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ABSTRACT

Alternative splicing (AS) is a genetically and epige-
netically regulated pre-mRNA processing to increase
transcriptome and proteome diversity. Comprehen-
sively decoding these regulatory mechanisms holds
promise in getting deeper insights into a variety
of biological contexts involving in AS, such as de-
velopment and diseases. We assembled splicing
(epi)genetic code, DeepCode, for human embryonic
stem cell (hESC) differentiation by integrating het-
erogeneous features of genomic sequences, 16 hi-
stone modifications with a multi-label deep neural
network. With the advantages of epigenetic features,
DeepCode significantly improves the performance in
predicting the splicing patterns and their changes
during hESC differentiation. Meanwhile, DeepCode
reveals the superiority of epigenomic features and
their dominant roles in decoding AS patterns, high-
lighting the necessity of including the epigenetic
properties when assembling a more comprehensive
splicing code. Moreover, DeepCode allows the robust
predictions across cell lineages and datasets. Espe-
cially, we identified a putative H3K36me3-regulated
AS event leading to a nonsense-mediated mRNA de-
cay of BARD1. Reduced BARD1 expression results
in the attenuation of ATM/ATR signalling activities
and further the hESC differentiation. These results
suggest a novel candidate mechanism linking his-
tone modifications to hESC fate decision. In addition,
when trained in different contexts, DeepCode can be
expanded to a variety of biological and biomedical
fields.

INTRODUCTION

Alternative splicing (AS) is one of the most important pre-
cursor (pre-) mRNA processing (1) to increase the mRNA-
and protein-diversity in tissue- and development-dependent
manners (2). Its mechanisms include alternative promot-
ers, preferential usage of exons or splice sites, scrambling
of exon order and alternative polyadenylation (3). A num-
ber of genome-wide studies have revealed its prevalence in
human (1,2), yeast (4), worms (5,6) and flies (7). AS is an in-
tegral part of differentiation and developmental programs
and contributes to cell lineage and tissue identity. Aberrant
splicing may result in developmental abnormalities, heredi-
tary diseases (8) and cancers (9). Therefore, the faithful reg-
ulation of AS is essential for providing specific characteris-
tics of cells and tissues, and for their responses to internal
and external environmental changes (10).

AS regulation has long been thought to involve mostly
RNA-binding proteins, including splicing factors (SF) and
auxiliary proteins, that bind pre-mRNAs near variably used
splice sites (SS) and modulate the efficiency of their recog-
nition by the basal splicing machinery (the spliceosome).
Large-scale quantification of AS combined with genome-
wide identification of in vivo binding sites of splicing regu-
lators provide an unprecedented global view of splicing reg-
ulatory networks (11) and enable the predictions of AS out-
comes based on these genetic attributes (12). Given the con-
ceptions from semiotics, the increasing variety and interac-
tive properties of both genetic and epigenetic features has
led to the use of the term ‘code’ to describe the predictive
and heritable (epi)genetic attributes that specify patterns of
gene expression through differentiation and development.
Likewise, in the context of RNA splicing, combining the
trans-acting regulators with cis-acting RNA elements have
enabled the inference of splicing genetic code (13), which
revealed a number of novel regulators critical for embry-
onic stem cell (ESC) differentiation, such as MBNL (14)
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and SON (15). However, these genetic controls have been
found far from sufficient to explain the whole picture of AS
(16) and the static nature of genome sequence limits the abil-
ity to generate cell-type-specific predictions for samples not
previously used for training (17).

It is clear that a splicing code must incorporate various
features that act together to decode the splicing at multi-
levels from chromatin to RNAs per se. Furthermore, a code
should be able to reliably predict the regulatory proper-
ties of previously uncharacterized exons and the effects of
both genetic and epigenetic variations within the regula-
tory elements. As expected, genome-wide association stud-
ies have revealed the global correlations between histone
modifications (HMs) and AS events (18–22). More specif-
ically, AS is also under controls of the epigenetic mecha-
nisms due to its co-transcriptional occurrence (23). Espe-
cially, the HMs, which define the chromatin states, deter-
mine not only what parts of the genome are expressed but
also how they are spliced. For example, H3K4me3 (24),
H3K9me3 (25), H3K36me3 (26,27) and acetylation of H3
(28) are emerging as major regulators of AS, either by di-
rectly recruiting splicing factors (SFs) or indirectly modu-
lating transcriptional elongation rate (29). These emerging
findings have opened a new avenue and are promising to
decipher a more extended splicing code, by which we may
address these imperfections. Therefore, our goals are to de-
cipher the extended splicing (epi)genetic code compiling not
only the genetic elements but also the epigenetic properties,
to understand how they interplay with each another in reg-
ulating AS and contributing to various biological processes,
such as development and disease progress.

