as adjuvants, antigens, and delivery platforms in vac-
cine research have been demonstrated, showing their potential as contributors to
reduced bacterial infection and AMR (Fig. 1B).

Interactions between OMVs and the immune system. The host innate immune
system can recognize OMVs efficiently, facilitating induction of inflammatory response
and antigen presentation and subsequently leading to a specific immune response to
OMVs. The initiation of this process is largely attributed to the presence of pathogen-
associated molecular patterns (PAMPs) on the OMVs. PAMPs are molecules, such as
LPS or PG, that are widely conserved among microorganisms. PAMPs present on the
OMVs can be detected by the pattern recognition receptors (PRRs) ubiquitously
expressed by innate immune cells that, in turn, initiate signal cascades, leading to the
priming of the host immune response (Fig. 1A). This can induce adaptive immunity
against either OMV-associated or coadministered antigens.

(i) Inflammatory response. The interplay between OMV-associated PAMPs and
innate immune cells plays an important role through induction of proinflammatory
cytokine secretion by different cell types (31–33). Among the important PRRs, Toll-like
receptors (TLRs) are capable of detecting the PAMPs present on the OMVs (Fig. 1A)

FIG 1 (A) Biosynthesis of outer membrane vesicles (OMVs) and recognition of OMV-associated pathogen-associated molecular patterns (PAMPs) by pattern
recognition receptors (PRRs). Arrows indicate specific ligand-receptor interactions between PAMPs and Toll-like receptors (TLRs) or NOD-like receptors
(NLRs). IM, inner membrane; PG, peptidoglycan; OM, outer membrane; LPS, lipopolysaccharide. (B) Schematic representation of pathways by which OMVs
can contribute to reducing the insurgence of antimicrobial resistance (AMR). (C) Schematic representation of OMV-associated antigens processing and
presentation to T cells. APCs, antigen-presenting cells; PRRs, pattern recognition receptors; MHC, major histocompatibility complex; TCR, T-cell receptor; CD,
cluster of differentiation. Created with BioRender.com.
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(34). LPS, flagellin, and lipoproteins are ligands of surface receptors TLR4, TLR5, and
TLR2, respectively. One of the intracellular TLRs of major interest is TLR9, responsible
for the recognition of CpG DNA, which are cytosine-phosphate-guanine dideoxynu-
cleotide-rich motifs commonly found in bacterial and viral genomes. Receptors other
than TLRs also participate in the recognition of OMV-associated PAMPs. For example,
OMV-associated LPS has access to the cytosol of immune cells through endocytosis
and is sensed by caspase-11, inducing cell death and interleukin-1 (IL-1) responses dur-
ing bacterial infections (35). Likewise, OMVs deliver PG to cytosolic NOD-like receptors
and contribute to induction of inflammatory responses (36, 37). Damaged cells induced
by OMVs also can release damage-associated molecular patterns as danger signals to
promote inflammatory responses. Accordingly, crucial proinflammatory cytokines are
released as a result of interactions between OMV-associated PAMPs and innate immune
cell signals, contributing to key responses against bacterial infection, including recruit-
ment and activation of additional immune cells, phagocytosis of bacterial cells, and initia-
tion of adaptive immunity.

(ii) Antigen presentation. The interactions between PAMPs and innate PRRs pro-
mote activation and maturation of antigen-presenting cells (APCs) in the transition
toward adaptive immune responses. Activated APCs can express a variety of surface
molecules that are needed for presentation of protein antigens to T cells. As shown in
Fig. 1C, APCs stimulated by OMVs express major histocompatibility complex class II
(MHC-II) as well as B7 proteins, which are necessary costimulators for T cell activation.
Internalized OMVs are processed by APCs, in which protein antigens from OMVs are
processed and loaded onto MHC-II for presentation to T cell receptors as signal I in T
cell activation. Recognition of B7 costimulators through their ligands induces signal II;
together, these two signals provide the stimulation needed for CD41 T cell activation.

