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Abstract: Chloroplasts need to import preproteins and amino acids from the cytosol during their light-
induced differentiation. Similarly, chloroplasts have to export organic matter including proteins and
amino acids during leaf senescence. Members of the PRAT (preprotein and amino acid transporter)
family are candidate transporters for both processes. Here, we defined the role of two small PRAT
gene families, At4g26670 and At5g55510 (HP20 subfamily) versus At3g49560 and At5g24650 (HP30
subfamily) during greening of etiolated plants and during leaf senescence. Using a combination of
reverse genetics, protein biochemistry and physiological tools, evidence was obtained for a role of
chloroplast HP20, HP30 and HP30-2 in protein, but not amino acid, import into chloroplasts. HP20,
HP30 and HP30-2 form larger complexes involved in the uptake of transit sequence-less cytosolic
precursors. In addition, we identified a fraction of HP30-2 in mitochondria where it served a similar
function as found for chloroplasts and operated in the uptake of transit sequence-less cytosolic
precursor proteins. By contrast, HP22 was found to act in the export of proteins from chloroplasts
during leaf senescence, and thus its role is entirely different from that of its orthologue, HP20. HP22
is part of a unique protein complex in the envelope of senescing chloroplasts that comprises at least
11 proteins and contains with HP65b (At5g55220) a protein that is related to the bacterial trigger factor
chaperone. An ortholog of HP65b exists in the cyanobacterium Synechocystis and has previously
been implicated in protein secretion. Whereas plants depleted of either HP22 or HP65b or even
both were increasingly delayed in leaf senescence and retained much longer stromal chloroplast
constituents than wild-type plants, HP22 overexpressors showed premature leaf senescence that was
associated with accelerated losses of stromal chloroplast proteins. Together, our results identify the
PRAT protein family as a unique system for importing and exporting proteins from chloroplasts.

Keywords: chloroplast and mitochondrial membrane transport; protein translocation; preprotein
and amino acid transporter (PRAT) family; plant greening and senescence

1. Introduction

Plastids are hall-mark organelles of plants [1–4]. They comprise a family of partially
inter-convertible forms, all originating from a simple progenitor called proplastid [1,2].
When seedlings develop in the dark and thus undergo skotomorphogenesis, proplastids
differentiate into etioplasts. Upon illumination, etioplasts develop further into chloroplasts.
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This developmental step, called photomorphogenesis, is associated with the establishment
of the photosynthetic apparatus and involves the synthesis of nucleus-encoded and plastid-
encoded photosynthetic proteins [2,5,6]. Photosynthetic proteins encoded in the nucleus
are synthesized as precursors with NH2-terminal transit sequences referred to as transit
peptides and must be imported post-translationally from the cytosol. Similarly, amino
acids for the biosynthesis of plastid-encoded proteins must be imported from the cytosol.

Components have been identified that mediate the uptake of nucleus-encoded cy-
tosolic precursor proteins into chloroplasts. These form translocon complexes in the outer
and inner plastid envelope membranes named the TOC and TIC machineries [7–11]. Cur-
rent evidence suggests that photosynthetic precursors bind to a surface-exposed receptor
dubbed TOC159 and also interact with a second receptor named TOC33. The latter is
supposed to transfer the precursor into the import channel formed by another TOC protein
named TOC75. Once the precursors have passed this channel they interact with a set of
TIC proteins of which TIC110 is supposed to be the actual translocation pore for import
across the inner plastid envelope membrane [12].

The import system for amino acids needed for the biosynthesis of plastid-encoded pro-
teins is less well characterized. Candidate transporters that may mediate this uptake step
have been identified by proteomics, in silico, and other approaches [13–16]. An interesting
group of plastid envelope proteins that could be involved in amino acid transport are
the PRAT proteins comprising preprotein and amino acid transporters of prokaryotic ori-
gin [17–19]. The PRAT (preprotein and amino acid transporter) family in Arabidopsis thaliana
comprises 17 members forming 6 different phylogenetic clades [17–19]. The PRAT family
is composed of At1g72750, At1g17530 and At3g04800 (TIM23 [translocon of the inner mito-
chondrial membrane protein of 23 kDa] subfamily), At2g37410, At1g20350 and At5g11690
(TIM17 subfamily), At1g18320 and At3g10110 (TIM22 subfamily), At4g16160, At2g28900
and At3g62880 (OEP16-like subfamily), At4g26670 and At5g55510 (HP20 subfamily), as
well as At3g49560 and At5g24650 (HP30 subfamily) [17–19]. Another protein with similar-
ity in the PRAT motif is the amino acid permease LivH of Escherichia coli [20] that together
with its homologues in prokaryotes forms a separate phylogenetic clade [17]. Based on
the topology of the four founding members of the PRAT family in eukaryotes, TIM17,
TIM22, TIM23 and the 16 kDa outer plastid envelope protein OEP16, PRAT proteins were
proposed to form channels comprising four hydrophobic trans-membrane α-helices and
3 hydrophilic loops [17]. The characteristic PRAT motif is located in the central region
forming the second and third trans-membrane helices [17]. Deviations from this general
pattern of trans-membrane domain and PRAT motif organization have been reported [19].

Many of the PRAT proteins identified thus far obviously operate in protein translo-
cation into mitochondria [21,22]. Yeast TIM23, TIM22 and TIM17, for example, establish
two distinct translocases in mitochondria that are responsible for the import of cytosolic
precursor proteins into and across the inner mitochondrial membrane [21,22]. TIM22 is
involved in the import of carrier proteins and other, hydrophobic membrane proteins
lacking cleavable NH2-terminal presequences [21,22]. By contrast, TIM17 and TIM23
form the second inner mitochondrial membrane translocase that is involved in the uptake
of cytosolic proteins containing cleavable NH2-terminal presequences [23,24]. Hereby,
TIM23′s function is that of a presequence receptor and voltage-gated channel, whereas
TIM17 was proposed to accomplish a role as voltage sensor [23,24]. Although the core
components of the TIM17:23 and TIM22 translocases are conserved in yeast, animals and
plants, differences have been reported for auxiliary components [25,26].

Although most of the mitochondrial PRAT protein family members in plants could
accomplish similar roles as their yeast and animal counterparts, other functions are possible.
It was proposed that some of the previously identified hypothetical proteins (HPs) in the
chloroplast envelope, such as HP30-2 and HP30, are involved in tRNA import into plant
mitochondria [27,28]. Other HP family members could operate in amino acid transport,
which is not only required during photomorphogenesis but also during leaf senescence.
The latter is an active process that involves massive changes occurring at the morphological
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and gene expression levels [29–33]. Hallmark events include the reduction in the number
and size of chloroplasts as well as the disassembly of the photosynthetic apparatus in the
thylakoids [34–36]. Mass degradation of both stroma and thylakoid membrane proteins has
been reported and could lead to a need to export the liberated amino acids from senescing
chloroplasts to the cytosol and other destinations.