The increasingly rapid growth in the volume of ‘multi-
omics’ data (e.g. genomics, epigenomics, transcriptomics)
makes it possible to achieve these goals, yet requires more
powerful computational approaches to handle and draw bi-
ological mechanisms from these multi-omics datasets. Ma-
chine learning algorithms, such as k-means clustering, sup-
port vector machines (SVM), and random forests (RF)
have been applied to these omics data, separately (30).
Recently, deep learning has gained attentions due to its
high performance and generalized characteristics for an-
alyzing complex data of various contexts (31,32), such
as image and speech recognition (33–35), natural lan-
guage understanding (arXiv preprint arXiv:1409.0473 and
arXiv:1603.01417), and most recently computational biol-
ogy (12,36–39). It aims to replace handcrafted features with
efficient algorithms for unsupervised or semi-supervised
feature learning and hierarchical feature representation us-
ing a cascade of nonlinear processing unit. Our previous
work (32) reveals its potential to capture the latent struc-
tures of cancer patients and enable the generation of distinct
survival subtypes of cancer patients with unique clinical and
molecular characteristics based on those latent structures.
Thus, deep learning can also be used to efficiently decipher
the splicing (epi)genetic codes involving heterogeneous ge-
netic and epigenetic factors. To this end, we implemented
a deep neural network, DeepCode (Figure 1), which took
both genomic sequences and epigenetic features as inputs
to predict the splicing patterns in a variety of contexts, in-
cluding but not limited to development and disease.

ESCs are pluripotent cells that can proliferate indefinitely
while retaining the capacity to differentiate into multiple
lineages of three germ layers and provide a vital tool for
studying the regulation of early embryonic development
and cell fate decision (40). A number of genome-wide stud-
ies have made remarkable progress in understanding the
ESC fate decision. On one hand, AS provides a power-
ful mechanism to control developmental decisions in ESCs
(15,41,42) and undergoes extensive controls from both ge-
netic and epigenetic mechanisms (23). On the other hand,
HMs plays crucial roles in ESC maintenance and differenti-
ation (43) by determining not only what parts of the genome
are expressed, but also how they are spliced. It is intuitive to
raise and dedicate to answer the questions of whether and
how the HMs contribute to splicing code and collectively
affect cell differentiation.

Therefore, in this work, we integrate multi-omics data of
hESC differentiation with the proposed deep learning ap-
proach, DeepCode, to decipher an extended splicing code
for ESC fate decision. With the advantages of epigenetic
features, DeepCode significantly improves the performance
in predicting splicing patterns during hESC differentiation.
In addition, epigenetic properties outperform genetic ele-
ments and play dominant roles in decoding AS outcomes.
We also found that DeepCode is useful for understanding
the (epi)genetic determinants of embryonic development by
revealing a novel candidate mechanism linking HMs to ESC
fate decision. In addition, DeepCode is designed for its scal-
ability in data types and extensibility in applications, thus
holds the potential applications in a variety of biological
and biomedical fields when trained in different contexts.

MATERIALS AND METHODS

Datasets

To decipher the splicing (epi)genetic code for embryonic
development, we used two datasets from independent re-
search groups for primary model training and evaluations.
The first dataset was from four cell lineages directly de-
rived from hESCs (H1 cells), including trophoblast-like cells
(TBL), mesendoderm (ME), neural progenitor cells (NPC)
and mesenchymal stem cells (MSC), which was generated
from Bin Ren’s lab (43). We also included IMR90 for Ren’s
dataset, a cell line for primary human fetal lung fibroblasts,
as an example of terminally differentiated cells. The sec-
ond dataset was from Alexander Meissner’s lab (44) with
regard to a population of cells derived directly from hESCs
(HUES64) representing each of three embryonic germ lay-
ers, including ectoderm (dEC), mesoderm (dEM), and en-
doderm (dEN). Matched ChIP-seq data of 16 HMs and
DNase, and RNA-seq data (two replicates) for each cell
type were collected and analyzed (Supplementary Methods,
M1). In this study, we mainly focused on two types of mostly
occurred AS events, mutually exclusive exons (MXE) and
skipped exons (SE). These AS events were identified from
the RNA-seq data with the ‘per spliced in’ changes |�PSI| >
0.1 at FDR < 0.05, based on measurements used by rMATS
(45) (Supplementary methods M1). We defined these AS
events as hESC differentiation-related AS events, including
3,513 MXE and 3,678 SE events for Ren’s dataset (Supple-
mentary Figure S1a, Table S1, and Dataset D1), which were
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Figure 1. Schematic view of DeepCode. (A) Multiple high-throughput data are integrated to feed the deep learning neural network. RNA-seq data are
used for AS events identification and ‘percent spliced in’ (PSI) quantification; ChIP-seq data for epigenomic features; and RNA sequences for genomic
features. (B) A multi-label deep neural network is proposed to learn the (epi)genetic code for AS. The code will be predictive for inclusion levels (PSIs)
and their changes (�PSI) upon hESC differentiations. (C) The resulting model, DeepCode, can then be used to investigate AS regulations genetically and
epigenetically, and further to evaluate effects of genetic and epigenetic variants on AS during normal development, disease progressions, and so on.