Besides presentation to CD41 T cells, it is worth noting that OMVs, as a mixture of
exogenous antigens, are capable of programming APCs for antigen presentation to
CD81 T cells (referred to as cross-presentation). Lee et al. showed that OMVs could
enhance cross-priming of CD81 T cells when coimmunized with antigens as adjuvants,
indicated by increased gamma interferon (IFN-g) secretion of mice splenocytes restimu-
lated with MHC-I-restricted peptides (38). Moreover, it has been shown that engi-
neered OMVs displaying specific antigens induced maturation of mouse and human
dendritic cells and programmed dendritic cells for antigen-specific cross-presentation
via the MyD88 signaling pathway (39). This study also hypothesized that antigens dis-
played on the surface of OMVs are more inclined to be presented to CD81 T cells,
whereas antigens present in the lumen of OMVs were shown mainly to induce a CD41

T cell response while failing to induce a CD81 T cell response. Taken together, these
studies indicate that the localization of OMV-associated antigens plays a role in deter-
mining which immune effectors and pathways are activated following OMV adminis-
tration. The mechanism behind the cytosolic localization of OMV-associated protein
antigens, which is necessary for the occurrence of cross-presentation, remains unknown.
Nevertheless, the cross-presentation-inducing ability is of great importance for the utili-
zation of OMVs as therapeutics in treatments that rely on the activation of CD81 T cells,
such as treatments against viral infection and tumors.

OUTER MEMBRANE VESICLES IN VACCINE DEVELOPMENT
OMVs as adjuvants. The main concept of modern vaccine design is to replicate the

activation of the host immune response induced by natural infections while avoiding
the morbidity associated with it (40). Earlier vaccine designs have largely relied on atte-
nuated or inactivated pathogens due to a combination of technical limitations and
ease of development and production of such vaccines. More recently, the elucidation
of some of the principles behind microbial pathogenesis and immune response have
allowed the identification and isolation of antigens that are essential for inducing pro-
tective immunity toward pathogens. These antigens can then be dissected and puri-
fied for the development of new vaccines with a comparatively higher safety profile
compared to whole-cell-killed vaccines or live attenuated vaccines. However, highly
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purified antigens are often devoid of adjuvant properties, and vaccines based on puri-
fied antigens alone may present reduced immunogenicity and, thus, be less effective
(41). The limited immunogenicity of vaccine formulations based on purified antigens
can be complemented by coadministration of exogenous adjuvants, which are
immune potentiators enhancing the immune response. Generally, adjuvants can be
categorized into two major classes according to the mode of action: (i) direct activation
or enhancement of the host immune response and (ii) enhancement of antigen deliv-
ery by facilitating uptake, transport, or presentation of antigens by APCs (41). Several
mechanisms have been proposed to explain how different adjuvants exert their effect
(42). One example of the first class of adjuvants is offered by the monophosphorylated
lipid A, a licensed adjuvant consisting of a mixture of monophosphorylated lipids,
which mimics the structure of lipid A in LPS, acting as a PAMP to stimulate the immune
response through PRRs. An example of the second class of adjuvants is instead the de-
pot effect exerted by aluminum hydroxide, which can absorb antigens and then slowly
release them, prolonging the duration of the antigen exposure and immune response
after administration of the vaccine formulation.

Originating from bacterial membranes, OMVs display a complex array of PAMPs,
such as LPS, flagellin, and PG, in their native conformation. These molecules are capa-
ble of triggering the innate immune response by inducing an increased expression of
surface molecules and release of proinflammatory cytokines in innate immune cells.
PAMPs in OMVs from various bacteria have been demonstrated to be able to stimulate
the innate immune response in many cell types, as summarized in Table 1. Following
activation, innate effectors interact with adaptive effectors to elicit a multifaceted
immune response against specific antigens, as shown in Fig. 1C. Additionally, OMVs
have been shown in some instances to carry virulence factors involved in host cell
damage, which could trigger localized release of danger signals that would, in turn,

TABLE 1 OMV-associated PAMPs contributing to innate immune response in various cell types

Content Species Cell model Relevant result(s) Reference
LPS Pseudomonas aeruginosa Mouse macrophages Both LPS and protein components on

OMVs from Pseudomonas aeruginosa were
responsible for eliciting innate immune
response

32

Neisseria meningitidis Human monomacrophages,
human dendritic cells

Neisseria meningitidis OMVs with less LPS
or less toxic LPS induced weaker cytokine
response