In the present work, the roles of the two least characterized PRAT gene families were
characterized. These include the HP20 subfamily, comprising At4g26670 and At5g55510,
and the HP30 subfamily, comprising At3g49560 and At5g24650 [19]. At4g26670 (HP20)
and At5g55510 (HP22) encode proteins with 79% amino acid sequence identity, whereas
At3g49560 (HP30) and At5g24650 (HP30-2) encode proteins sharing 83% amino acid se-
quence identity [19]. Here, we examined the roles of all four PRAT proteins both during
photomorphogenesis and leaf senescence and found novel results. Using a reverse genetic
approach, in combination with biochemical and physiological tests, we report on HP20,
HP30 and HP30-2 as being involved in protein, but not amino acid, import into chloroplasts,
and on HP22 as being involved in a, thus far unrecognized, protein export pathway from
chloroplasts that specifically operates during leaf senescence in A. thaliana.

2. Results
2.1. HP20 and HP30 Interact during the Import of Transit Sequence-Less Precursors
into Chloroplasts

HP20, HP30 and HP30-2 were previously reported to function in the uptake of transit
sequence-less cytosolic precursors into chloroplasts [37–39]. Using the chloroplast envelope
quinone oxidoreductase homologue ceQORH as model for transit sequence-less cytosolic
precursors [40], we asked whether HP22 is involved in this new pathway of protein import,
too. Plastid envelope import intermediates were produced with hexa-histidine ([His]6)-
tagged, 35S-methionine-labeled ceQORH (ceQORH-[His]6) that had been expressed in
E. coli and purified [37–39]. Incubations were carried out with isolated Arabidopsis chloro-
plasts at 0.1 mM Mg-GTP and 0.1 mM Mg-ATP, nucleoside triphosphate concentrations
that favor protein translocation across the outer envelope membrane and also permit
interactions of importing proteins with components of the inner plastid envelope import
machinery [37,39]. After 15 min, the plastids were re-isolated on Percoll and ruptured
under hypertonic conditions. Mixed outer (OM) and inner (IM) envelope membranes were
isolated from ruptured chloroplasts and further separated by centrifugation on 20–38%
sucrose gradients [41]. Import intermediate-associated proteins (IAPs) were detergent-
solubilized from OM-IM junction complexes established by ceQORH-(His)6 as described
in [41]. After purification by Ni-NTA chromatography [37,39] and 2D SDS-PAGE, IAPs
were stained with Coomassie and identified by manual or automated protein sequencing.
Figure 1 shows that the isolated IAPs comprised at least 10 different proteins. Among these
IAPs were HP20, HP30 and HP30-2. Other IAPs comprised TOC120, TOC90 and TOC34,
representing members of the TOC superfamily of presequence receptors [42–44], HSP93-V
and cpHSC70, representing members of the heat shock protein and heat shock cognate
protein families [45,46], TIC40 that is presumed to act as docking protein for HSP93-V, as
well as TIC55 being involved in redox control (Table S1). Their interactions confirmed that
chloroplasts make use of a unique combination of PRAT proteins, TOC components as well
as molecular chaperones for importing transit sequence-less precursor proteins [37–39].

2.2. Isolation and Characterization of HP20 and HP30 Knock-Out Mutants of A. thaliana

T-DNA insertion lines were obtained from the SALK Institute [47] and screened for
homozygous knock-out mutants for HP20 and HP30. Individual plants of the T3 generation
were tested for homozygosity by PCR [48] and the position of the T-DNA insertion was
mapped by sequencing PCR products obtained with a combination of forward and reverse
primers specific for the gene of interest and the left border of the T-DNA (Figures S1 and S2,
panels A and F).
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Figure 1. Identification of HP20 and HP30 as components operating in the import of transit sequence-less proteins into
chloroplasts. (A) One-dimensional pattern of import intermediate-associated proteins (IAPs) formed with 35S-ceQORH-
(His)6. (B) as (A), but showing a two-dimensional separation comprising isoelectric focusing (IEF) in the first dimension
(from left to right) and SDS-PAGE gradient gel electrophoresis (SDS), from top to bottom, in the second dimension. Proteins
were stained with Coomassie.

Sequence analysis revealed the same position of the T-DNA insertions in lines Athp20;2
and Athp20;3 as well as in lines Athp30;1 and Athp30;2, respectively. Therefore, only one
of the two mutants each was further analyzed. A second, independent mutant allele
for each gene was identified by Athp20;1 and Athp30;3, respectively (Figures S1 and
S2). For the four selected knock-out lines, designated Athp20;1, Athp20;2, Athp30;2 and
Athp30;3, homozygous plants were obtained and characterized by Southern, Northern
and Western blotting, as well as growth tests on Murashige-Skoog (MS)-agar medium
containing kanamycin. The relevant data are presented in Figures S1 and S2.

Phenotypic characterization of the Athp20;1, Athp20;2, Athp30;2 and Athp30;3 mu-
tants revealed no differences in plant habit (Figure S3A) as well as similar plastid numbers
and ultra-structures as compared with wild-type plants (Figure S3B). Moreover, the synthe-
sis and accumulation patterns of total leaf and plastid proteins in light-grown Athp20;1,
Athp20;2, Athp30;2 and Athp30;3 plants were indistinguishable from those of 4-weeks-old,
adult wild-type plants (Figure S3C,D; see also Figure S4A,B), indicating that HP20 and
HP30 are dispensable for bulk amino acid uptake into chloroplasts in adult plants. If
such uptake defect would occur, Athp20;1, Athp20;2, Athp30;2 and Athp30;3 chloroplasts
should have lowered rates of 35S-methionine-driven plastid protein synthesis which was
not the case.