the primary dataset for model training and evaluation. We
also identified the AS events for Meissner’s dataset (Sup-
plementary Table S1), which were used as the independent
dataset for evaluations of model robustness. The genomic
and epigenomic features were learned from the ±150bp re-
gions surrounding both the 5′ and 3′ splice sites (SS) of the
AS exons (Supplementary Figure S1b). We identified 136
and 68 epigenomic features of 17 ChIP-seq datasets for SE
and MXE exons, respectively (Supplementary Methods M1
and Table S1). Besides, 421 pre-defined sequence features
are also considered as genomic features, including known
motifs, new motifs, short motifs and transcript structures,
which were assembled as splicing genetic code and origi-
nally described in reference (13). Additionally, we also em-
ployed the extensive resources from Roadmap (46,47) and
ENCODE (48,49) projects, wherein five ESC or iPSC, eight
ESC-derived cell types and 43 adult cells/tissues were con-
sidered (Supplementary Dataset D2 and Methods M5).

The DeepCode

DeepCode, an extended splicing (epi)genetic code, is pro-
posed to predict how given exons are spliced differentially
in different cell lineages derived from hESCs. The method
takes multi-omics data (RNA-seq, ChIP-seq, and RNA se-
quences) as inputs for large-scale feature learnings and rep-
resentations (Figure 1A). A multi-label deep neural network
is then automatically trained to learn and integrate multi-
omics features; the trained model (DeepCode) enables the
prediction of splicing patterns represented as inclusion lev-
els (PSIs) and their changes (�PSIs) in different conditions
(Figure 1B). Trained in different contexts, DeepCode can be
used in not only understanding AS regulations, but also a
variety of biological and biomedical topics, including but
not limited to developmental mechanisms and cancer re-
searches (Figure 1C).

Defining the learning tasks. Because of the position-
dependent biases in the coverage of RNA-seq reads (50), es-

timated exon inclusion levels (i.e. PSIs) may not be accurate
enough for model training across samples (cell lineages). To
avoid directly learning the absolute values of PSIs, we dis-
cretized the inclusion levels into high (H), medium (M) and
low (L), based on the global distribution of PSIs (Supple-
mentary Methods M2 and Figure S2). In addition, in or-
der to extend the model prediction capability for lineage-
specificity, we also applied the model to predict PSI changes
(�PSIs) upon hESC differentiation. In short, we had two
learning tasks. The first one is to predict the splicing out-
come of a given exon in a specific cell lineage; and the second
to predict the �PSIs induced by differentiation, represented
as either increased (I) or decreased (D). We assembled these
tasks into five-dimensional binary vectors, <H, M, L, I,
D>, and named it as splicing patterns (SPs, Supplemen-
tary Figure S3 and Methods M2). This definition makes the
learning tasks a multi-label learning problem (MLP). Usu-
ally, there are two strategies for MLP––either transform-
ing MLP as several binary classification problems, or trans-
forming MLP into a multi-class classification problem (51).
We used the former one adapted from previous work (52)
to learn the SPs. Specifically, to learn the SPs represented as
a 5D binary vectors, five binary classifiers were introduced
to distinguish exons with High inclusion level from others,
with Medium inclusion level from others, with Low inclu-
sion levels from others, with Increased inclusion level from
the others induced by differentiation, and with Decreased
inclusion level from others induced by differentiation, re-
spectively.

Designing the architecture and mathematical representation
of the DeepCode. Previous work only introduced sequence
features to decode SPs (13,52). Given the emerging crucial
roles of epigenetics in AS regulation, we also introduced
epigenomic features for a more comprehensive decoding of
SPs. To integrate both sequence and epigenomic features,
DeepCode was designed as a multi-layer neural network,
which includes transformation layers for feature abstraction
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and a fusion layer for feature integration (Supplementary
Figure S3). Furthermore, the multi-label architecture was
introduced to decode the SPs represented as five-dimension
binary vectors, which allows learning shared features be-
tween outputs, thereby improving generalization perfor-
mance, and markedly reducing the computational cost of
model training compared to learning independent models
for each task (13).

In the term of SP prediction based on integration of
genomic and epigenomic data, the meaningful features
can be individual sequence motifs or k-mers and epige-
netic signals at the lowest layers, combined motifs and
epigenetic signals at the intermediate layers, and complex
(epi)genomic code at the highest layers. The specially de-
signed DeepCode allows integrating diverse input feature
types and is able to capture both inner- and inter-feature
relationships through its transformation and fusion lay-
ers. Suppose we have a total of N exons with a total
of M epi(genomic) feature types and L layers in a multi-
layer neural network (Supplementary Figure S3). Denote
xm

n (m = 1, · · · , M; n = 1, · · · , N) as the original value of
inputted feature associated with mth epi(genomic) feature
type in the nth exon; am

l−1 and am
l as the input and output

of the lth layer for mth feature type, l = 1, · · · , E (E, the
number of transformation layers); and at−1 and at as the in-
put and output of tth fusion layer, t = E + 1, . . . , L − 1.
Let Wm

l and b m
l as the weight matrix and bias vector of

the transition function from (l − 1)th to lth transforma-
tion layer, respectively, and Wt and bt as the weight ma-
trix and bias vector of the transition function from (t − 1)th
to tth fusion layer, respectively. Given exon associated with
the mth feature type xm, the transition function from the
(l − 1)th to the lth transformation layer, and from (t − 1)th
to tth fusion layer were calculated as follows:

a m
l =

{
xm, l = 1

σ
(
Wm

l−1am
l−1 + bm

l−1

)
, 1 < l ≤ E,

at =
⎧⎨⎩ σ

(
M∑

m=1
Wm

E am
E + bE

)
, t = E + 1

σ (Wtat−1 + bt−1) , E + 1 < t ≤ L

(1)

where �(•) is sigmoid function, defined as σ (μ) =
1

1+exp(−μ) .