85

Escherichia coli Human macrophages LPS-neutralized OMVs induced weaker
inflammatory response

113

OMPs Pseudomonas aeruginosa Mouse macrophages Both LPS and protein components on
OMVs from Pseudomonas aeruginosa were
responsible for eliciting innate immune
response

32

Acinetobacter baumannii Human laryngeal epithelial cells Surface-exposed membrane proteins in
Acinetobacter baumannii OMVs induced
proinflamatory cytokine response

114

Flagellin Enterohemorrhagic
Escherichia coli

Human intestinal epithelial cells H7 flagellin was the key IL-8-inducing
component of EHEC O157:H7 OMVs

115

Pseudomonas aeruginosa Rat renal epithelial cells Both LPS and protein components on
OMVs from Pseudomonas aeruginosa are
responsible for eliciting innate immune
response

32

Peptidoglycan Helicobacter pylori,
Pseudomonas aeruginosa,
Neisseria gonorrhoeae

Human epithelial cells Bacterial OMVs delivered peptidoglycan to
cytosolic NOD-1 and activated NF-kB
pathway

116

Aggregatibacter
actinomycetemcomitans

Human gingival fibroblasts Internalized OMVs from Aggregatibacter
actinomycetemcomitans delivered
peptidoglycan to NOD-2 receptors

37

CpG DNA Moraxella catarrhalis Human tonsillar B cells DNA associated with OMV induced full B
cell activation by signaling through TLR9

117
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stimulate immune and inflammatory responses. Finally, it has been proposed that
OMVs influence the immune response by what is defined as the “geographic concept,”
namely, ensuring the spatial availability of antigens to immune effectors. OMVs could
play a role in this by increasing antigen uptake by APCs and subsequent efficient trans-
location of OMVs and associated antigens to lymph nodes (43, 44).

In summary, a complex adjuvant effect can be attributed to the mix of PAMPs on
the OMV surface, introduction of danger molecules as a consequence of OMV cytotox-
icity, and an effect on antigen availability and efficient presentation to the immune
effector cells (geographical concept).

OMVs as antigens. OMVs can be viewed as nonreplicative representations of the
parental bacterial cell by possessing antigenicity similar to and a higher safety profile
than intact yet attenuated bacterial cells. In addition to PAMPs, OMVs also carry a com-
bination of pathogen-specific antigens that can stimulate long-lasting adaptive immu-
nity and immune memory, both of which are crucial in conferring protection against
future infections. Furthermore, the inactivation procedure during production of con-
ventional bacterial vaccines or subunit vaccines typically denatures proteins and other
components, potentially reducing the antigenic diversity in these vaccine types. In
comparison, OMV-based vaccines offer the potential of providing a broader and more
effective protection by presenting a repertoire of antigens in their native conformation.
Thus, OMVs are regarded as promising vaccine candidates against the bacteria from
which they are derived. A good example is the recent OMV-based vaccine against the
meningococcus MenB (45). Several vaccines containing OMVs against MenB have, in
fact, been independently developed and approved for use in the past few decades
(46–48), yet the vaccine known as 4CMenB (Bexsero; GSK) reached a milestone of being
licensed in more than 35 countries (49, 50), which further highlights the potential of
OMVs for vaccine development. Together with three recombinant proteins, the OMVs
in 4CMenB confer broad protection against a wide variety of antigenically different
MenB strains (50). The success of MenB vaccines has inspired extensive research into
the potential of OMVs in the development of novel vaccines against human and animal
bacterial pathogens. OMVs have been administered alone or in combination with puri-
fied antigens and tested on appropriate animal models, as summarized in Table S1 in
the supplemental material. A major safety concern using OMVs in vaccine formulations
is their LPS content stemming from their complex, natural compositions, as this may
lead to adverse effects, including septic shock and death in humans and some animal
species (51). However, the response to LPS appears to be dose dependent and mostly
limited to mammalian species, as some animals, such as chicken and fish, appear to be
quite insensitive to LPS (52). Therefore, it would be advisable to assess whether detoxi-
fication of LPS is necessary on the basis of which host species the OMV vaccine is
developed for. When necessary, LPS can be detoxified by manipulating genes involved
in the acylation or phosphorylation of lipid A to produce modified LPS, such as penta-
acylated lipid A and monophosphoryl lipid A. OMVs prepared from bacteria with modi-
fied LPS retain adjuvanticity but have low toxicity (53).