Greening experiments under low white light conditions (30–40 µE m−2 s−1) suggested
some delay in chlorophyll accumulation to occur for etiolated Athp20;1 and Athp20;2
seedlings during the first 6–8 h of illumination, as compared to wild-type and Athp30;2
and Athp30;3 seedlings (Figure S5 and Table S2). This correlated with reduced levels of
the reaction center protein D1 of photosystem II, the α-subunit of cytochrome b-559, the 33
kDa subunit of the oxygen evolving complex, OEC33, and the ribulose-1,5-bisphosphate
carboxylase/ oxygenase (RubisCO) large and small subunits (Figures S6 and S7). Inter-
estingly, a ca. 4–5-fold up-regulation of the early light-inducible protein 1 (ELIP1) was
observed in Athp20 mutant seedlings (Figures S6 and S7). All these effects were overcome
at later stages of development (cf. Figure S5 vs. Figure S3 and Table S2). Greening ex-
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periments under high light conditions (≈210 µE m−2 s−1) followed by seedling viability
tests using the tetrazolium dye demonstrated that Athp20 and Athp30 seedlings were
fully viable and did not photo-bleach as did the Atoep16-1;1 mutant used as reference [49]
(Figure S8A,B). Pulse-labeling of leaf proteins with 35S-methionine showed unaltered
patterns of nucleus-encoded and plastid-encoded plastid proteins during greening of
Athp20;1, Athp20;2, Athp30;2 and Athp30;3 seedlings (Figure S8C,D). In amino acid uptake
assays with 35S-methionine, no difference became apparent for plastids from etiolated
and greening Athp20, Athp30 and wild-type plants (Figure S9 and Table S2). On the basis
of all of these findings we concluded that HP20 and HP30 do not act as bulk amino acid
transporters during greening.

2.3. Etiolated Athp30-2 Seedlings Show Reduced Viability during Greening

HP30-2 and HP30 are closely related and share 83% amino acid sequence iden-
tity [19,28,37]. In previous work, RNA interference (RNAi) lines lacking both HP30-2
and HP30 were shown to be seedling-lethal during greening [28,37]. Because HP30-2 is
present both in chloroplasts and mitochondria [19,27,28], it was not possible in our previous
work to discern at which place HP30-2 may primarily operate to control seedling viability in
planta. To answer this question, knock-out mutants were identified for At5g24650 (HP30-2)
and characterized further. Genotyping demonstrated the presence of three independent
alleles of homozygous Athp30-2 plants that were designated Athp30-2;0 (SALK_149871),
Athp30-2;1 (SALK_136524) and Athp30-2;2 (SALK_136525) (Figure 2A, panels a and b, and
data not shown). Expression studies confirmed the absence of HP30-2 protein in Athp30-2;1
and Athp30-2;2 seedlings (Figure 2A, panel c, as well as Figure 2B), whereas Athp30-2;0
(SALK_149871) turned out to be a false-positive mutant still containing HP30-2 protein [27].
Light-grown Athp30-2;1 and Athp30-2;2 plants had no visible phenotype if grown under
continuous white light illumination but died when grown in darkness and subjected to a
white light shift to induce greening (Figure 2C). No such conditional seedling lethality was
observed for greening Athp30;2 plants (Figure 2C). Because etiolated Athp30-2;2::Athp30;2
double mutant seedlings were similarly light-sensitive as Athp30-2;2 plants (Figure 2C), we
disproved cumulative effects of HP30-2 and HP30 in planta. Seedling lethality of Athp30-2;1
and Athp30-2;2 plants was overcome by genetically complementing these mutants with the
HP30-2 cDNA (Figure 2C). Interestingly, these HP30-2-dependent effects correlated with
down-regulation for inner mitochondrial membrane proteins such as TIM22, TIM8, TIM9
and TIM10 in Athp30-2;1 and Athp30-2;2, HP30::HP30-2 RNAi, as well as Athp30;1::Athp30-
2;2 mutant versus wild-type plants (Figure 3A). At the same time, the amounts of TIM17-2
and TIM23 were up-regulated in Athp30-2;1 and Athp30-2;2, HP30::HP30-2 mutant and
RNAi plants (Figure 3A,C). As previously reported [28], HP30-2 forms with TIM22, TIM10,
TIM9 and TIM8, a translocase for transit sequence-less proteins whose lack may be in part
overcome in planta by increasing the amounts of TIM17-2 and TIM23. All of the observed
differential changes in HP30-2 and TIM protein abundance were abolished by genetically
complementing the Athp30-2;1 mutant with the HP30-2 cDNA (Figure 3B). Overexpression
of the HP30-2 cDNA in the wild-type background increased the amounts of HP30-2 and
TIM22 as well as MIA40, the 40 kDa mitochondrial intermembrane space import and
assembly protein, and NDC1, the type II NAD(P)H quinone oxidoreductase subunit NDC1
(Figure 3C), that have been shown to form distinct complexes with HP30-2 and to operate
in normal and oxidative protein folding in the intermembrane space of mitochondria and
may additionally be involved in cell death regulation [28].
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Figure 2. Characterization of Athp30-2;1 (SALK_ 136524) and Athp30-2;2 (SALK_ 136525) mutants. (A) Identification
of Athp30-2;1 (SALK_136524) (a) and Athp30-2;2 (SALK_136525) (b) through genotyping using the indicated primer
combinations and confirmation of the absence of HP30-2 protein in Athp30-2;1 and Athp30-2;2 versus wild-type (WT)
plants through Western blotting using a mono-specific antibody (c, upper panel). For reference, a replicate protein gel
blot was probed with HP30 antibodies (c, lower panel). (B) Absence of HP30-2 protein in Athp30-2;2 (SALK_136525)
single and Athp30-2;2 (SALK_136525)::Athp30;2 (SALK_112126) double mutants versus wild-type (WT) plants. Shown is a
Western blot of chloroplast proteins that was simultaneously probed with mono-specific antisera against HP22, HP30 and
HP30-2 as well as the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (SSU). (C) Seedling viability of
Athp30;2 (SALK_112126)(open triangles) and Athp30-2;2 (SALK_136525)(filled triangles) single mutants, and Athp30;2::
Athp30-2;2double mutant plants (dots), as compare to the wild-type (WT)(open circles) and Athp30-2;2 expressing the
HP30-2 cDNA (squares).
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Figure 3. Analysis of inner mitochondrial membrane proteins in Athp30-2 and Athp30 mutant plants. (A) Pattern of inner
mitochondrial membrane proteins in wild-type (WT) plants, Athp30-2;1 (SALK_136524) and Athp30-2;2 (SALK_136525)
single mutant plants, Athp30-2;2 (SALK_136525)::Athp30;2 (SALK_112126) double mutant plants, and RNAi plants lacking
both HP30 and HP30-2 (RNAi#2; cf. Rossig et al., 2013 and 2017). (B) Pattern of inner mitochondrial membrane proteins in
Athp30-2;1 (SALK_136524) plants that had been genetically complemented with the HP30-2 cDNA (Athp30-2;1compl). (C)
Pattern of inner mitochondrial membrane proteins in wild-type plants overexpressing the HP30-2 cDNA, as compared
to Athp30-2;1 (SALK_136524) mutant plants. NDC1 defines the C subunit of the alternative NAD(P)H dehydrogenase,
MIA40 defines the 40 kDa mitochondrial intermembrane space import and assembly protein, and TIM17-2, TIM22 and
TIM23 define key translocase components operative in the import of cytosolic precursor proteins into and across the inner
mitochondrial membrane.