Let WE = (vec(W1
E), · · · , vec(WM

E )), where vec(Wm
E ) is

obtained from matrix Wm
E by stacking the columns of Wm

E
one on top of another, m = 1, · · · , M. Then the optimal
weights for each layer can be obtained by the following op-
timization problem:

min
W, �

N∑
n = 1

� (ŷn, yn) + λ1
2

(
E∑

l = 1

M∑
m = 1

||W m
l ||2F +

L−1∑
t = E+1

||Wt ||2F
)

+
λ2
2 tr

(
WE�−1WT

E

)
,

s.t. � ≥ 0, tr (�) = 1,

(2)

where � is the loss function measuring the discrepancy be-
tween the observed SP y = (y1, · · · , yN) and the estimated
SP ŷ = (ŷ1 , · · · , ŷN). The regularized least square (RLS)
was introduced as the loss function to access the discrep-
ancy between the observed SPs and the estimated ones. λ1
and λ2 are regularization parameters; positive semi-definite
matrix � ∈ RM×M models the inter-feature relationship;

tr (�) = 1 is applied to restrict complexity of the model, as
suggested in (52), and ‖ W‖F is Frobenius norm of matrix
W. The first two regularization terms in the optimal func-
tion are used for sparsity control and last one for managing
the diversity among different feature types.

Model implementation and parameters selection

Our previously proposed optimization method (32) were
applied to iteratively minimize the optimization problem
(formula 2) with respect of weight matrix W and diversity
control matrix �. By fixing �, the optimization problem
(formula 2) becomes an unconstrained optimization prob-
lem with respect of both vector and sparse matrix. The
Frobenius norm of a matrix W is the 2-norm of its vec-
tor transition vec(W), which is obtained from matrix W
by stacking the columns of W one on top of another.
The positive semi-definite matrix � could be decomposed
as a product of matrix U and its transpose � = UT U,
so tr (WE�−1WT

E ) = tr (VVT) =‖ V ‖2
F , where V =

WE U−1. Then the formula (2) with a fixed � became a
nonlinear unconstrained optimization problem with only
respect to the vector, which was solved by ‘fminunc’ func-
tion in MATLAB. When the optimized weight matrices
(Wm

l , Wt) were obtained, the optimized � was obtained
by introducing Cauchy–Schwarz inequality into a simple
semi-definite optimization problem. The model parameters
λ1, λ2 were selected by 5-fold cross-validation procedure,
and the number of total layers in the network was prede-
fined as four to facilitate rapid convergence and reduce over-
fitting. The sparsity control for parameters was added in our
optimization. It would force many of them close to zero and
generate few of parameters with large values that indicated
the (epi)genomic features strongly associated with splicing
outcomes.

Feature selection and (epi)genetic code assembling

The optimal weight matrices (Wm
l , Wt) indicate the most

contributed (epi)genomic features during SPs learning.
Supplementary Figure S4 depicts the flowchart for feature
selection after optimization problem (formula 2). Suppose
the multi-layer neural network only contains four layers,
including input, transformation, fusion and output layers,
the most contributed fusion notes were found based on
the value of WL. The weight matrices for top fusion notes
(Wt) provide the evidence for determining the most con-
tributed (epi)genomic feature types during the learning. The
(epi)genomic variables that could be used as important fea-
tures were traced based on the weight matrix of transforma-
tion layer Wm

l . The candidate features were selected based
on their importance that were calculated by multiplying
their associating weights and used to evaluate their contri-
butions to the splicing (epi)genetic code. The selected im-
portant features were evaluated by how the performance
changed based on the selected features. The top important
(epi)genomic features (150 in this study) were then assem-
bled as the final splicing (epi)genetic code.
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Model evaluation and statistical analyses

Since the imbalance problem was raised due to one-versus-
the-rest procedure, which was employed to implement MLP,
and the precision-recall curve is a better index for evaluation
the imbalance problem (13), the area under the precision-
recall curve (AUPR) was introduced as the criteria to dis-
play the performance of the learning model. Evaluations
were performed among different feature types across dif-
ferent cell lineage and datasets. We also compared the per-
formances of DeepCode with other counterpart models.
Specifically, two types of cross-validation strategies and one
independent dataset were explored to test the model’s ro-
bustness and ability of predicting between cell lineages and
datasets (Supplementary methods M3). The statistical sig-
nificances were tested using Student’s t-test (R package) for
Figures 2D, E, 3, 4C and Supplementary Figure S6c. Espe-
cially for Figure 2D and E, the tests were performed based
on the y-axis values along with same x-axis values. Pear-
son correlation tests were used for Figure 5, Supplementary
Figures S8, S9 and S14.