OMVs as antigen-delivering platforms. Although it is theoretically possible to de-
velop vaccines against all species of Gram-negative bacteria with homologous OMVs,
as nearly all Gram-negative bacteria release OMVs both in vitro and in vivo, not all
Gram-negative bacteria are equally suitable for OMV isolation. This can be due to strict
growth requirements, low growth rate, low vesiculation rate, or a combination of these
factors, which render the OMV yield too low (54). In this context, OMVs from high-pro-
ducing and well-characterized species can be developed as universal platforms to
deliver homologous and heterologous antigens.

One of the most important factors that affect vaccine immunogenicity is antigen
size. Antigens in the 10 nm to 5 mm range are preferably transported to lymphoid
organs, leading to enhanced uptake into APCs, as exemplified by an early study that
showed that microspheres larger than 5mm were not efficiently transported to the
spleen (55). In vaccine design, delivery systems such as nanoparticles, microparticles,
and various emulsions are commonly used in the formulation to form larger particles
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loaded with antigens (56). OMVs vary in a range of 20 to 300 nm in diameter, a size
that allows OMVs to enter the lymphatic vessels efficiently and reach lymphoid organs
directly without the need for carriers (57, 58). As discussed in the following section,
several studies have explored the potential of using OMVs to deliver different types of
antigens.

(i) Protein antigen delivery. OMVs can be enriched with both homologous and
heterologous cargo of bacterial, viral, or other origin, through either membrane enrich-
ment or luminal packaging (59–61). Loading proteins to the OMV surface can be
achieved in a few ways, including carrier proteins such as outer membrane proteins,
transmembrane proteins, or autotransporters. One of the best-described carrier pro-
teins, ClyA, a cytolysin secreted along with the release of OMVs, has been widely
exploited as a fusion partner for surface display of protein antigens (62, 63). Antigens
fused to ClyA present the additional benefit of enhanced immunogenicity, as ClyA is
capable of eliciting a stronger immune response (64).

Another class of antigen carriers is represented by autotransporters, such as hemo-
globin protease (Hbp). Hbp consists of a cleavable b-domain that anchors on the outer
membrane and a passenger domain that can be replaced with heterologous antigens
of interest. Normally, Hbp synthesized in bacteria is translocated across the cell enve-
lope and secreted into the extracellular milieu by the enzymatic lysis of the link
between passenger and b-domain. To achieve the purpose of surface display, a non-
cleavable mutation was introduced into Hbp to keep heterologous passengers
retained on the outer membrane. Based on this principle, the feasibility of employing
Hbp for heterologous protein display in OMVs has been demonstrated and applied in
experimental vaccine research (65–67). Alternatively, a semisynthetic way of combining
Hbp carrier with a Tag/Catcher protein ligation system has been developed to couple
purified proteins to Hbp-displaying OMVs (68, 69). This strategy extends the applicabil-
ity of Hbp to allow surface enrichment of OMVs with large or multiple proteins of an
external source.

It is worth mentioning that most of the studies related to OMV antigen display have
been conducted in Escherichia coli and Salmonella spp. The potential of alternative car-
rier proteins expressed by less well-characterized bacterial species still remains to be
investigated. Some examples of alternative carrier systems are the proteins fHbp and
ApfA, adapted for membrane enrichment of antigens in N. meningitidis and Actinobacillus
pleuropneumoniae, respectively (70, 71).

Proteins can also be incorporated into the lumen of OMVs by fusion to either secre-
tion signals like the twin-arginine (Tat) signal sequence or to periplasmic proteins such
as OmpA (72, 73). However, it is controversial whether luminal antigens are as effective
as surface antigens in terms of stimulating an immune response, as their localization
prevents direct access by immune effectors. In some studies, only minor specific anti-
body responses were induced by luminally placed antigens (59, 74). In contrast,
Fantappie et al. showed that luminal antigens were able to induce high antibody titers
with excellent functional activity and proposed that the native conformation of luminal
antigens appeared to be an essential factor for eliciting an effective antibody response
(75). Therefore, the position of the protein antigens may affect the protective efficacy
in an antigen-specific manner.