2.4. HP22 Is Part of a Unique Protein Export Pathway from Chloroplasts that Operates during
Leaf Senescence

The protein isolation data presented in Figure 1 suggested that HP22 is not involved
in the import of transit sequence-less precursors into chloroplasts. In order to explore
the role of HP22 in planta, T-DNA insertion lines were identified (Figure 4A). Of the four
potential Athp22 mutant alleles present in the SALK and Gabi-Kat collections [47,50] (cf.
Figure 4A), only two (SALK_001823 and SALK_047513) lacked HP22 transcript (Figure 4B).
These were designated Athp22;1 and Athp22;2 and characterized further. On protein gel
blots carried out on chloroplasts from T2 plants, Athp22;1 (SALK_047513) still contained
some HP22 protein, whereas Athp22;2 (SALK_001823) did not. Thus, mainly Athp22;2 was
used in subsequent experiments and crosses with the Athp20;1 and Athp20;1 mutants (cf.
Figure 4B vs. Figures S10 and S11).
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Figure 4. Identification of Athp22;1 (SALK_001823) and Athp22;2 (SALK_047513) mutants. (A) Structure of the AtHP22 gene
(At5g55510) and positions of T-DNA insertions. (B) Genotyping to identify homozygous Athp22;1 (SALK_001823)(a) and
Athp22;2 (SALK_047513)(b) plants, and demonstration of the absence of HP22 transcript by RT-PCR (c) and HP22 protein
by Western blotting using antibodies against HP22 and HP20 (d). Respective PCR and Western blot data for the chosen
controls are included (c and d). What does the Ctr in panel B, d stand for? (C) Chlorophyll accumulation in 4.5 days-old,
dark-grown Athp22;2 (SALK_047513) mutant and wild-type (WT) seedlings as well as wild-type seedling overexpressing
the HP22 cDNA after white light exposure (in hours). The lower panel (b) shows the kinetics of chlorophyll accumulation,
whereas the upper panel (a) shows the same data relative to those seen for the wild-type. Because all values are close to 1,
there are no differences in the kinetics of chlorophyll accumulation detectable for Athp22;2 (SALK_047513) mutant (open
circles and dots) and HP22-overexpressing plants (open and filled triangles) versus wild-type plants (squares).

Both the Athp22;1 and Athp22;2 mutant had no visible phenotype if grown under
16h light/8 h dark cycles or under continuous white light illumination (data not shown).
Moreover, no difference in the kinetics of chlorophyll accumulation during greening was
apparent for Athp22;1 and Athp22;2 single mutant seedlings, Athp20::Athp22 double mutant
seedlings and wild-type plants overexpressing the HP22 cDNA (Figure 4C and Figure S10).
As compared to the wild-type, however, Athp22;1 and Athp22;2 mutant plants displayed
a significant delay in leaf senescence, reflected by the slower decay in the chlorophyll
content (Figure 5A). By contrast, an acceleration in chlorophyll decay indicative of a
faster senescence progression was observed for plants overexpressing the HP22 cDNA
(Figure 5A). Because Athp20 and Athp30 single mutants and Athp20::Athp30 double knock-
out mutants had no phenotypes under conditions of natural as well as abscisic acid (ABA)
and jasmonic acid methyl ester (MeJA)-induced, artificial senescence (Figures S11–S17 and
Table S4), we concluded a specific and unique role of HP22 in planta.

Protein gel blot analyses revealed significantly less total chloroplast protein in 5 weeks-
old HP22-overexpressing plants, as compared to wild-type and Athp22;1 and Athp22;2
single mutant plants (Figure 5B, panel a). In further studies using antibodies against
plastid-encoded stromal proteins, such as the large subunit (LSU) of RuBisCO and the
translation elongation factor EF-Tu, some more refined effects were observed (Figure 5B,
panel b). The levels of both, LSU and EF-TU, were significantly lower in 5 weeks-old
the HP22-overexpressor, as compared to wild-type and Athp22;1 and Athp22;2 mutant
plants (Figure 5B, panel b). Because parallel assays failed to reveal gross differences in the
amounts of the major light-harvesting proteins of photosystem II (CAB gene products) in
HP22-overexpressor versus wild-type and Athp22;1 and Athp22;2 plants (Figure 5B, panels
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a and b), we assumed a specific role of HP22 in the export of soluble constituents (stromal
proteins) from chloroplasts.

Figure 5. Role of HP22 during leaf senescence. (A) Time course of the decay of chlorophyll as a measure of leaf senes-
cence progression in wild-type plants (WT), wild-type plants overexpressing the HP22 cDNA (HP22OE), and Athp22;2
(SALK_047513) mutant plants. (B) Patterns of Poncau S-stained total chloroplast proteins (a) and respective Western blot
analysis (b) on 5 weeks-old wild-type plants (WT), wild-type plants overexpressing the HP22 cDNA (OE), as compared
with Athp22;2 (SALK_047513) mutant plants (− cDNA), and genetically complemented Athp22;2 (SALK_047513) plants
(+ cDNA). Replicate protein gel blots were proved with antibodies (b and c) against plastid-encoded soluble stromal proteins,
such as the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (LSU) and elongation factor EF-Tu (b), and
nucleus-encoded thylakoid membrane proteins such as the light harvesting proteins of photosystem II (CAB)(c). Note
that all protein data refer to on an equal plastid number basis. (C) Senescence-induced leakage of stromal GFP from
chloroplasts in planta. Sl-pRC32 (rrn16::accD*)-driven GFP accumulation in chloroplasts was allowed to proceed in leaves
of transplastomic Athp22;2 (SALK_047513), wild-type plants and HP22OE plants. Chlorophyll and GFP fluorescence
was collected simultaneously by confocal laser scanning microscopy and compared for the different genotypes. Note the
beginning leakage of GFP from chloroplasts in 5 weeks-old wild-type plants that is indicative of senescence progression, the
lack of a comparable GFP leakage from chloroplasts in the Athp22;2 (SALK_047513) mutant, and the acceleration of GFP
leakage from chloroplasts in wild-type plants overexpressing HP22. Original scale bars are indicated.

