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The continuous development of molecular biology and protein engineering technologies

enables the expansion of the breadth and complexity of protein therapeutics for in vivo

administration. However, the immunogenicity and associated in vivo development of

antibodies against therapeutics are a major restriction factor for their usage. The B cell

follicular and particularly germinal center areas in secondary lymphoid organs are the

anatomical sites where the development of antibody responses against pathogens and

immunogens takes place. A growing body of data has revealed the importance of the

orchestrated function of highly differentiated adaptive immunity cells, including follicular

helper CD4T cells and germinal center B cells, for the optimal generation of these

antibody responses. Understanding the cellular and molecular mechanisms mediating

the antibody responses against therapeutics could lead to novel strategies to reduce

their immunogenicity and increase their efficacy.
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INTRODUCTION

Protein therapeutics is a new class of drugs that, unlike small molecule drugs, are not chemically
synthesized; instead, they are produced within living cells or organisms. Remarkable developments
in molecular biology and protein engineering methodologies in the last few decades have enabled
the generation of several new biotherapeutics for a wide range of diseases. Despite the potential
of protein therapeutics, a drawback, often associated with them, is the generation of antidrug
antibodies (ADAs), which diminishes the bioactivity and effectiveness of the therapeutic (1). The
anatomical sites where the development of ADA occurs are the secondary lymphoid organs,
including lymph nodes and spleen, which are central for humoral responses to immunogens and
pathogens (2–4). The organogenesis (5, 6), architecture (7, 8), and cellular composition (9, 10)
of lymph nodes as well as the immune reactions to pathogens mediating the development of
humoral responses (11, 12) are well-studied and understood. Here, we review these principles with
a focus on ADA development and potential strategies aiming to minimize the immunogenicity
of biotherapeutics.

HISTORICAL BACKGROUND

The history of protein therapeutics starts probably with diphtheria antitoxin derived from horse
serum. The extraction of insulin from bovine pancreas, a few decades later, was a milestone
in the treatment of diabetes. The development and approval of recombinant insulin, a human
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insulin expressed in Escherichia coli, in 1982 (13) resulted in the
increased accessibility of insulin. Around the same time, murine
monoclonal antibodies were being considered as therapeutic
agents, with Orthoclone OKT3 (muromonab-CD3) being the
first licensed monoclonal antibody, in 1986 (14). Many of

the first-generation monoclonal antibodies were significantly
immunogenic, because of their murine origin. Orthoclone
OKT3 was eventually discontinued from the market in 2010

owing to the development of ADA (14–17). New generations
of monoclonal antibodies are primarily being developed as
humanized or human antibodies and are far less immunogenic.

The use of a fully humanized IgG1 mAb against TNFα
(adalimumab) triggered the development of ADA in patients
with plaque psoriasis (18) and rheumatoid arthritis (19–22),
indicating that ADA development to therapeutics can vary
depending on factors like preexisting activation of the immune
system and chronic inflammation.

Monoclonal antibodies constitute a large fraction of
biotherapeutics and target a specific protein, usually to inhibit
or modulate its function; in some cases, they may have a
diagnostic role, or they may deliver a drug. The rest of protein
therapeutics are primarily replacement therapies for proteins
that are deficient owing to genetic or other reasons. Such
protein therapeutics include coagulation factors, hormones,
growth factors, and enzymes. Recently, fusion proteins are
becoming an important class of biotherapeutics (Table 1).
There are several examples of albumin fusion, Fc fusion,
and antibody drug conjugates available in the market (33).
The breadth and the complexity of protein therapeutics
increase the potential for immune response generation. Protein
therapeutic immunogenicity poses a great challenge in the
field; and a better understanding of the risks, development,
and mechanisms of ADA is needed to allow for strategies to
reduce immunogenicity.

TABLE 1 | Reported ADA development for licensed therapeutics.