(ii) Glycan antigen delivery. Glycan antigens exist in all domains of life and repre-
sent an important group of specific antigens able to confer protective immunity. This
is particularly true in the case of pathogens that are highly susceptible to the targeting
of capsular polysaccharide by immune effectors, such as S. pneumoniae and Campylobacter
jejuni (76).

When administered alone, glycans usually fail to induce long-lasting immune
responses and T cell memory (77). Therefore, vaccines based on glycan antigens are of-
ten conjugates consisting of protein carriers and glycan antigens. Although both
chemical and biosynthetic coupling technologies are available to develop glycoconju-
gate vaccines, they still offer low yield, high complexity of production, and a general
lack of versatility posed by the substrate specificity of glycosyltransferase and limited
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glycosylation sites of the protein carriers (78, 79). In that context, OMVs have been
exploited as an alternative way to deliver glycan antigens.

As a proof of concept, Chen et al. first described that the heterologous O-antigen
polysaccharide from Francisella tularensis could be incorporated into E. coli OMVs,
which lack their own O-antigen polysaccharide. Mice immunized with the resulting
recombinant glycan-enriched OMVs showed significantly longer survival time after le-
thal F. tularensis challenge (53). Subsequent studies incorporated OMVs displaying a
variety of glycans. Price et al. employed E. coli OMVs as a platform to deliver S. pneumo-
niae capsule polysaccharide and was able to induce a specific antibody response that
was comparable to the one induced by the commercial vaccine Prevnar 13 (76).
Stevenson et al. (80) reported poly-N-acetyl-D-glucosamine (known as PNAG), displayed
by E. coli OMVs able to elicit PNAG-specific antibodies. However, antibodies against
PNAG in its native acetylated conformation were shown to be ineffective in preventing
infection from PNAG-positive bacteria (81). To address this, OMVs displaying deacety-
lated PNAG (dPNAG) were developed. Antibodies against dPNAG were capable of
mediating in vitro killing of different species of bacteria (80).

Collectively, OMVs seem to enable glycan antigens to stimulate an immune response
effectively like protein carriers do and, at the same time, can circumvent some drawbacks
affecting other antigen delivery mechanisms. Thanks to their adjuvant properties, size, and
versatility, OMVs represent efficient carriers for the delivery of various glycans from a broad
range of pathogens.

METHODS FOR INCREASING OMV YIELDS AND EFFECTIVE ISOLATION

Vaccines targeted for human and livestock use require large-scale production
capacity in order to fulfill market demands. Traditional OMV-based vaccines are chal-
lenged by low yields and complex isolation procedures, which often result in high pro-
duction costs that are untenable, particularly in the animal heath market. To pave the
way for the development of more OMV-based vaccines, novel and cost-effective proto-
cols to increase OMV yields need to be implemented (30).

Increasing OMV yields. Under normal conditions, OMV secretion is mostly regu-
lated by growth phases, which influence OMV production both quantitatively and
qualitatively (82). Therefore, an optimal harvest time, generally late exponential phase
in most cases, is required to obtain as high a yield of OMVs as possible while avoiding
contaminations induced by bacterial cell lysis after long cultivation (83). On this basis,
additional methods for increasing OMV yields, including physical, chemical, and
genetic techniques, have been investigated as listed in Table S2.

Sonication is a common physical method employed for OMV production, resulting
in the disruption of bacterial cells into particles which then assemble into artificial
OMVs. One of the main issues associated with this methodology is that the composi-
tion of the OMVs produced by sonication may differ greatly from that of naturally
released OMVs. For instance, cytoplasmic proteins have been found to predominate in
protein profiles from OMVs artificially produced from Glaesserella parasuis, while pro-
teins from the outer membrane and periplasm dominated in naturally released OMVs
(84). Temperature shift is another physical method that may influence OMV secretion
in a species-specific manner. Both high- and low-temperature conditions have been
shown to increase OMV production depending on the species (82).