RESULTS

We trained the primary DeepCode model based on the two
types of AS events (MXE and SE) that occur during hESC
differentiation to multiple cell lineages (Ren’s dataset). Vari-
ous evaluations were employed to assess the performance of
DeepCode. We show that DeepCode surpasses other state-
of-the-art approaches in predicting how the transcripts will
be spliced during multiple-lineage differentiations of hESCs
and highlights the contributions of epigenomic features to
decoding the SPs. DeepCode also facilitates getting deeper
insights into the involvement of HMs in ESC fate decision
through the regulation of AS.

DeepCode improves the performance of decoding the splicing
patterns

We first assessed the effects of (epi)genomic features on pre-
dicting performance. As shown in Figure 2A, the epige-
nomic features are more predictive than the genomic se-
quence features, and the combination of both improves per-
formance much more than sequence features alone. This
result suggests that epigenomic features play important
roles in deciphering the splicing code of higher predictive
power. We then compared our results with a commonly used
deep learning framework, the deep neural network (DNN),
which has been proven to outperform the Bayesian neu-
ral network and multinomial logistic regression model in
learning the splicing genetic code (12). We implemented
the DNN on Ren’s MXE and SE AS events across all cell
lineages, and compared the AUPRs. DeepCode achieves
higher AUPRs on both MXE and SE events, indicating that
our approach outperforms DNN in both types of AS events
(Figure 2B and C, Supplementary Tables S2 and S3).

We further validated the ability of DeepCode and DNN
in predicting the inclusion level changes (increased or de-
creased), which directly reflects the lineage-specificity. Both
methods were performed on the Ren’s MXE and SE events
across all five cell lineages to test their ability of distinguish-
ing the lineage-specificity. DeepCode has superior perfor-

mance (Figure 2D and E) over the DNN. It is because the
multi-layer neural network of DeepCode is specially de-
signed for multi-omics data integration, and also due to
contribution of epigenomic features. Taken together, our
analyses showed that DeepCode improves the performance
of decoding the splicing patterns and highlights the impor-
tance of epigenomic features.

Epigenetic properties outperform genetic elements in decod-
ing the splicing patterns

The contributions of features in decoding SPs can be uncov-
ered through the weight matrices in the multi-layer neural
network and were measured as ‘importance’ (see Materi-
als and Methods). The features of higher importance con-
tribute more to splicing code. Taking into account all fea-
tures (3504 features for MEX and 1752 features for SE),
we observed that epigenomic features are more important
than genomic ones (Figure 3A and Supplementary Fig-
ure S5a). It strongly suggests that the epigenetic proper-
ties, such as histone modifications, should be taken into ac-
count when assembling a more accurate splicing code. We
then compared the features with respect of their genomic
locations. Both genomic and epigenomic features show no
difference in importance between exonic and intronic re-
gions (Figure 3B and Supplementary Figure S5b), indicat-
ing that AS regulatory machinery does not prefer to ex-
onic or intronic regions around the splice sites (SS). We
further compared features regarding to the 3′SS or 5′SS.
In this regard, epigenomic features around 3′SS are more
important than around 5′SS, while genomic features show
no significant difference between them (Figure 3C and Sup-
plementary Figure S5c). In addition, epigenomic features
display more diversity in importance among different fea-
ture regions (Supplementary Figure S6a). For MXE events,
though both genomic and epigenomic features showed no
significant preference of importance between the upstream
and downstream exons, a moderate difference was observed
for epigenomic features (Supplementary Figure S6b). Taken
together, we showed that epigenomic features are distinct
in many aspects with the genomic features and, especially,
epigenomic features outperform genomic ones in decoding
the SPs.

Assembling a splicing (epi)genetic code

We aimed to assemble a code that is able to predict the splic-
ing patterns of all AS exons as accurately as possible, based
on RNA sequence features and HM ChIP-seq signals. To
assemble such a code that encompasses the top important
features to decode the SPs, we performed single layer neu-
ral network analyses on the recursively selected features and
evaluated their importance through the caused changes in
AUPRs with performing multi-layer neural network anal-
yses on full features. For the MXE events, when the num-
bers of selected features reaches 150, adding more features
does not further improve the performance (Figure 4A, left
panel). For the SE events, the minimum required features
for achieving the highest performance is 140 (Figure 4A,
right panel). These results suggest that only a small por-
tion (4% for MXE and 8% for SE) of features are suffi-
cient to predict the SPs, accounting for up to 99.8% of the
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Figure 2. DeepCode improves the performance in decoding splicing patterns. (A) Epigenomic features improve model performance sharply, suggesting they
are more important in decoding splicing patterns. Seq, sequence features alone; Epi, epigenomic features alone; Comb, combining the Seq and Epi together.
(B and C) DeepCode improves performance for decoding splicing patterns for both MXE (B) and SE (C) events. Shown as the average AUPR across five
cell lineages. (D and E) The precision-recall curves of predicting inclusion level changes for MXE (D) and SE (E) events during hESC differentiations. p,
P-values based on Student’s t-test.

performances with all features included (Figure 4B). There-
fore, we assembled the final (epi)genetic codes containing
150 features for both the MXE and SE events for consis-
tency reason (Supplementary Figure S7). Consistent with
the global profiles of full features, the top important epige-
nomic components display higher importance than the top
genomic ones (Figure 4C and Supplementary Figure S6c).
Moreover, the epigenetic components of the final splicing
codes are concordant between MXE and SE events (Fig-
ure 4D) and consistent with the previous reports (21). For
example, the top two epigenetic features (H3K36me3 and
H3K79me1) have been reported to be mostly related to AS
(21).