Drug name Type Clinical use ADA prevalence Citation

Monoclonal antibodies

Muromonab-CD3 Murine against CD3 Immunosuppression for the prevention of

allograft rejection in transplants

43–91% (14–17)

Infliximab Chimeric human/mouse

IgG1 against TNFα

Rheumatoid arthritis, inflammatory bowel

disease, plaque psoriasis

5.4–43.6% (19, 21, 23)

Cetuximab Chimeric human/mouse

IgG1 against EGFR

Colorectal cancer, squamous cell carcinoma

(head/neck)

0.6–20.8% (24)

Adalimumab Human IgG1 against TNFα Plaque psoriasis, rheumatoid arthritis, Crohn’s

disease, spondyloarthritis, psoriatic arthritis

17–49% (18, 20–22,

25)

Other drugs

L-Asparaginase Enzyme Acute lymphoblastic leukemia in adult and

children

2% (PEG-Asp–neutralizing

ADA;) 26% (Escherichia
coli-Asp)

(26, 27)

FVIII Anti-hemorrhagic protein Hemophilia A/B 3.6–33% (25–30% in those

with severe hemophilia)

(28, 29)

IFN-β Mammalian cytokine Multiple sclerosis 2–53% (30–32)

ADA, antidrug antibody; EGFR, epidermal growth factor receptor.

Generation and Mechanisms of Action of
Antidrug Antibodies
Several factors contributing to the immunogenicity of
biotherapeutics have been identified and in many cases
eliminated to generate better drugs. For example, animal
proteins have been for the most part phased out of the market,
as these were very often associated with strong immune
responses. Initially, many recombinant proteins were generated
through bacterial systems (especially E. coli), which are
effective and simple to use but lack the higher mechanisms for
glycosylation and therefore are often immunogenic in humans.
Mammalian expression systems are now commonly used for
biotherapeutics to allow for glycosylation. However, even within
mammalian species, glycosylation may differ contributing
to the development of ADA. For example, cetuximab, a
monoclonal antibody against epidermal growth factor receptor
(EGFR) inhibitor (24, 34, 35) generated in a mouse myeloma
cell line SP2/0 was associated with development of ADA
owing to its glycosylation profile (24, 34–36). Introduction
of alternative mammalian cell lines [Chinese hamster ovary
(CHO)] has greatly contributed to overcoming immunogenicity
due to glycosylation patterns (34, 35). L-Asparaginase, a
highly immunogenic enzyme, is effective in its own native,
E. coli derived form (37, 38). However, allergic reactions
due to multiple doses caused silent hypersensitivity that
in turns generates ADA. Use of a pegylated form (26) or
increasing the enzyme binding to erythrocytes (39) was able to
reduce the development of ADA during multiple doses of E.
coli asparaginase.

In patients receiving replacement therapy, a significant factor
affecting their risk to ADA development is the levels of
endogenous protein, with patients expressing no or very little
protein being at a much higher risk, presumably owing to
compromised central tolerance induction (40). Even a few amino
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acid sequence changes between the endogenous protein and the
administered biotherapeutic may lead to an increased risk in
immunogenicity. Substitution of just three amino acids in the
recombinant activated factor VII (rFVIIa) (1, 41) was shown
to significantly increase immunogenicity of the therapeutic
protein. In addition, dosing (42), protein folding/aggregation,
route of administration, storage conditions, and excipients may
also affect the development of ADA (43, 44). It has been
proposed that even codon usage of the recombinant protein
may affect protein conformation and modulate immunogenicity
(45). The inhibitory activity of ADA can be mediated by
several mechanisms. Development of anti-idiotypic antibodies
against the therapeutic could lead to in vivo formation of
immune complexes (ICs), which can diminish therapeutic
efficacy by reducing the half-life of the therapeutic or engaging
the complement cascade (46, 47). Larger ICs are removed
from circulation faster than smaller ICs owing to engagement
of FcR on macrophages, reducing drug levels and requiring
more frequent administration (47, 48). Complement cascade
activation (as seen with administration of therapeutic IFN-β
for multiple sclerosis) enhances inflammatory responses (46,
47). Alternatively, generation of neutralizing antibodies (i.e.,
adalimumab and infliximab, anti-TNFα, and monoclonal Abs)
could directly block the action of the administered antibody or
modulate its in vivo half-life (18, 25, 49, 50). In rare cases, ADA
generation may lead to anaphylactic shock and death (51).