In order to further explore this possibility, transplastomic plants were generated
expressing constructs bearing the promoter of the plastid 16S rRNA gene (rrn16), one of
the strongest promoters in chloroplasts known to date, combined with the 5′–UTR from
the accD gene encoding a subunit of the acetyl-CoA carboxylase, in front of the green
fluorescent protein (GFP) coding region [51]. Confocal laser scanning microscopy on
5 weeks-old plants allowed co-localizing GFP and chlorophyll in chloroplasts of wild-type
plants. Co-localization was apparent for most of the leaf areas analyzed, except for some
regions where significant amounts of GFP were present in the cytosol. In leaves of Athp22;2
plants, both fluorescence markers sharply co-localized in chloroplasts in almost all of the
leaf samples analyzed (Figure 5C). In marked contrast, there was almost no match between
GFP and chlorophyll fluorescence in the leaves of HP22-overexpressing plants (Figure 5C).
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In every leaf sample analyzed, GFP fluorescence was always spread over large areas of
the cytosol, whereas chlorophyll remained chloroplastic (Figure 5C). This result suggested
a promotion of chloroplast leakage to occur in HP22-overexpressing plants, causing the
rapid release of stromal constituents including plastid-encoded GFP and other markers
such as RBCL and EF-Tu in HP22-overexpressing plants. Along with the Western blot data
shown before, we concluded that HP22 most likely operated in chloroplast protein exporter
in senescing plants.

2.5. Isolation of Proteins Interacting with HP22 in Chloroplasts

We next isolated proteins interacting with HP22 in the plastid envelope. HP22 was bac-
terially expressed as NH2-terminally or COOH-terminally hexa-histidine ([His]6)-tagged
protein, purified and imported into chloroplasts from 5 weeks-old plants, as described
in Figure 1. Envelope protein complexes formed with HP22-(His)6 in turn were purified
from ruptured chloroplasts, separated by SDS-PAGE and individual proteins identified by
manual or automated sequencing. Of the 11 main protein bands co-isolated with HP22-
(His)6 (Figure S18), one prominent band could be identified as being related to a previously
characterized acidic, plastid envelope protein of ≈62 (61.733) kDa designated HP65b [52].
HP65b is encoded by At5g55220 in Arabidopsis. It shares amino acid sequence similarity to
the bacterial trigger factor chaperone [52,53]. Surprisingly, HP65b contains no predictable
trans-membrane domains and is presumed to be synthesized without an NH2-terminal
chloroplast transit peptide [52]. An orthologue of HP65b is present in Synechocystis (Q55511)
and was previously suggested to operate in protein secretion from cyanobacteria [52].

Antibodies were raised against HP65b. On Western blots, these antibodies recognized
a ≈ 60 kDa band (data not shown). In pull-down assays using maltoside-solubilized
chloroplast envelope protein extracts, the antibody against HP65b co-precipitated HP22
(Figure 6A), indicating that both proteins interact. By contrast, antibodies against HP20
did not precipitate HP65b but instead precipitated HP30 and stromal HSC70-2 (Figure 6A).
Together, these results proved the specificity of the interactions observed here and elsewhere
for chloroplasts (cf. Figure 1) [37,39]. When HP22 was imported into isolated Arabidopsis
mitochondria, a different pattern of interacting proteins was obtained (Figure 6B). Control
studies carried out with HP20 did not reveal any interacting mitochondrial proteins, in
agreement with previous proteomics and localization studies demonstrating the absence of
HP20 in mitochondria [8,37].

Figure 6. Identification of proteins interacting with HP22 in chloroplasts (A) and mitochondria (B), respectively. (A) Western
blot separating plastid envelope proteins interacting with HP20-(His)6 and HP22-(His)6, respectively (lanes 1 and 3), and
analysis of co-immunoprecipitates obtained with antisera against HP20, HP30 and HSC70 for the HP20-(His)6-containing
complexes (lane 2) and with antibodies against HP22 and HP65b for the HP22-(His)6-containing complexes (lanes 3
and 4). Lane 5 depicts the pattern of in vitro-expressed HP20 and HP30 used as reference proteins (Ref.). (B) Pattern of
proteins interacting with HP20-(His)6 and HP22-(His)6 in isolated Arabidopsis mitochondria. Note the different patterns of
HP22-interacting proteins relative to that in chloroplasts (cf. A) and the lack of HP20-interacting proteins in mitochondria.
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2.6. Genetic Interaction of HP22 with HP65b

If HP22 and HP65b would interact, their common lack should lead to additive effects
and provoke a further retardation of leaf senescence. In order to test this hypothesis,
an RNAi approach was undertaken to drop the expression of HP65b in the wild-type
and Athp22;2 backgrounds. Of the two sorts of RNAi lines established for wild-type
plants, those lacking HP65b transcript and protein were selected and propagated further
(Figure S19). Interestingly, all of these lines displayed similar delays in leaf senescence
as those found for Athp22;2 plants. An example was provided by Athp65b-RNAi-1#2 that
was subjected to further in-depth analysis here (Figure 7; see also Figures S19 and S20).
When Athp65b-RNAi-1#2 plants were crossed with the Athp22;2 mutant, a type of double
mutant was obtained in which the expression of both HP65b and HP22 was dropped to
undetectable levels (Figure 7A). Significantly, Athp65b-RNAi-1#2::Athp22;2 plants showed
a further delay in senescence progression as compared to their parental genotypes that
correlated with a marked retention of stromal chloroplast constituents (Figure 7B,C). We
concluded that HP22 and HP65b act synergistically in planta.

Figure 7. Genetic interaction of HP65b with HP22 during leaf senescence. (A) Protein gel blot analysis to demonstrate the
lack of HP65b in the generated RNAi line Athp65b-RNAi-1#2 (cf. Figure S19 and S20) and respective cross with Athp22;2
(Athp22;2::Athp65b-RNAi-1#2) versus the wild-type. For comparison, replicate blots were probed with antibodies against
HP22 and ACTIN. (B) Time course of the decay of chlorophyll in Athp65b-RNAi-1#2, Athp22;2::Athp65b-RNAi-1#2 and
wild-type plants undergoing leaf senescence. (C) Patterns of Coomassie-stained total chloroplast proteins on an equal
plastid number basis in 5- and 6-weeeks-old Arabidopsis plants. Note the severe delay in chloroplast protein loss in
Athp65b–RNAi1#2 and Athp22;2::Athp65b-RNAi-1#2 versus wild-type plants.
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3. Discussion
3.1. Function of HP20, HP30 and HP30-2 in Chloroplasts

Chloroplast biogenesis requires the uptake of both nucleus-encoded plastid precursor
proteins as well as amino acids from the cytosol. Similarly, chloroplasts export organic
matter during leaf senescence. In this study, we asked if two previously characterized
PRAT protein subfamilies, namely HP20 and HP30, each comprising two closely related
members, could accomplish a role in amino acid and/or chloroplast protein transport.