OMV secretion may also be regulated by the addition of specific organic or inor-
ganic chemicals to bacterial cultures, either stimulating bacteria directly to increase
vesiculation or inducing environmental stress, which results in increased vesiculation.
One such method is detergent-based extraction, a well-characterized technique uti-
lized in the preparation of OMVs from N. meningitidis. One of the advantages of deter-
gent extraction is that this method not only results in increased OMV yields but also
reduces LPS content in the isolated OMVs (85). Metal chelators represent another class
of molecules capable of increasing OMV yields by depleting metal ions in the solution,
creating restricting growth conditions that often result in increased bacterial vesiculation.
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Finally, environmental stress such as oxidative stress can be induced by adding hydrogen
peroxide or depleting cysteine, triggering survival responses and hypervesiculation in
certain bacterial species (86, 87).

Gene knockout is a well-established method for selective inactivation of specific
genes. This method can be employed for engineering OMV yields as well by targeting
key genes involved directly or indirectly in OMV biogenesis. Manipulation of genes
affecting the cross-links between the outer membrane and the PG layer, PG degrada-
tion, and membrane curvature represents examples that may lead to increased bleb-
bing of the outer membrane and increased OMV secretion in the mutants. OMVs gen-
erated by genetically modified hypervesiculating bacteria are also referred to as
generalized modules for membrane antigens (GMMA) and are regarded as a practical
source of membrane antigens in vaccine manufacturing (88, 89).

The methods discussed in this section are efficient ways of increasing the limit
imposed by low OMV yields under usual culturing conditions. The resulting OMV iso-
lates vary in composition and can be categorized into various types depending on the
method used for increasing yields (Table S2). In industrial vaccine production, methods
for scaling up OMV yields are needed to maximize the volume produced and minimize
the production costs. Gerritzen et al. demonstrated that in N. meningitidis, shifting the
OMV production mode from batch to continuous process resulted in an estimated 9-
fold increase of OMV production under a specific dilution rate (90). This shift in produc-
tion methodology improved productivity without compromising the overall properties
of the isolated OMVs. A similar strategy may represent the next step for increasing
OMV yields in other bacterial species.

OMV isolation efficiency. The majority of protocols for OMV isolation start with
one or more low-speed centrifugation steps, followed by the subsequent filtration of
supernatants in order to produce cell-free filtrates (82, 91). The resulting filtrate is then
further processed, concentrated, and purified via a range of techniques, comparatively
arranged in terms of advantages and disadvantages in Table 2.

Differential centrifugation (DC) is the most widely used method for OMV isolation.
This technique consists of multiple steps of low-speed centrifugation followed by a
final ultracentrifugation step, which ultimately leads to the production of an OMV pel-
let. Although simplicity of execution and relatively low technical requirements charac-
terize DC as one of the most approachable methods for OMV isolation, contaminants
such as pili, flagella, and soluble components, which cannot be separated by centrifu-
gation alone, are still present in the isolated OMV pellet (92). Therefore, OMVs isolated
by DC usually requires additional separation steps, such as density gradient centrifuga-
tion, that relies on either iodixanol or sucrose as the separation medium to produce
high-purity OMVs (26). Moreover, ultracentrifugation is a relatively lengthy and labori-
ous process due to the inability to process large sample volumes. Repeated centrifuga-
tion or extra preconcentration steps are required when large volumes of samples need
to be processed. Thus, the DC and ultracentrifugation methods are hardly suitable for
large-scale production of OMVs.

Size-exclusion chromatography (SEC) isolates OMVs by trapping them into nano-
sized pores in porous resin particles to delay their elution time to achieve purification.