Lymph Nodes: Primary Sites for the
Development of Immune Responses
Against Pathogens
Structure
Lymph node positioning along lymphatic vessels enables the
efficient draining and detection of pathogens and immunogens
(Figure 1). The number of human LNs varies depending on age
and disease status (52–56). The LN architecture is characterized
by well-organized, distinct anatomical areas: cortex, paracortex,
follicles, germinal centers (GCs), high endothelial venules
(HEVs), medulla, and fibroblastic reticular cells (FRCs) (57, 58)
(Figure 1). The formation of distinct LN areas contributes to
the compartmentalization of cellular and molecular mechanisms
involved in the generation of antigen-specific humoral responses.
This compartmentalization further contributes to the control
of relevant immune interactions and reduction of unwanted
B cell responses. The cortex consists of many lymphocytes,
mainly naive B cells (sIgD+IgM+) packed into primary follicles
(absence of GC) or secondary follicles that are characterized
by the formation of GC (58, 59). GCs are the areas where B
cells proliferate in response to T cell-dependent antigen and
create memory cells and plasma cells (57). Two major GC areas
have been characterized, dark zone (DZ) and light zone (LZ),
with different cellularities and roles for the development of B
cell responses (60, 61). The deeper cortex, also known as the
paracortex, contains HEVs, which are specialized blood vessels
that allow circulating lymphocytes, such as T cells, and innate
immunity cells to directly enter the LN (58). The local interaction
between T and dendritic cell (DC) subsets initiates a cascade

of immune reactions critical to the formation of mature GCs
(57). The medulla, located on the efferent side where the lymph
drains out of the LN, contains blood vessels and medullary cords
enriched in B cells, macrophages, and plasma cells (Figure 1).
Finally, the backbone of the LN architecture is the FRCs. The
FRCs form a network that allow DCs and T cells to travel
throughout the LN (62).

Major Cell Populations
T cell zone (paracortex) is populated with innate immunity
cells (DC, monocytes, macrophages, and granulocytes), adaptive
immunity cells (CD4 and CD8), and stromal cells (FRCs).
Subcapsular sinus macrophages is the first lymph node
population encountering pathogens from the lymph (63) that
controls the pathogen dissemination and inflammation and
affects B cell responses to subsequent infections (64). These cells
can trigger responses to lipid antigens, a mechanism mediated
by activation of LN invariant natural killer cells (iNKTs) (65).
Recirculating monocytes can traffic to LNs and either keep
their classical status (66) or further differentiate to macrophages
or DCs and initiate adaptive responses (67, 68). T cell zone
macrophages can also function as scavengers for apoptotic cells
(69). DC and monocyte in LNs are main producers of IL-6, an
important cytokine for the differentiation development of Tfh
cells (70, 71). FRCs provide a vital network for (i) recruitment
of naive T cells and DCs through CCL21 and CCL19, the
CCR7 ligands (72), a major chemokine receptor mediating tissue
trafficking of several cell types (73, 74); (ii) T cell survival through
IL-7, a survival factor particularly for naive T cells (75, 76); and
(iii) trafficking of CD4T cells toward the GC (62). When an
antigen is present, major rearrangements take place within this
area. Studies using mouse models have shown that the presence
of antigen triggers the activation and repositioning of DC cells
(77, 78), which have an important effect on CD4T cell activation
as well as the initiation of CD4T and B cell interaction. B cells
will follow a CCR7 gradient toward the follicle/T-zone (T–B)
boundary where they could bind to multiple helper CD4T cells
at once, whereas T cells would only bind one at a time (79).
The interaction of CD4T and B cells in the T cell zone will
activate a cascade of immune dynamics associated with major
changes in differentiation status (phenotypes, transcriptome
profile, and trafficking) (80) of both CD4 and B cells, ultimately
enabling their trafficking into the GC area. In fact, the
interaction between CD4, B, and antigen-presenting cells (APCs)
in the T cell zone and T–B borders is required for optimal
differentiation of CD4T cells to Tfh cells (81, 82). These early
interactions are also critical to the further development of B cell
responses (83, 84).