Previous expression studies, GFP tagging and biochemical experiments revealed that
HP20, HP22, HP30 and HP30-2 are present at different locations in Arabidopsis chloroplasts,
HP20 and HP22 being outer plastid envelope proteins and HP30 and HP30-2 being inner
plastid envelope proteins [27,28,37,39]. As shown here and elsewhere [37], HP20, HP30
and HP30-2 establish protein complexes involved in the import of transit sequence-less
protein such as chloroplast envelope quinone oxidoreductase homologue ceQORH into
Arabidopsis chloroplasts (Figure 8, route A). At the chosen nucleotide concentrations,
ceQORH traversed the outer envelope membrane and also interacted with components
of the inner envelope membrane [37]. After detergent solubilization, 10 different protein
spots were identified and classified to fall into three categories: (i) PRAT proteins such as
HP20, HP30 and HP30-2, (ii) proteins of the TOC GTPase superfamily of receptors, such as
TOC120, TOC90 and TOC34 (42–44), and (ii) molecular chaperones of the heat-shock protein
HSP93-V and heat shock cognate protein HSC70 families [45,46], and (Figure 1) [37–39].
In addition, with TIC40 and TIC55 (Figure 1) two inner plastid envelope proteins were
identified as interacting with ceQORH that have established roles in chloroplast protein
import (Table S1). The results presented in Figure 1 are in accordance with crosslinking
studies using Elman’s reagent (5,5′-dithiobis(2-nitrobenzoic acid, DTNB) and fractionation
experiments [37,39]. Together, compelling evidence was obtained for the presence of a
unique translocase in chloroplasts, acting partially in cooperation, partially in parallel to
the well-known TOC/TIC system. The specificity of the new system of translocase for
transit sequence-less precursors is reminiscent of that of the mitochondrial TIM22 complex
in the uptake of proteins lacking cleavable mitochondrial signal peptides [21].

Physiological tests uncovered a slight delay in greening that occurred when etiolated
Athp20;1 and Athp20;2 seedlings were exposed to white light (Figure S5). This effect
was confined to the early hours of seedling de-etiolation and correlated with reduced
amounts of nucleus-encoded photosynthetic proteins (Figure S6), at first glance suggesting
an impairment of protein import and/or amino acid uptake to happen in Athp20;1 and
Athp20;2 plants. However, these effects were seen only on growth medium containing
sucrose which has documented repressive effects on chloroplast development [54,55]. In
fact, no delay in greening occurred in Athp20;1 and Athp20;2 seedlings illuminated at
high light intensities in the absence of sucrose. Seedling viability tests on sucrose-free
medium did not reveal increased light sensitivities of the Athp20;1 and Athp20;2 mutants
as compared to the wild-type (Figure S8). Similarly, Athp22;2 single and Athp20::Athp22
double mutants as well as HP22 overexpressing plants had no greening defects (Figure
4 and Figure S10), excluding devastating effects of the mutations on chloroplast integrity
and function.

Arabidopsis mutants lacking HP30 were viable as well and unaffected in chloroplast
biogenesis and greening (Figures S5 and S8). Western blotting carried out with antibodies
against plastid- and nucleus-encoded plastid proteins did not reveal major differences for
greening Athp30;2 and Athp30;3 seedlings (Figure S7). Amino acid uptake experiments
and pulse-labelling studies with 35S-methionine on developing and mature as well as
senescing chloroplasts did not indicate significant differences for wild-type, Athp20;2
and Athp30;3 plants (Figures S3, S4, S9 and S12). Incorporation rates of 35S-methionine
declined similarly for all three genotypes over plant development and was highest in
young seedlings (Figure S12). In fact, greening seedlings took up more 35S-methionine into
their plastids than older seedlings and plants and a decline of amino acid incorporation
became apparent when mature plants entered the senescence program (Figure S12). These
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effects were indiscernible for wild-type, Athp20;2 and Athp30;3 plants (Figure S12) and thus
excluded a role of HP20 and HP30 as plastid bulk amino acid transporters.

Figure 8. Cartoon summarizing the role of the different PRAT proteins analyzed in vivo. HP20, HP22, HP30 and HP30-2 are
PRAT proteins that are all encoded in the nucleus. Their genes transcribed depending on developmental and environmental
factors. The resulting transcripts undergo processing and modifications and are then transported into the cytosol where
they bind to 80 ribosomes and are translated into protein. In turn, HP20, HP22, HP30 and HP30-2 are targeted to different
destinations, all four being transported to chloroplasts, whereas a fraction of HP30-2 is dually targeted and thus is also
transported to mitochondria. Chloroplast HP20, HP30 and HP30-2 establish a unique protein translocase for the import of
chloroplast transit peptide (CTP)-less precursors. Similarly, mitochondrial HP30-2 operates in the import of mitochondrial
signal peptide (MSP)-less precursors, while interacting with TIM22 and other components. By contrast, HP22 appears to
play a specific role in senescing chloroplasts where it interacts with HP65 and thereby controls the export of stromal proteins
to the cytosol. Note that the sizes of the nucleus and different plant cell organelles is not drawn to scale.

3.2. Role of Mitochondrial HP30-2 in planta

HP30-2 is present both in chloroplasts and mitochondria [19,28,37]. As shown here
and elsewhere [28], HP30-2 interacts with at least 10 different proteins in mitochondria
(Figures 2 and 3). HP30-2 in fact forms two distinct protein complexes in the inner mi-
tochondrial membrane that participate in the import of cytosolic precursor proteins into
mitochondria [28]. One main complex, dubbed HP30-2A, contains TIM22, mitochondrial
(mt) HSP70 and MIA40 and is involved in the import of mitochondrial signal peptide (MSP)-
less precursors into mitochondria (Figure 8, route B). It couples HSP70-dependent protein
translocation to MIA40-mediated oxidative protein folding. The other HP30-2 protein com-
plex, dubbed HP30-2B, contains the C subunit of the alternative NAD(P)H dehydrogenase
(also called type II NDH) [56,57] as well as mtHSP70. The role of complex HP30-2B is not
yet understood but it is attractive to hypothesize that it may control cell viability. Because
NDC1 was previously implicated in a non-canonical and non-phosphorylating electron
transport chain [58] towards the cytochrome c oxidase, it is likely that abolition of HP30-2
and NDC1 function, as encountered in the Athp30-2 mutants isolated, gave rise to the
generation of apoptotic signals causing growth defects, cell death and seedling lethality
during greening (this study) and in plants grown under alternate dark-light cycles [27,28].



Plants 2021, 10, 958 14 of 21

3.3. Role of Chloroplast HP22 during Leaf Senescence

Chloroplast HP22 operates specifically during leaf senesce (Figure 8, route C). Evi-
dence was obtained for a function of HP22 as protein export component (Figures 4 and 5)
that may be needed to allow the release of organic matter from the stroma to the cytosol
in senescing leaf mesophyll cells. Using transplastomic plants expressing promoter-UTR-
driven GFP in chloroplasts, we report on a system that allows following plastid leakage
in vivo and in planta. While Athp22;2 plants showed a delay in the leakage of stromal
GFP, HP22 overexpressors displayed a markedly increases GFP loss from chloroplasts
(Figure 5). Plants overexpressing HP22 in fact entered senescence more rapidly and re-
leased significantly more stromal GFP into the cytosol per time unit than wild-type plants
(Figure 5). Because no such effects were observed for Athp20 or Athp30 plants under con-
ditions of natural and artificial, abscisic acid-induced or methyl jasmonate-induced leaf
senescence (Figures S13–S17), these findings define HP22 as new, unique factor controlling
the senescence process.