TABLE 2 Comparison of methods for isolating OMVs

Method Advantage Disadvantage Reference(s)
Differential centrifugation Low technical requirements; ease of execution Laborious, low purity, generally

needs to be combined with density
gradient centrifugation for further
purification

118

Size-exclusion chromatography Rapid isolation process; high purity High cost; unsuitable for large-scale
production

94

Hydrostatic filtration dialysis Low cost; suitable for large scale production Limited data on purity of the isolated
OMVs

95, 98

Affinity purification Fast; specific isolation of targeted OMV populations Only available for OMVs carrying
exposed tags; low recovery rate

99
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SEC has frequently been employed as a secondary step to enhance the purity of crude
OMV extractions in early research. Recently, however, it has been adopted for the
direct isolation of OMVs from cell-free supernatants. SEC possesses the advantage of
simplicity of execution and can lead to OMV isolations with high purity rates from cell-
free supernatants in one step (93, 94). SEC is a gentle isolation process and maintains
the native structure of OMVs better than ultracentrifugation, during which the extreme
centrifugal force employed likely affects OMV structure and integrity. However, com-
mercially available SEC columns are relatively expensive, hindering the application of
SEC in OMV-based vaccine development outside purely academic fields of application.

Hydrostatic filtration dialysis (HFD) was originally developed by Musante et al. as a
way to quickly identify bacterial urinary tract infections by selectively enriching urine
samples (95). The method was subsequently adapted and applied to the isolation of
OMVs for vaccine development in several studies (96–98). HFD has been demonstrated
to be a cost-efficient, simple, and reliable way of isolating OMVs, especially in cases
where large numbers of OMVs are required, such as in vivo immunization trials. An
additional advantage of HFD is that it offers a considerably consistent reproducibility
from batch to batch, a characteristic rather crucial for vaccine development (98). As
HFD has only recently been developed as an OMV isolation technique, the number of
studies employing HFD for OMV isolation is currently too limited to offer a proper com-
parison between this and other OMV isolation methods previously mentioned.
Nonetheless, it remains arguably one of the most promising techniques for large-scale
production of OMV vaccines.

Another technique described for the isolation of OMVs is affinity purification. This
method relies on the affinity adsorption between a tag incorporated into OMVs and
the ligands that specifically bind the tag. As a proof of concept, Alves et al. engineered
an E. coli strain to express a recombinant OmpA protein fused with a repeated histidine
sequence tag (His tag), thereby labeling the resulting OMVs secreted in culture. OMV-
containing cultures were subsequently subjected to immobilized metal affinity chro-
matography (IMAC) to selectively isolate His-tag-marked OMVs while avoiding contam-
ination by unlabeled wild-type OMVs (99). From the perspective of vaccine research,
this method increases the consistency quality of the OMVs produced. Especially in the
case of recombinant OMVs employed as delivery platforms for heterologous proteins,
affinity purification simplifies the selective isolation of the loaded OMVs by the incor-
poration of a tag. However, IMAC purification requires direct contact between the tag
and the metal ions contained in the affinity columns, limiting this technique only to
OMVs loaded with outward-facing tags. OMVs loaded with heterologous proteins
located in the OMV lumen cannot be isolated by affinity purification due to the inac-
cessibility of the tag. Furthermore, the binding capacity of the resins commonly
employed in IMAC columns is limited by the relatively large size and molecular weight
of the OMVs, resulting in a considerably reduced OMV recovery during affinity purifica-
tion. Several strategies have been proposed to overcome the limitations imposed by
the maximum binding capacity of affinity columns, including increased amounts of
resin, different types of resins with a larger molecular weight cutoff, or developing
novel binding materials altogether. At the moment, though, the utilization of affinity
purification for the purification of OMVs remains limited to small batch sizes.

DISCUSSION

Vaccination plays a complementary role to antibiotic treatment in reducing inci-
dence and morbidity of bacterial infections. During the initial course of a bacterial
infection, antibiotics represent an indispensable tool due to their fast mode of action
and broad spectrum, which often enables clinicians to treat sudden outbreaks even
when the causative agent is still uncertain (100). Infected individuals are able to clear
susceptible pathogenic bacteria effectively after antibiotic administration. However,
the continuous and widespread use of antibiotics has introduced a selective pressure
on bacterial populations that has favored AMR bacterial strains, which again reduce
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the effectiveness of the same antibiotic treatment in subsequent outbreaks (101). Once
the causative agent is identified, the development of effective vaccines has been
shown to be an effective strategy to significantly reduce infection rates by establishing
herd immunity and preventing transmission of the pathogen, consequently reducing
the need for antimicrobial use and, in turn, the incidence of AMR strains (102).