GERMINAL CENTER: THE LABORATORY
FOR THE DEVELOPMENT OF B CELL
RESPONSES

The role of the Tfh cells is to help create high-affinity memory
B and plasma cells (85); thus, this subset of CD4T cells is
crucial in the immune response. GCs, the structures found in
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FIGURE 1 | The lymph node structure/organization is shown. A zoomed T cell/follicular area with the major cell types involved in the development of antibody

responses is shown. The presence of therapeutic within the lymph node can initiate a cascade of immune reactions ultimately leading to T cell-dependent germinal

center (GC) activity and the generation of plasma cells and memory B cells that can produce antibodies. The cascade begins with (1) dendritic cells that present the

therapeutic interaction with CD4T cells resulting in their activation and differentiation; (2) activated CD4T cells begin interacting with B cells, ultimately leading to

further differentiation of both cell types and therefore trafficking into follicles/GCs; (3) within the GC, follicular CD4T cells interact with GC B cells and follicular dendritic

cell (FDC); (4) helping B cells promotes their maturation to memory and plasma cells.

mature, secondary follicles (59), are populated with activated
B cells, follicular DCs (FDCs), Tfh cells, and macrophages
(tingible body macrophages) (59). Upon antigen stimulation,
naive B cells traffic to the T–B border following a CCR7 gradient
(79). Further interaction with CD4T cells and receipt of co-
stimulatory signals (86) trigger a rigorous proliferation of B cells
and the formation of a tight cluster within the follicle, which
becomes the GC. Within the GC, the B cells undergo somatic
hypermutation, affinity maturation, class switch recombination,
and plasma/memory B cell production (87–89). Formation of GC
is mediated by help from FDCs and the function of G-protein-
coupled receptors (GPCR) like S1PR2 and P2RY8 (59, 90, 91). In

primary follicles, FDCs help B cells form a follicle (92), whereas
in secondary follicles, FDCs support GC B cell survival (93–
97). B cell survival was impaired when FDCs were exposed
to HIV-1 (98), smaller GCs,formed and lower antibody titers
were obtained when FDC activation was blocked through TLR4
(99). FDCs modulate antigen availability by cycling the antigens
between the FDC surface and other endosomal compartments
(100) or accumulating ICs bound to Fc receptors on their cell
surface (100), a process critical to the affinity maturation of B
cells (101, 102). Tfh cells are a subset of CD4T cells that are
specialized to help B cells. They are located inside B cell follicles
of secondary lymphoid organs and are responsible for activation,
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isotype switching, affinity maturation, and differentiation of
B cells (103–105). Tfh cells express a unique phenotype and
transcriptome signature (106–109). A mutual regulation through
modulation of Bcl-6 between Tfh and GC B cells has been
proposed (110–112). Tfh cells produce cytokines like IL-21 and
IL-4, which are important for the GC B cell dynamics (105, 113–
115) and maintenance of Tfh cells. Two distinct GC areas have
been identified; the DZ, where B cell proliferation and somatic
hypermutation occurs, and the LZ, where B cells interact with
Tfh cells and FDCs (60, 116). Expression of the chemokine
receptor CXCR4, which is highly expressed on Tfh and GC B
cells (117, 118), and local production of its ligand CXCL12 (SDF-
1) in DZ by CXCL12-expressing reticular cells (CRC) (119, 120)
play a critical role for the organization of DZ and LZ (116,
121, 122). LZ is less compact and more diverse than is DZ. B
cells continuously move between the DZ and LZ, helping in the
further differentiation and affinitymaturation of GC B cells (123–
126). Within the LZ, B cells continuously interact with Tfh, FDC,
and antigen, interactions that dictate their survival and clonal
selection (84, 127–129).