Biochemical experiments additionally showed that HP22 and HP20 establish different
protein complexes in the plastid envelope (Figure 6A). HP22 interacts with at least 10 other
proteins (Figure S18) of which the protein identified as HP65b [52] showed amino acid
sequence homology to the bacterial trigger factor chaperone [53]. Structural and kinetic
data published by other groups suggest that bacterial trigger factor traps both partially
folded and unfolded polypeptide chains by an encapsulation mechanism that allows a vast
range of folded protein structures to be protected from aggregation and mis-folding [59].
Trigger factor binds its target proteins at multiple sites and primarily through hydrophobic
interactions. While the initial binding of trigger factor is highly dynamic and short-lived,
subsequent steps provide more stable and long-lasting intermediates in which the substrate
protein is kept in an extended, unfolded state [60]. It is attractive to assume that such
unfolded polypeptide conformation may be needed to allow stromal proteins to pass the
plastid envelope which is normally impermeable for folded polypeptide chains. By virtue
of the joint action of HP22 and HP65b, in fact, a relay could be established to permit the
export of chloroplast proteins from the stroma to the cytosol in senescing plants. It is not
clear yet in which conformation GFP and the other tested stromal proteins (LSU, EF-T)
left senescing chloroplasts. Given the pore-forming properties of HP22 it seems likely that
proteins to be transported via HP22 would need to unfold before being exported. For GFP,
some refolding then would need to occur in the cytosol, allowing its fluorescence detection
by confocal laser scanning microscopy. In fact, GFP has routinely been used for studying
protein import into chloroplasts such that the postulated unfolding/refolding mechanisms
appears to be functional. Whether mitochondrial HP22 (Figure 6B) can establish a similar
system of protein export from mitochondria, remains to be established in future work.

Genetic studies showed that depletion of HP22 or HP65b function provoked significant
delays in leaf senescence progression and chloroplast decay (Figure 7). In fact, Athp65b-
RNAi-1#2 and Athp22;2 plants retained longer total and soluble chloroplast proteins than
wild-type plants. When Athp65b-RNAi-1#2 RNAi plants were crossed with the Athp22;2
mutant, a double mutant (Athp22;2::Athp65b-RNAi-1#2) was generated that lacked both
HP65b and HP22 and had an even stronger senescence phenotype than each parental
genotype (Figure 7). Athp22;2::Athp65b-RNAi-1#2 plants contained high levels of total and
soluble chloroplast proteins and maintained these levels significantly longer than wild-type
plants (Figure 7). Together these findings suggest HP22 and HP65b to be part of a common
mechanism controlling chloroplast protein export during leaf senescence in Arabidopsis.

4. Materials and Methods
4.1. Arabidopsis Mutants and RNAi Lines

Knock-out mutants referred to as Athp20;1 and Athp20;2 (SALK_020671 and SALK_125640),
Athp30;2 and Athp30;3 (SALK_112126 and SALK_046194), Athp30-2;1 and Athp30-2;2
(SALK_136524 and SALK_ 136525), as well as Athp22;1 and Athp22;2 (SALK_001823 and
SALK_047513) were obtained from the Salk Institute Genomic Analysis Laboratory col-
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lection [47] and Gabi Kat collection [50]. Identification of homozygous mutant plants
was achieved by polymerase chain-reaction-based techniques [48], using appropriate
primers [37]. Isolation and characterization of the Athp65b mutants and RNAi lines is
described in the SI section.

4.2. Plant Growth Conditions

All plants were grown at 23 ◦C under long-day conditions (16 h at 100 µE m−2 s−1

light, 8 h dark). For illumination experiments, seeds were surface-sterilized with 70% (v/v)
ethanol/0.1% (v/v) Tween 20 and germinated on half-strength Murashige-Skoog-agar medium
containing or lacking 1% (w/v) sucrose for 4–5 days in the dark and exposed to continuous
white light of 30–40 µE m−2 s−1 (referred to as low-light conditions) or ≈125 µE m−2 s−1

(referred to as high-light conditions) [61,62]. For photo-bleaching tests, seedlings were grown
on media lacking sucrose and exposed to white light of ≈210 µE m−2 sec−1 [61,62]. Plant
hormone treatments on mature plants were carried out as described [63].

4.3. Seedling Viability Tests

Seedling viability was assessed by tetrazolium staining [64]. For statistic assessment,
pools of about 250 seeds were analyzed in three replicate experiments.

4.4. Pulse-Labeling of Total Leaf Proteins with 35S-Methionine

If not stated otherwise, pulse-labeling of total leaf proteins was performed with
35S-methionine (37 TBq/mmol, Amersham-Pharmacia) for 2 h prior to harvest [63,65].
After incubation, protein was extracted with either a mixture of 80% (v/v) acetone/20%
(v(v) SDS sample buffer (2.9% SDS, 68 mM Tris-HCl, pH 6.8, 10% (v/v) glycerol, 0.1 M β-
mercaptoethanol) [66] or buffer A (50 mM Tris-HCl, pH7.8, 25 mM KCl, 10 mM MgCl, 1 mM
PMSF, 1 mM NaF, 0.5% (v/v) mercaptoethanol, 1% (v/v) Triton X-100, 250 mM sucrose) [67],
followed by further homogenization in a Branson Sonifier (model B-12, microtip, 80 W, 1
min) and precipitation with 5% (v/v) trichloroacetic acid. Protein that had been extracted
with acetone/SDS sample buffer was cleared by centrifugation and only the supernatant
was used for SDS-PAGE. Protein that had been extracted with buffer A and precipitated
with trichloroacetic acid was washed with acetone, ethanol and ether, dried and dissolved
in SDS sample buffer. Protein was separated electrophoretically as described before. Im-
munodetection of proteins was carried out using the indicated antisera (Agrisera, Vännäs,
Sweden) and either an enhanced chemiluminescence system (ECL, Amersham-Pharmacia)
or anti-rabbit, anti-goat, alkaline phosphatase system with 4-nitroblue-tetrazoliumchloride
(NBT) and 5-bromo-4-chloro-3-indolyl phosphate (BCIP) [68].