Genetic elements have been previously assembled as
splicing genetic code (13). We further compared the Deep-

Code with this genetic code regarding to the correlations
between the DeepCode importance and the genetic code
weights (shown as Barash et al. weight) of the same group
of genomic features. We found that the genomic features
are highly correlated in their importance (weight) between
these two independent models in decoding the splicing pat-
terns. It is consistent for the model trained on full features
(Supplementary Figure S8) and finally assembled splicing
code (Figure 5). We also observed some outlier features
not correlated between these two models, which are rea-
sonable upon the fact that epigenomic features play crucial
roles and could abolish some redundant contributions of
genomic features that got high weights in previously assem-
bled code. All together, we assembled a splicing (epi)genetic
code composed of 150 (epi)genomic features, of which the
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Figure 3. DeepCode reveals different aspects of the contributions of (epi)genomic features. (A) Epigenomic features are more important in deciphering
splicing code. (B) Both genomic and epigenomic features from exonic and intronic regions show no difference in contributing to splicing code. (C) Epige-
nomic features around 3′SS have higher importance than around 5′SS; while genomic features are not significantly different. p, P-values based on Student’s
t-test.

genetic components show high correlation with those of a
previously assembled code (13).

DeepCode allows the prediction of AS patterns across cell
lineages and datasets

To test the robustness of the assembled splicing (epi)genetic
code for prediction of AS patterns across developmental lin-
eages and datasets, we employed independent dataset and
implemented two additional evaluation strategies (Supple-
mentary Methods M3).

Firstly, we trained DeepCode using AS events of two,
three, and four of the five cell lineages from Ren’s dataset
to predict those of the rest lineages, respectively (i.e. cross-
lineage tests, shown as 2vs3, 3vs2 and 4vs1 in Supple-
mentary Tables S4 and S5; each individual test is named
as T1–T25). The performances were comparable with 5-
fold cross-validation (Supplementary Tables S4 and S5).
We also checked whether the imbalanced sample sizes be-
tween training and testing datasets will affect the predict-
ing performance. We only observed better predictions for
some of those tests using cell lineages of larger sample sizes
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Figure 4. Top important features and DeepCode assembly. (A) The predictive performances of DeepCode increase with the number of top important
features for MXE (left) and SE (right) events. (B) The distributions of feature importance and top important features (filled parts) for MXE (left) and SE
(right) events. (C) The top important epigenomic features are consistently of higher importance than top important genomic features. Only the case of
MXE events is shown and the case of SE events is provided in Supplementary Figure S6c. N, the number of involved top features; p, P-values based on
Student’s t-test. (D) The top important epigenomic features are concordant between MXE and SE event, and consistent with the previous reports. Orange
dots are the features shared by the splicing codes for MXE and SE events. R2 indicates the fitness of polynomial curve.

to predict the remaining cell lineages with smaller sample
sizes, such as the tests T3–5, T12–15 and T22–25. It sug-
gests that the sample imbalance across cell lineages has
slight impact on performances of cross-lineage tests, espe-
cially for MXE events (Figure 6A, B, Supplementary Ta-
bles S4 and S5). Furthermore, the feature importance of
cross-lineage tests is highly correlated with the importance
based on 5-fold cross-validations (Supplementary Figures
S9 and S10). It suggests that the model trained based on
some cell lineages is able to produce reliable predications

for other cell lineages, which is supported by the observa-
tion that the changes of HMs during cell differentiation are
lineage-independent, i.e. no lineage-specificity (Supplemen-
tary methods M4 and Supplementary Figure S11).

Secondly, we implemented independent tests between
the Ren’s and Meissner’s (44) datasets to evaluate the ro-
bustness of DeepCode for cross-dataset predictions (Sup-
plementary Methods M3). We tested the performances of
DeepCode in predicting AS patterns between these two
datasets reciprocally, i.e. DeepCode was trained using one
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Figure 5. The assembled DeepCode shows high correlations with the previously assembled splicing genetic code regarding to genetic features’ importance.
(A–D) The correlations for MXE events. Both upstream and downstream exons were pooled together. (E–H) The correlations for SE events. Black lines
represent the linear fittings; r, the correlation based on Pearson correlation test.

dataset to predict the other one. The AUPRs ranged from
0.71 to 0.89, some of which are even better than the cross-
lineage tests (Figure 6C, D, and Supplementary Tables S6–
S9). No matter which dataset was used for training and the
other one for testing, the DeepCode reaches nearly the same
performances. Meanwhile, DeepCode holds better perfor-
mances than DNN in cross-dataset tests (Figure 6E and F).
Altogether, DeepCode allows the prediction of AS patterns
among cell lineages and is robust across datasets.