Germinal Center Reactivity Against
Therapeutics
Several studies have investigated GC dynamics after drug
administration. Understanding how the LN and GC react
to therapeutics (antibodies, recombinant proteins, cytokines,
vaccines, enzymes, etc.) is important to reduce/eliminate ADA
development. ADA can be generated by T cell-dependent
(Td) and T cell-independent (Ti) pathways (130–132). The
Td pathway involves an antigen-activated T cell that then
stimulates B cell activation and differentiation to plasma cells.
Neutralizing IgG4 ADA against FVIII (6, 133) was triggered
by a Th2 CD4T cell response (134), whereas initiation of Th1
responses was found to induce IgG1 and IgG2 ADA against FVIII
when patients were on immunosuppressive therapy (134), which
may sometimes be non-neutralizing (133, 134). Administration
of IFN-β was found to induce either non-neutralizing and
transient neutralizing ADA, mainly of low titers and affinity
IgG1 and IgG3 subclasses, or persistent neutralizing ADA, which
had mostly IgG2 and IgG4 antibodies (135). ADA binding
affinity was positively correlated with IgG4 production and
neutralizing ADA titers but negatively correlated with IgG3
production. Similarly, generation of high-affinity antibodies to
biopharmaceuticals is CD4T cell dependent (136, 137). In fact
several studies have shown the development of neutralizing
antibodies ADA (138–142) mainly of IgG4 subtype (143). Similar
polyclonal IgG1 responses consisting of neutralizing and non-
neutralizing specificities have also been detected in response to
natalizumab (NZM) administration inmultiple sclerosis patients.
Neutralizing antibodies in these patients carry a higher load of
somatic mutations in the complementary determining regions
(CDRs) and have a higher affinity than have non-neutralizing,
binding antibody specificities, which is consistent with LN-
specific antigen-driven selection (144).

These considerations indicate that alternative cytokine milieu
and initial programing of CD4T cells in the LN can affect the
outcome of the GC B cell responses to a given therapeutic in