4.5. Chloroplast Isolation, Amino Acid Uptake and In Organello-Protein Synthesis

Chloroplasts were isolated from seedling or leaf homogenates by density gradient
centrifugation on Percoll (Pharmacia LKB Biotechnol. AB, Sweden) [69]. Re-isolated, intact
plastids were suspended in import buffer lacking ATP and energy depleted [70]. Uptake
of 35S-methionine and 14C amino acids into isolated chloroplasts was monitored by using
the filter paper disk method of Mans and Novelli [71]. For in organelle protein synthesis,
chloroplasts were incubated for 2 h with [35S]-methionine (1.87 MBq per 50-µl assay,
37 TBq/mmol; Amersham Pharmacia, Uppsala, Sweden) in a buffer containing 50 mM
HEPES-KOH, pH 8.0, 40 µM of each proteinogenic amino acids except for L-methionine,
10 mM dithiothreitol, 5 mM Mg-ATP, 10 mM MgCl2, and 0.35 M sucrose [63,65]. Labeling
was stopped by collecting intact plastids by centrifugation or directly adding an equal
volume of doubly-concentrated SDS sample buffer [63,65].

4.6. Isolation of Plastid Envelope Protein Complexes

The chloroplast envelope quinone oxidoreductase homologue (ceQORH) was used
as a model for a transit sequence-less cytosolic precursor [40]. It was expressed as 35S-
methionine-labeled, hexa-histidine ([His)6)-tagged fusion with or without GFP (ceQORH-
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GFP-(His)6) in E. coli strain SG13009 (Qiagen) as described [35,40]. By analogy, (His)6-
tagged versions of HP20 and HP22 were prepared and purified. In each case, the protein
extract then was diluted to yield urea concentrations of 0.2 M and subjected affinity chro-
matography on Ni-NTA agarose. The final, ≈90% pure proteins were incubated with
isolated, energy-depleted Arabidopsis plastids in the presence of 0.1 mM Mg-GTP and
either 0.1 mM Mg-ATP (ceQORH) or 2.5 mM Mg-ATP (HP20 and HP22) for 15 min. After
this time, intact plastids were recovered on Percoll, lysed under hypertonic conditions,
and total membranes isolated as described [41]. After solubilization of these membranes
with 2% Triton X100 in buffer containing 50 mM Tris-HCl, pH 7.5, 300 mM NaCl, 20 mM
imidazole-HCl, pH 8.0, and 1 mM PMSF [41], and a step of centrifugation at 100,000 g for
15 min, proteins interacting with ceQORH, HP20 and HP22, respectively, were identified
by either 1D-SDS-PAGE on 10–20% polyacrylamide gels or 2D-SDS-PAGE including iso-
electric focusing in the first dimension and SDS gradient gel electrophoresis in the second
dimension [69,72]. Protein was stained with Coomassie Brilliant Blue G25 and subjected to
sequencing [73].

4.7. Plastid Leakage Assay

For testing plastid integrity in planta, transplastomic plants expressing a Sl-pRC32
(rrn16::accD*)-GFP constructs [51] in the wild-type, Athp22;2 mutant or HP22-overexpressing
backgrounds were used. For the detection of GFP fluorescence, the excitation wavelength
was 488 nm and the barrier filter BP 530 (band pass, 515–545 nm) was used. For monitoring
chlorophyll fluorescence, the excitation wavelength was 568 nm and the barrier filter BP
590 (long pass, >590 nm) was used [51]. Alternatively, plastids were isolated from leaf
homogenates by centrifugation on Percoll/sucrose gradients, and stromal marker proteins,
such as the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (LSU) and
elongation factor EF-Tu, as well as thylakoid markers, such as the light-harvesting chloro-
phyll a/b binding proteins of photosystem II, quantified on an equal plastid number basis
as described [63], using specific antisera and either enhanced chemiluminescence (ECL)-
based (Amersham) or anti-rabbit, anti-goat, alkaline phosphatase-based detection systems.
For testing plastid integrity in vitro, sedimentation analyses were carried out according to
van Leyen et al. [74]. Briefly, plastids that had been isolated on Percoll were resuspended
in buffer and kept for 2 h in darkness before being pelleted by centrifugation. Protein
contained in the plastid and supernatant fractions were precipitated with trichloroacetic
acid, washed with acetone and ethanol and subjected to SDS-PAGE.

4.8. Analysis of Mitochondrial Membrane Proteins

Mitochondria were isolated from leaf homogenates as described [75] and incubated
with carboxy-terminally, hexa-histidine (His)6-tagged, 35S-HP30-2 or 35S-HP22 that had
been produced in E. coli from respective cDNAs and purified to apparent homogeneity
by Ni-NTA affinity chromatography (see above). After incubation for 30 min at 23 ◦C,
intact mitochondria were re-isolated and fractionated [75]. Outer or inner mitochondrial
membranes were solubilized with 1% (v/v) or 3.5% (v/v) digitonin in a buffer containing
30 mM HEPES-KOH, 200 mM K-acetate, 1 mM EDTA, and 1 mM EGTA (pH 7.4) [76].
Insoluble membrane components were removed by centrifugation at 109,000 × g in a
Beckman TL100 ultracentrifuge, TLA45 rotor, for 30 min. Mitochondrial membrane proteins
interacting with HP-30-2-(His)6 or HP22-(His)6, respectively, were identified by SDS-PAGE
(see above) and Coomassie or silver staining, Western blotting with specific antibodies or
protein sequencing. For total protein analyses, outer and inner mitochondrial membranes
were processed as described [76].

4.9. Other Techniques

Chlorophyll measurements were performed according to Porra et al. [77]. Scanning
Transmission Electron Microscopy (STEM) was carried out in a Philips ESEM XL 30 micro-
scope [33].



Plants 2021, 10, 958 17 of 21

5. Conclusions

The HP22- and HP65b-mediated protein export mechanism from chloroplasts discov-
ered here appears to be just one way of liberating organic matter to the cytosol. Still, many
of its molecular details need to be explored. Another pathway involves 13-lipoxygnase (13-
LOX) that catalyzes the regio- and stereo-specific oxidation of unsaturated membrane fatty
acids such as α-linolenic acid and thereby introduces holes into the plastid envelope [33].
Other well-characterized pathways comprise autophagy, senescence-associated vacuoles,
and chloroplast vesiculation and were implicated in bulk breakdown of organelles, degra-
dation of stromal proteins such as RuBisCO, and transfer of mostly envelope membrane
as well as thylakoid membrane proteins to lytic vacuoles [78–80]. It will be interesting
to see whether HP22 is part of one of these pathways or may act independently. Work is
needed to dissect these pathways genetically given that biochemical approaches may fail
because of the observed instability of the membrane protein assemblies in planta during
leaf senescence.
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