First-generation vaccines represented a big step forward in both human and animal
health over the past century. These vaccines are based on relatively crude formulations
according to modern standards, mostly relying on the administration of inactivated or
attenuated pathogenic microorganisms in order to generate immunity in healthy indi-
viduals. Despite their effectiveness, first-generation vaccines presented several safety
risks, mostly due to the risk of incomplete inactivation or reversion of virulence of the
pathogens included in the formulations (103). Subsequent breakthroughs in medical
research revealed the immunological basis behind pathogen recognition and adaptive
immunity, laying the foundation of vaccination principles as we know them today. This
allowed the development of second-generation vaccines, based on subunits isolated
from the pathogens rather than whole microorganisms. In subunit vaccines, only spe-
cific antigens essential for induction of protective immunity are included in the vaccine
formulation, eliminating the risks associated with the administration of inactivated or
attenuated vaccines (104) but increasing the reliance on adjuvants. The second genera-
tion of vaccines was also the first to benefit from advances in genome sequencing and
genetic engineering technology, which culminated with the advent of reverse vacci-
nology as we know it (105). Reverse vaccinology enables a genome-scale in silico
screening of antigens according to their subcellular location, conservation, and hydro-
phobicity to predict those that are most likely to be vaccine candidates, which greatly
simplifies the process of antigen selection (106). More recently, a third generation of
nucleic acid vaccines has been developed. These vaccines overcome the need to iso-
late or synthetize the antigens needed for immunization, relying instead on having
them expressed directly by the host cells (107). Fourth-generation vaccines, also
referred to as next-generation vaccines, have an additional advantage as they can be
developed as long as the sequence information of the pathogen is known (108).
Examples include APC-targeting vaccines, nucleic acid vaccines delivered by nanopar-
ticles, and artificial APC vaccines. APC-targeting vaccines can elicit particular types of
responses needed for clearing specific pathogens by targeting different receptors of
the APCs (109). Nucleic acid vaccines delivered by nanoparticles, mostly lipid nanopar-
ticles, can stabilize nucleic acids, particularly mRNA, to enable the entry into cells and
induce both humoral and cellular immune responses (108). Artificial APCs mimic APCs
attached with epitope-loaded MHC molecules and costimulatory molecules, bypassing
antigen processing and directly activating T cells to generate large numbers of
immune effectors and achieve faster clearance of pathogens (110).

Due to their nonreplicative nature, antigenic properties, and adjuvanticity, OMVs as
immunogens do not really fit in any of the previously mentioned vaccine categories.
As such, OMV-based vaccines constitute a category of their own.

The pluripotency of OMVs as adjuvants, antigens, and delivery platforms is being
extensively investigated and has been proven by the development of several OMV-
based pharmaceutical prototypes in the last 2 decades, which have been well summar-
ized in other reviews (44, 111, 112). Nonetheless, releasing the full potential of OMVs
will require additional efforts focused on the current limitations in production and
characterization of these otherwise versatile tools. For instance, balancing essential fac-
tors, such as high immunogenicity and low toxicity, optimal antigenic profile, and cost-
effective production, must to be taken into account when formulating OMV-based
pharmaceuticals. This is particularly required when the intended use is aimed at
humans in low-income countries and the food production sector where resources are
scare and profit margins are small.

Despite the universal nature of OMV secretion among Gram-negative bacterial species,
secreted OMVs are often a rather heterogeneous mix of particles possessing significantly
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different attributes and functions. As a consequence of this intrinsic variability, OMVs
isolated from different bacterial species have been shown to present very different
protein and, consequently, immunological profiles. For this reason, very limited assump-
tions can be made at the beginning of any research endeavor focusing on previously
undescribed OMVs. Any novel OMV-producing strains need to be individually character-
ized and often genetically engineered to increase OMV yields, a lengthy and time-consum-
ing process. Further insights into the relationship between OMV composition and their
resulting immunological profile would also be beneficial for accelerating the development
of novel OMV products.

In conclusion, the immunological properties of OMVs characterize them as a prom-
ising new avenue for the development of novel vaccine formulations and will almost
certainly represent a useful tool at our disposal in combating bacterial infectious dis-
eases and tackling the global challenge posed by AMR.
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