a way that parallels the LN-associated changes seen in vaccine-
specific or pathogen-associated antibody production. The Ti
pathway is triggered when the B cell is activated directly by the
antigen. In general, polyvalent antigens, such as an aggregated
biologic (145, 146), are more likely to induce Ti-B cell responses
(147, 148). Ti responses lead to IgM or low affinity IgG ADA
owing to lack of T cell help (130). Because most ADAs are
IgG, the possible role of complement activation by ADA needs
further investigation (130). Neutralizing antibodies, particularly
the broad neutralizing antibodies (bNABs), are characterized by
high levels of somatic mutations (149) and are indicative of
GC maturation. The mechanisms leading to such maturation
process in the GC are not well-understood. Presumably, antigen
concentration within LN/GC and the co-evolution of Tfh and GC
B cells (selection of TCR and BCR clones) are major biological
factors affecting this process. Studies using mouse models have
shown that the quality of Tfh help to GC B cell is an important
biological factor for the development of high-affinity antibodies
(127, 129, 150). Specifically, Tfh helps regulate the metabolic
programming of LZ B cells that support their proliferation in
DZ (129). Furthermore, this helps prolong the duration of B cell
cycle in the DZ, a process associated with the generation of high-
affinity GC B cells (151). Shuttling/binding of antigen to FDC
(152) as well as the amount of antigen presented to Tfh by GC
B cells (150) can have a significant impact on the development
of high-affinity B cell responses. Dynamics and factors in the
follicular, non-GC area can also affect the maturation of B cell
responses. High-affinity B cell clones can be selected during
early interaction between CD4T and B cells at the T–B cell
border (84), whereas class switch recombination can be started
outside GC (153). Furthermore, recently identified populations
like the CD25+FoxP3+ T follicular IL-10-producing cells (154)
and Tbet+ B cells, mainly localized around the GC (155), could
be important regulators for the development of neutralizing
antibodies. Host genetics are also relevant. The presentation of
MHC class II-restricted drug-specific peptides on CD4+ T cells
can further contribute to the emergence and maintenance of
polyclonal drug-specific B cell responses in lymphoid localities
(144). Conversely, elimination of specific drug-associated T
cell epitopes in mice treated with recombinant immunotoxins
curtails the development of high-affinity antidrug IgG responses
in primary as well as anamnestic responses (156). Taken together,
these findings suggest that at least for some types of biologic
pharmaceuticals, T-dependent pathways in LNs are central in
the induction of neutralizing ADAs. Therefore, understanding
in more detail the nature, trafficking/distribution of each
biopharmaceutical into LN and its availability/sustainability
on FDCs is warranted, as these are factors could direct the
cellular and molecular mechanisms immobilized in the LN,
which lead to the development of specific types of antibody
responses, especially in the absence of adjuvants, which trigger
innate immunity.

CONCLUSIONS

The cellular and molecular mechanisms governing the
development of ADA responses in humans are not well-
understood. This is a highly coordinated process taking
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place in secondary lymphoid organs where the nature of
the “antigen,” tissue structure, and spatial positioning of
relevant cell populations, particularly in the follicular/GC
area, play a critical role for the host–therapeutic interplay
leading to the differentiation of adaptive immune cells
to enable the generation of antibody-secreting B cells.
Today, the link between ADA and changes in LN function
is still not well-studied. Major aspects related to ADA
development that need further investigation include
the following:

1. The trafficking and sustainability of a particular therapeutic
in the LN areas, particularly the GC. Formulation for the
in vivo delivery of an immunogen could significantly change its
dynamics in the GCs with major impact on the B cell response
development (157, 158).

2. The activation of specific innate immunity cells and the
concomitant changes in the local cytokine/chemokine milieu
are factors regulating the degree of CD4T cell help for the B
cell responses (78).

3. The possible association between ADA titer and affinity
maturation and particular GC dynamics (i.e., magnitude of Tfh
cell responses and expansion of particular Tfh subsets).

4. The possible role of preexisting immune activation and
inflammation within the lymphoid organs.

Of particular interest is the investigation of ADA development
in aging where the GC dynamics are different compared
with those in young individuals (159–161) as well as in
chronic inflammatory diseases like HIV and autoimmunity.
For example, altered antibody responses are expected in HIV-
infected individuals where chronic infection is associated with

LN inflammation, architecture damage (fibrosis), and dramatic
changes to GC dynamics (100, 155, 162, 163). Such LN
changes could have a major impact in the ADA development
to a specific therapeutic. Despite the limited predictive value
for the drug immunogenicity in humans based on non-
human primate (NHP) studies (164), NHP represents the only
model for testing antibody development under such conditions.
However, we need to keep in mind that compared with
that in humans, ADA in NHP is mainly directed against
the Fc region of the monoclonal antibody, causing loss of
efficacy and adverse effects. Supplemental to human studies,
investigation of therapeutic immunogenicity, when it occurs,
in NHPs could lead to identification of particular cell types,
molecules, and molecular pathways driving the responses to a
particular therapeutic. The wide range of titers, subtypes, and
function of ADA induced by different therapeutics argues for
the need for identification of “LN molecular/cellular signatures”
specific to certain therapeutic, which could lead to targets for
“individualized” in vivomanipulation of ADA development.
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