DeepCode reveals a novel candidate mechanism linking his-
tone modifications to fate decision

Following the insights gained from DeepCode, we found
that a number of core component genes of the ‘ATM/ATR-
mediated DNA damage response’ pathway undergo
H3K36me3-associaated AS during hESC differentiation
(Supplementary Figures S12a and S13). This pathway is
activated in S/G2 phases and has recently been reported as
a gatekeeper of the pluripotency state dissolution (PSD),
which allows hESCs going differentiation (53). We found
that a number of AS events of the ATM/ATR pathway are
shared by multiple lineages (Supplementary Figure S12b).
BARD1 (BRCA1 associated RING domain 1) is the only
gene that shared by all lineages, suggesting its key role in
determining cell fate. We observed the AS event of BARD1
involving the exon 3 and 4 for all differentiation lineages
(Figure 7A). The stem cells prefer to using exon 3, while
differentiated cells prefer to exon 4, with a differential PSI
(�PSI) of exon 4 at 0.218 in average (Figure 7B). This

preference of exon usage is also observed in an additional
independent dataset from Roadmap (46,47) and ENCODE
(48,49) projects (Supplementary Dataset D2, method M5,
and Supplementary Figure S14a).

In addition, DeepCode highlights the importance of
H3K36me3 around the 3′ splice site of exon 4. We observed
significantly negative correlation between inclusion levels of
exon 4 and the surrounding H3K36me3 signals in hESCs
and differentiated cells (Figure 7C). Together with the pre-
vious report that chromatin-adaptor MRG15/PTBP1 en-
dows negative regulation of H3K36me3 on AS (26) and
the report showing that BARD1 is a splicing target of
PTBP1 (54), the AS of BARD1 is suggestively regulated
by H3K36me3 through the MRG15/PTBP1 adaptor. These
results suggest the presence of a combinational mechanism
involving HMs and AS, wherein HMs facilitate the PSD
and cell fate commitment by impacting on the AS of key
components of the ATM/ATR pathway (Supplementary
Figure S12c). The underlying mechanisms of these findings
are discussed later and hold the promise to drive further ex-
perimental studies on the involvements of HMs in cell fate
decision via determining the transcripts diversity in addi-
tion to their abundance.

DISCUSSION

Deep learning is now one of the most active fields in ar-
tificial intelligence (AI) and has been shown the state-
of-the-art performance in image and speech recognition
(33–35), natural language understanding (arXiv preprint
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Figure 6. DeepCode allows the prediction of AS patterns across developmental lineages and datasets. (A and B) The precision-recall curves for the leave-
p-out cross-validations (cross-lineage tests) of the highest AUPRs, based on the samples of MXE (A) and SE (B) events, respectively. (C and D) The
precision-recall curves of cross-dataset tests for MXE (C) and SE (D) events, only the tests of the best AUPRs (Supplementary Tables S6–S9) are shown.
(E and F) The performance comparisons between DeepCode and DNN for the cross-dataset tests. The insets show the AUPR of each test.

arXiv:1409.0473 and arXiv:1603.01417), and most recently,
in computational biology (12,36–39). Specifically, deep neu-
ral networks have been successfully applied to predict
splicing activity based only on RNA sequences (12,55).
However, genomic features alone limit the regulatory in-
tegrity and accuracy in modelling the AS due to the co-
transcriptional occurrence and multi-level regulations from
chromatin (epigenetics) to RNAs per se (genetics). To over-
come this limitation, we implemented a multi-label deep
neural network (DeepCode) to decode the AS, especially
taking epigenetic properties into account (Figure 1). We
found that DeepCode significantly improves the perfor-
mance in predicting splicing patterns during human ESC
(hESC) differentiation. In addition, DeepCode highlights
the epigenetic mechanisms of AS regulation and reveals that
epigenomic features are superior to the genomic ones and
pay dominant roles in decoding the AS. Moreover, Deep-

Code enables extension of this work to other areas be-
yond the embryonic development, such as cancer research
and precision medicine, to widen our knowledge in broader
fields (Figure 1C).

Although epigenomic signatures, such as HMs, are
mainly enriched in promoters and other intergenic regions,
it has become increasingly clear that they are also present
in the gene body, especially in exon regions. This indicates
a potential link between epigenetic regulation and the pre-
dominantly co-transcriptional occurrence of AS. So far,
H3K36me3 (26,27), H3K4me3 (24), H3K9me3 (25) and
H3acetyl (28) have been revealed to regulate AS, either via
the chromatin-adapter systems or by altering Pol II elon-
gation rate. Here, using deep learning approach, we pin-
pointed the extent to which the HMs are predictive for AS
by integrative learning both transcriptome and epigenome
data during hESC differentiation. Especially, we revealed
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Figure 7. BARD1 is alternatively spliced upon hESCs differentiation and links H3K36me3 to cell fate decision through the ATM/ATR pathway. (A) The
genome browser view of the AS event of BARD1 and surrounding H3K36me3 signals. �, the PSI of exon 4. (B) The isoform switches between hESCs and
differentiated cells, shown as the PSIs of exons 3 and 4. (C) The inclusion levels of exon 4 are significantly of negative association with the surrounding
H3K36me3 signals. p, the P-values, and R2, the fitness of linear regression.

high importance of the associations between HMs and
AS, including previously reported and unreported ones.
H3K36me3 and H3K79me1 were ranked as the top two im-
portant HMs in decoding AS events. It is reasonable since
H3K36me3 is a mark for actively expressed genomes (56),
and has been reported to regulate AS via two chromatin-
adaptor systems (26,27); while H3K79me1 has been re-
ported to be highly correlated with splicing (21). Besides, we
revealed two more HMs (H3K4me2 and H2BK5ac) that are
implied to be related with both MXE and SE events. The
H2BK5ac has be linked to active promoters and gene ex-
pressions (57,58); H3K4me2 is a mark for both promoters
and enhancers (59) and defines the most TF binding regions
(60). Both of them have not been reported to associate with
or function in AS regulations. Our findings will drive the
further studies on these unreported HMs in AS regulations,
which are beyond the scope of our current work. More-
over, we assembled the top important HMs and genetic mo-
tifs into an ‘extended splicing code’, which gives better per-
formance in decoding splicing and holds the promise for
deeper insights into AS regulations.

Additionally, DeepCode also sheds light on understand-
ing of the contribution of HMs to cell fate decision via de-
termining not only what parts of the genome are expressed,
but also how they are spliced (23). We found that the al-
ternatively spliced ATM/ATR pathway plays crucial roles
in hESC differentiation (Supplementary Figures S12a and
S13). Especially, the AS of BARD1 conservatively occurs
in all of the investigated differentiation lineages and is pu-
tatively associated with cell fate decision through a process
called pluripotency state dissolution (PSD) (Supplementary
Figure S12) (53). BARD1 plays a central role in the con-
trol of the cell cycle in response to DNA damage and has
also been reported to stabilize the differentiation state (61).
BARD1 is specifically homologous to BRCA1 within the

conserved RING finger domain at the N-terminus (residues
50–87) and two tandem BRCA1 carboxyl-terminal (BRCT)
domains at its C-terminus (residues 560–777) (Supplemen-
tary Figure S12c) (62). BRCA1 and BARD1 can form either
homodimers or more stable heterodimers via their RING
fingers (63), and play key roles in ATM/ATR pathway for
DNA repair and cell cycle transition, which are all related to
cell fate decision through the PSD (Supplementary Figure
S12a) (53). The AS of BARD1 occurred during hESC dif-
ferentiation results in two isoforms by mutually including
exon 4 and exon 3. The isoform including exon 3 codes the
canonic BARD1 protein and is highly expressed in ESCs,
which is crucial for the activation of ATM/ATR pathway
and then benefits the maintenance of pluripotency state
(self-renewal, Supplementary Figure S12c). Whereas, the
isoform including exon 4 is a non-coding RNA and un-
dergoes nonsense-mediated decay (NMD) in differentiated
cells, which attenuates the activity of ATM/ATR pathway
and allows the PSD and further differentiation (Supplemen-
tary Figure S12c).

Although the bidirectional communication between
H3K36me3 and splicing has been reported (64) and may
weaken the regulating hypotheses from H3K36me3 to AS
of BARD1, the enhancement of H3K36me3 by splicing can
only deduce the positive correlations between these two
processes. Therefore, our observation of negative correla-
tion putatively suggests a unidirectional regulation from
H3K36me3 to AS of BARD1 (Figure 7C). Based on
the previously reports, two chromatin-adaptor complexes,
MRG15/PTBP1 (26) and PSIP1/SRSF1 (27), endow nega-
tive and positive regulations of H3K36me3 on AS, respec-
tively. Since the observed negative correlation (Figure 7C),
it is suggestive that the AS of BARD1 is epigenetically reg-
ulated by H3K36me3 through the MRG15/PTBP1 adap-
tor system. Based on the independent datasets (Supple-
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mentary Dataset D2) from Roadmap/ENCODE projects,
the negative correlations between the inclusion level of
exon4 and the expressions of MRG15/PTBP1 rather the
PSIP1/SRSF1 also implied this regulation hypothesis (Sup-
plementary Figure S14b–e).

Altogether, we implemented a deep learning approach
in deciphering a more comprehensive splicing code, Deep-
Code, integrating both genetic and epigenetic features. Es-
pecially, DeepCode revealed a novel candidate mechanism
linking histone modifications to ESC fate decision. Besides
its outstanding performance in embryonic development,
DeepCode is designed for its scalability in data types and
extensibility in applications, thus holds the potential appli-
cations in a variety of biological and biomedical fields (Fig-
ure 1C).

SUPPLEMENTARY DATA

Supplementary Data are available at NAR online.
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